fond
Model Checking Contest @ Petri Nets 2016
6th edition, Toruń, Poland, June 21, 2016
Execution of r184kn-smll-146444125901069
Last Updated
June 30, 2016

About the Execution of Tapaal(PAR) for S_NeoElection-PT-4

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
8030.840 3600000.00 3696448.00 10654.20 FF?????????????? normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
..................
=====================================================================
Generated by BenchKit 2-2979
Executing tool tapaalPAR
Input is S_NeoElection-PT-4, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r184kn-smll-146444125901069
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-0
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-1
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-10
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-11
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-12
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-13
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-14
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-15
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-2
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-3
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-4
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-5
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-6
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-7
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-8
FORMULA_NAME NeoElection-COL-4-ReachabilityCardinality-9

=== Now, execution of the tool begins

BK_START 1464676643052


*****************************************
TAPAAL onthefly-PAR performing ReachabilityCardinality search
*****************************************

verifypn -o mc -c 4 -n model.pnml ReachabilityCardinality.xml
NeoElection-COL-4-ReachabilityCardinality-0: not EF not ( (("P-poll__pollEnd_0" + "P-poll__pollEnd_1" + "P-poll__pollEnd_2" + "P-poll__pollEnd_3" + "P-poll__pollEnd_4") <= ("P-network_0_0_AskP_0" + "P-network_0_0_AskP_1" + "P-network_0_0_AskP_2" + "P-network_0_0_AskP_3" + "P-network_0_0_AskP_4" + "P-network_0_0_AnsP_0" + "P-network_0_0_AnsP_1" + "P-network_0_0_AnsP_2" + "P-network_0_0_AnsP_3" + "P-network_0_0_AnsP_4" + "P-network_0_0_RI_0" + "P-network_0_0_RI_1" + "P-network_0_0_RI_2" + "P-network_0_0_RI_3" + "P-network_0_0_RI_4" + "P-network_0_0_AI_0" + "P-network_0_0_AI_1" + "P-network_0_0_AI_2" + "P-network_0_0_AI_3" + "P-network_0_0_AI_4" + "P-network_0_0_AnnP_0" + "P-network_0_0_AnnP_1" + "P-network_0_0_AnnP_2" + "P-network_0_0_AnnP_3" + "P-network_0_0_AnnP_4" + "P-network_0_0_RP_0" + "P-network_0_0_RP_1" + "P-network_0_0_RP_2" + "P-network_0_0_RP_3" + "P-network_0_0_RP_4" + "P-network_0_1_AskP_0" + "P-network_0_1_AskP_1" + "P-network_0_1_AskP_2" + "P-network_0_1_AskP_3" + "P-network_0_1_AskP_4" + "P-network_0_1_AnsP_0" + "P-network_0_1_AnsP_1" + "P-network_0_1_AnsP_2" + "P-network_0_1_AnsP_3" + "P-network_0_1_AnsP_4" + "P-network_0_1_RI_0" + "P-network_0_1_RI_1" + "P-network_0_1_RI_2" + "P-network_0_1_RI_3" + "P-network_0_1_RI_4" + "P-network_0_1_AI_0" + "P-network_0_1_AI_1" + "P-network_0_1_AI_2" + "P-network_0_1_AI_3" + "P-network_0_1_AI_4" + "P-network_0_1_AnnP_0" + "P-network_0_1_AnnP_1" + "P-network_0_1_AnnP_2" + "P-network_0_1_AnnP_3" + "P-network_0_1_AnnP_4" + "P-network_0_1_RP_0" + "P-network_0_1_RP_1" + "P-network_0_1_RP_2" + "P-network_0_1_RP_3" + "P-network_0_1_RP_4" + "P-network_0_2_AskP_0" + "P-network_0_2_AskP_1" + "P-network_0_2_AskP_2" + "P-network_0_2_AskP_3" + "P-network_0_2_AskP_4" + "P-network_0_2_AnsP_0" + "P-network_0_2_AnsP_1" + "P-network_0_2_AnsP_2" + "P-network_0_2_AnsP_3" + "P-network_0_2_AnsP_4" + "P-network_0_2_RI_0" + "P-network_0_2_RI_1" + "P-network_0_2_RI_2" + "P-network_0_2_RI_3" + "P-network_0_2_RI_4" + "P-network_0_2_AI_0" + "P-network_0_2_AI_1" + "P-network_0_2_AI_2" + "P-network_0_2_AI_3" + "P-network_0_2_AI_4" + "P-network_0_2_AnnP_0" + "P-network_0_2_AnnP_1" + "P-network_0_2_AnnP_2" + "P-network_0_2_AnnP_3" + "P-network_0_2_AnnP_4" + "P-network_0_2_RP_0" + "P-network_0_2_RP_1" + "P-network_0_2_RP_2" + "P-network_0_2_RP_3" + "P-network_0_2_RP_4" + "P-network_0_3_AskP_0" + "P-network_0_3_AskP_1" + "P-network_0_3_AskP_2" + "P-network_0_3_AskP_3" + "P-network_0_3_AskP_4" + "P-network_0_3_AnsP_0" + "P-network_0_3_AnsP_1" + "P-network_0_3_AnsP_2" + "P-network_0_3_AnsP_3" + "P-network_0_3_AnsP_4" + "P-network_0_3_RI_0" + "P-network_0_3_RI_1" + "P-network_0_3_RI_2" + "P-network_0_3_RI_3" + "P-network_0_3_RI_4" + "P-network_0_3_AI_0" + "P-network_0_3_AI_1" + "P-network_0_3_AI_2" + "P-network_0_3_AI_3" + "P-network_0_3_AI_4" + "P-network_0_3_AnnP_0" + "P-network_0_3_AnnP_1" + "P-network_0_3_AnnP_2" + "P-network_0_3_AnnP_3" + "P-network_0_3_AnnP_4" + "P-network_0_3_RP_0" + "P-network_0_3_RP_1" + "P-network_0_3_RP_2" + "P-network_0_3_RP_3" + "P-network_0_3_RP_4" + "P-network_0_4_AskP_0" + "P-network_0_4_AskP_1" + "P-network_0_4_AskP_2" + "P-network_0_4_AskP_3" + "P-network_0_4_AskP_4" + "P-network_0_4_AnsP_0" + "P-network_0_4_AnsP_1" + "P-network_0_4_AnsP_2" + "P-network_0_4_AnsP_3" + "P-network_0_4_AnsP_4" + "P-network_0_4_RI_0" + "P-network_0_4_RI_1" + "P-network_0_4_RI_2" + "P-network_0_4_RI_3" + "P-network_0_4_RI_4" + "P-network_0_4_AI_0" + "P-network_0_4_AI_1" + "P-network_0_4_AI_2" + "P-network_0_4_AI_3" + "P-network_0_4_AI_4" + "P-network_0_4_AnnP_0" + "P-network_0_4_AnnP_1" + "P-network_0_4_AnnP_2" + "P-network_0_4_AnnP_3" + "P-network_0_4_AnnP_4" + "P-network_0_4_RP_0" + "P-network_0_4_RP_1" + "P-network_0_4_RP_2" + "P-network_0_4_RP_3" + "P-network_0_4_RP_4" + "P-network_1_0_AskP_0" + "P-network_1_0_AskP_1" + "P-network_1_0_AskP_2" + "P-network_1_0_AskP_3" + "P-network_1_0_AskP_4" + "P-network_1_0_AnsP_0" + "P-network_1_0_AnsP_1" + "P-network_1_0_AnsP_2" + "P-network_1_0_AnsP_3" + "P-network_1_0_AnsP_4" + "P-network_1_0_RI_0" + "P-network_1_0_RI_1" + "P-network_1_0_RI_2" + "P-network_1_0_RI_3" + "P-network_1_0_RI_4" + "P-network_1_0_AI_0" + "P-network_1_0_AI_1" + "P-network_1_0_AI_2" + "P-network_1_0_AI_3" + "P-network_1_0_AI_4" + "P-network_1_0_AnnP_0" + "P-network_1_0_AnnP_1" + "P-network_1_0_AnnP_2" + "P-network_1_0_AnnP_3" + "P-network_1_0_AnnP_4" + "P-network_1_0_RP_0" + "P-network_1_0_RP_1" + "P-network_1_0_RP_2" + "P-network_1_0_RP_3" + "P-network_1_0_RP_4" + "P-network_1_1_AskP_0" + "P-network_1_1_AskP_1" + "P-network_1_1_AskP_2" + "P-network_1_1_AskP_3" + "P-network_1_1_AskP_4" + "P-network_1_1_AnsP_0" + "P-network_1_1_AnsP_1" + "P-network_1_1_AnsP_2" + "P-network_1_1_AnsP_3" + "P-network_1_1_AnsP_4" + "P-network_1_1_RI_0" + "P-network_1_1_RI_1" + "P-network_1_1_RI_2" + "P-network_1_1_RI_3" + "P-network_1_1_RI_4" + "P-network_1_1_AI_0" + "P-network_1_1_AI_1" + "P-network_1_1_AI_2" + "P-network_1_1_AI_3" + "P-network_1_1_AI_4" + "P-network_1_1_AnnP_0" + "P-network_1_1_AnnP_1" + "P-network_1_1_AnnP_2" + "P-network_1_1_AnnP_3" + "P-network_1_1_AnnP_4" + "P-network_1_1_RP_0" + "P-network_1_1_RP_1" + "P-network_1_1_RP_2" + "P-network_1_1_RP_3" + "P-network_1_1_RP_4" + "P-network_1_2_AskP_0" + "P-network_1_2_AskP_1" + "P-network_1_2_AskP_2" + "P-network_1_2_AskP_3" + "P-network_1_2_AskP_4" + "P-network_1_2_AnsP_0" + "P-network_1_2_AnsP_1" + "P-network_1_2_AnsP_2" + "P-network_1_2_AnsP_3" + "P-network_1_2_AnsP_4" + "P-network_1_2_RI_0" + "P-network_1_2_RI_1" + "P-network_1_2_RI_2" + "P-network_1_2_RI_3" + "P-network_1_2_RI_4" + "P-network_1_2_AI_0" + "P-network_1_2_AI_1" + "P-network_1_2_AI_2" + "P-network_1_2_AI_3" + "P-network_1_2_AI_4" + "P-network_1_2_AnnP_0" + "P-network_1_2_AnnP_1" + "P-network_1_2_AnnP_2" + "P-network_1_2_AnnP_3" + "P-network_1_2_AnnP_4" + "P-network_1_2_RP_0" + "P-network_1_2_RP_1" + "P-network_1_2_RP_2" + "P-network_1_2_RP_3" + "P-network_1_2_RP_4" + "P-network_1_3_AskP_0" + "P-network_1_3_AskP_1" + "P-network_1_3_AskP_2" + "P-network_1_3_AskP_3" + "P-network_1_3_AskP_4" + "P-network_1_3_AnsP_0" + "P-network_1_3_AnsP_1" + "P-network_1_3_AnsP_2" + "P-network_1_3_AnsP_3" + "P-network_1_3_AnsP_4" + "P-network_1_3_RI_0" + "P-network_1_3_RI_1" + "P-network_1_3_RI_2" + "P-network_1_3_RI_3" + "P-network_1_3_RI_4" + "P-network_1_3_AI_0" + "P-network_1_3_AI_1" + "P-network_1_3_AI_2" + "P-network_1_3_AI_3" + "P-network_1_3_AI_4" + "P-network_1_3_AnnP_0" + "P-network_1_3_AnnP_1" + "P-network_1_3_AnnP_2" + "P-network_1_3_AnnP_3" + "P-network_1_3_AnnP_4" + "P-network_1_3_RP_0" + "P-network_1_3_RP_1" + "P-network_1_3_RP_2" + "P-network_1_3_RP_3" + "P-network_1_3_RP_4" + "P-network_1_4_AskP_0" + "P-network_1_4_AskP_1" + "P-network_1_4_AskP_2" + "P-network_1_4_AskP_3" + "P-network_1_4_AskP_4" + "P-network_1_4_AnsP_0" + "P-network_1_4_AnsP_1" + "P-network_1_4_AnsP_2" + "P-network_1_4_AnsP_3" + "P-network_1_4_AnsP_4" + "P-network_1_4_RI_0" + "P-network_1_4_RI_1" + "P-network_1_4_RI_2" + "P-network_1_4_RI_3" + "P-network_1_4_RI_4" + "P-network_1_4_AI_0" + "P-network_1_4_AI_1" + "P-network_1_4_AI_2" + "P-network_1_4_AI_3" + "P-network_1_4_AI_4" + "P-network_1_4_AnnP_0" + "P-network_1_4_AnnP_1" + "P-network_1_4_AnnP_2" + "P-network_1_4_AnnP_3" + "P-network_1_4_AnnP_4" + "P-network_1_4_RP_0" + "P-network_1_4_RP_1" + "P-network_1_4_RP_2" + "P-network_1_4_RP_3" + "P-network_1_4_RP_4" + "P-network_2_0_AskP_0" + "P-network_2_0_AskP_1" + "P-network_2_0_AskP_2" + "P-network_2_0_AskP_3" + "P-network_2_0_AskP_4" + "P-network_2_0_AnsP_0" + "P-network_2_0_AnsP_1" + "P-network_2_0_AnsP_2" + "P-network_2_0_AnsP_3" + "P-network_2_0_AnsP_4" + "P-network_2_0_RI_0" + "P-network_2_0_RI_1" + "P-network_2_0_RI_2" + "P-network_2_0_RI_3" + "P-network_2_0_RI_4" + "P-network_2_0_AI_0" + "P-network_2_0_AI_1" + "P-network_2_0_AI_2" + "P-network_2_0_AI_3" + "P-network_2_0_AI_4" + "P-network_2_0_AnnP_0" + "P-network_2_0_AnnP_1" + "P-network_2_0_AnnP_2" + "P-network_2_0_AnnP_3" + "P-network_2_0_AnnP_4" + "P-network_2_0_RP_0" + "P-network_2_0_RP_1" + "P-network_2_0_RP_2" + "P-network_2_0_RP_3" + "P-network_2_0_RP_4" + "P-network_2_1_AskP_0" + "P-network_2_1_AskP_1" + "P-network_2_1_AskP_2" + "P-network_2_1_AskP_3" + "P-network_2_1_AskP_4" + "P-network_2_1_AnsP_0" + "P-network_2_1_AnsP_1" + "P-network_2_1_AnsP_2" + "P-network_2_1_AnsP_3" + "P-network_2_1_AnsP_4" + "P-network_2_1_RI_0" + "P-network_2_1_RI_1" + "P-network_2_1_RI_2" + "P-network_2_1_RI_3" + "P-network_2_1_RI_4" + "P-network_2_1_AI_0" + "P-network_2_1_AI_1" + "P-network_2_1_AI_2" + "P-network_2_1_AI_3" + "P-network_2_1_AI_4" + "P-network_2_1_AnnP_0" + "P-network_2_1_AnnP_1" + "P-network_2_1_AnnP_2" + "P-network_2_1_AnnP_3" + "P-network_2_1_AnnP_4" + "P-network_2_1_RP_0" + "P-network_2_1_RP_1" + "P-network_2_1_RP_2" + "P-network_2_1_RP_3" + "P-network_2_1_RP_4" + "P-network_2_2_AskP_0" + "P-network_2_2_AskP_1" + "P-network_2_2_AskP_2" + "P-network_2_2_AskP_3" + "P-network_2_2_AskP_4" + "P-network_2_2_AnsP_0" + "P-network_2_2_AnsP_1" + "P-network_2_2_AnsP_2" + "P-network_2_2_AnsP_3" + "P-network_2_2_AnsP_4" + "P-network_2_2_RI_0" + "P-network_2_2_RI_1" + "P-network_2_2_RI_2" + "P-network_2_2_RI_3" + "P-network_2_2_RI_4" + "P-network_2_2_AI_0" + "P-network_2_2_AI_1" + "P-network_2_2_AI_2" + "P-network_2_2_AI_3" + "P-network_2_2_AI_4" + "P-network_2_2_AnnP_0" + "P-network_2_2_AnnP_1" + "P-network_2_2_AnnP_2" + "P-network_2_2_AnnP_3" + "P-network_2_2_AnnP_4" + "P-network_2_2_RP_0" + "P-network_2_2_RP_1" + "P-network_2_2_RP_2" + "P-network_2_2_RP_3" + "P-network_2_2_RP_4" + "P-network_2_3_AskP_0" + "P-network_2_3_AskP_1" + "P-network_2_3_AskP_2" + "P-network_2_3_AskP_3" + "P-network_2_3_AskP_4" + "P-network_2_3_AnsP_0" + "P-network_2_3_AnsP_1" + "P-network_2_3_AnsP_2" + "P-network_2_3_AnsP_3" + "P-network_2_3_AnsP_4" + "P-network_2_3_RI_0" + "P-network_2_3_RI_1" + "P-network_2_3_RI_2" + "P-network_2_3_RI_3" + "P-network_2_3_RI_4" + "P-network_2_3_AI_0" + "P-network_2_3_AI_1" + "P-network_2_3_AI_2" + "P-network_2_3_AI_3" + "P-network_2_3_AI_4" + "P-network_2_3_AnnP_0" + "P-network_2_3_AnnP_1" + "P-network_2_3_AnnP_2" + "P-network_2_3_AnnP_3" + "P-network_2_3_AnnP_4" + "P-network_2_3_RP_0" + "P-network_2_3_RP_1" + "P-network_2_3_RP_2" + "P-network_2_3_RP_3" + "P-network_2_3_RP_4" + "P-network_2_4_AskP_0" + "P-network_2_4_AskP_1" + "P-network_2_4_AskP_2" + "P-network_2_4_AskP_3" + "P-network_2_4_AskP_4" + "P-network_2_4_AnsP_0" + "P-network_2_4_AnsP_1" + "P-network_2_4_AnsP_2" + "P-network_2_4_AnsP_3" + "P-network_2_4_AnsP_4" + "P-network_2_4_RI_0" + "P-network_2_4_RI_1" + "P-network_2_4_RI_2" + "P-network_2_4_RI_3" + "P-network_2_4_RI_4" + "P-network_2_4_AI_0" + "P-network_2_4_AI_1" + "P-network_2_4_AI_2" + "P-network_2_4_AI_3" + "P-network_2_4_AI_4" + "P-network_2_4_AnnP_0" + "P-network_2_4_AnnP_1" + "P-network_2_4_AnnP_2" + "P-network_2_4_AnnP_3" + "P-network_2_4_AnnP_4" + "P-network_2_4_RP_0" + "P-network_2_4_RP_1" + "P-network_2_4_RP_2" + "P-network_2_4_RP_3" + "P-network_2_4_RP_4" + "P-network_3_0_AskP_0" + "P-network_3_0_AskP_1" + "P-network_3_0_AskP_2" + "P-network_3_0_AskP_3" + "P-network_3_0_AskP_4" + "P-network_3_0_AnsP_0" + "P-network_3_0_AnsP_1" + "P-network_3_0_AnsP_2" + "P-network_3_0_AnsP_3" + "P-network_3_0_AnsP_4" + "P-network_3_0_RI_0" + "P-network_3_0_RI_1" + "P-network_3_0_RI_2" + "P-network_3_0_RI_3" + "P-network_3_0_RI_4" + "P-network_3_0_AI_0" + "P-network_3_0_AI_1" + "P-network_3_0_AI_2" + "P-network_3_0_AI_3" + "P-network_3_0_AI_4" + "P-network_3_0_AnnP_0" + "P-network_3_0_AnnP_1" + "P-network_3_0_AnnP_2" + "P-network_3_0_AnnP_3" + "P-network_3_0_AnnP_4" + "P-network_3_0_RP_0" + "P-network_3_0_RP_1" + "P-network_3_0_RP_2" + "P-network_3_0_RP_3" + "P-network_3_0_RP_4" + "P-network_3_1_AskP_0" + "P-network_3_1_AskP_1" + "P-network_3_1_AskP_2" + "P-network_3_1_AskP_3" + "P-network_3_1_AskP_4" + "P-network_3_1_AnsP_0" + "P-network_3_1_AnsP_1" + "P-network_3_1_AnsP_2" + "P-network_3_1_AnsP_3" + "P-network_3_1_AnsP_4" + "P-network_3_1_RI_0" + "P-network_3_1_RI_1" + "P-network_3_1_RI_2" + "P-network_3_1_RI_3" + "P-network_3_1_RI_4" + "P-network_3_1_AI_0" + "P-network_3_1_AI_1" + "P-network_3_1_AI_2" + "P-network_3_1_AI_3" + "P-network_3_1_AI_4" + "P-network_3_1_AnnP_0" + "P-network_3_1_AnnP_1" + "P-network_3_1_AnnP_2" + "P-network_3_1_AnnP_3" + "P-network_3_1_AnnP_4" + "P-network_3_1_RP_0" + "P-network_3_1_RP_1" + "P-network_3_1_RP_2" + "P-network_3_1_RP_3" + "P-network_3_1_RP_4" + "P-network_3_2_AskP_0" + "P-network_3_2_AskP_1" + "P-network_3_2_AskP_2" + "P-network_3_2_AskP_3" + "P-network_3_2_AskP_4" + "P-network_3_2_AnsP_0" + "P-network_3_2_AnsP_1" + "P-network_3_2_AnsP_2" + "P-network_3_2_AnsP_3" + "P-network_3_2_AnsP_4" + "P-network_3_2_RI_0" + "P-network_3_2_RI_1" + "P-network_3_2_RI_2" + "P-network_3_2_RI_3" + "P-network_3_2_RI_4" + "P-network_3_2_AI_0" + "P-network_3_2_AI_1" + "P-network_3_2_AI_2" + "P-network_3_2_AI_3" + "P-network_3_2_AI_4" + "P-network_3_2_AnnP_0" + "P-network_3_2_AnnP_1" + "P-network_3_2_AnnP_2" + "P-network_3_2_AnnP_3" + "P-network_3_2_AnnP_4" + "P-network_3_2_RP_0" + "P-network_3_2_RP_1" + "P-network_3_2_RP_2" + "P-network_3_2_RP_3" + "P-network_3_2_RP_4" + "P-network_3_3_AskP_0" + "P-network_3_3_AskP_1" + "P-network_3_3_AskP_2" + "P-network_3_3_AskP_3" + "P-network_3_3_AskP_4" + "P-network_3_3_AnsP_0" + "P-network_3_3_AnsP_1" + "P-network_3_3_AnsP_2" + "P-network_3_3_AnsP_3" + "P-network_3_3_AnsP_4" + "P-network_3_3_RI_0" + "P-network_3_3_RI_1" + "P-network_3_3_RI_2" + "P-network_3_3_RI_3" + "P-network_3_3_RI_4" + "P-network_3_3_AI_0" + "P-network_3_3_AI_1" + "P-network_3_3_AI_2" + "P-network_3_3_AI_3" + "P-network_3_3_AI_4" + "P-network_3_3_AnnP_0" + "P-network_3_3_AnnP_1" + "P-network_3_3_AnnP_2" + "P-network_3_3_AnnP_3" + "P-network_3_3_AnnP_4" + "P-network_3_3_RP_0" + "P-network_3_3_RP_1" + "P-network_3_3_RP_2" + "P-network_3_3_RP_3" + "P-network_3_3_RP_4" + "P-network_3_4_AskP_0" + "P-network_3_4_AskP_1" + "P-network_3_4_AskP_2" + "P-network_3_4_AskP_3" + "P-network_3_4_AskP_4" + "P-network_3_4_AnsP_0" + "P-network_3_4_AnsP_1" + "P-network_3_4_AnsP_2" + "P-network_3_4_AnsP_3" + "P-network_3_4_AnsP_4" + "P-network_3_4_RI_0" + "P-network_3_4_RI_1" + "P-network_3_4_RI_2" + "P-network_3_4_RI_3" + "P-network_3_4_RI_4" + "P-network_3_4_AI_0" + "P-network_3_4_AI_1" + "P-network_3_4_AI_2" + "P-network_3_4_AI_3" + "P-network_3_4_AI_4" + "P-network_3_4_AnnP_0" + "P-network_3_4_AnnP_1" + "P-network_3_4_AnnP_2" + "P-network_3_4_AnnP_3" + "P-network_3_4_AnnP_4" + "P-network_3_4_RP_0" + "P-network_3_4_RP_1" + "P-network_3_4_RP_2" + "P-network_3_4_RP_3" + "P-network_3_4_RP_4" + "P-network_4_0_AskP_0" + "P-network_4_0_AskP_1" + "P-network_4_0_AskP_2" + "P-network_4_0_AskP_3" + "P-network_4_0_AskP_4" + "P-network_4_0_AnsP_0" + "P-network_4_0_AnsP_1" + "P-network_4_0_AnsP_2" + "P-network_4_0_AnsP_3" + "P-network_4_0_AnsP_4" + "P-network_4_0_RI_0" + "P-network_4_0_RI_1" + "P-network_4_0_RI_2" + "P-network_4_0_RI_3" + "P-network_4_0_RI_4" + "P-network_4_0_AI_0" + "P-network_4_0_AI_1" + "P-network_4_0_AI_2" + "P-network_4_0_AI_3" + "P-network_4_0_AI_4" + "P-network_4_0_AnnP_0" + "P-network_4_0_AnnP_1" + "P-network_4_0_AnnP_2" + "P-network_4_0_AnnP_3" + "P-network_4_0_AnnP_4" + "P-network_4_0_RP_0" + "P-network_4_0_RP_1" + "P-network_4_0_RP_2" + "P-network_4_0_RP_3" + "P-network_4_0_RP_4" + "P-network_4_1_AskP_0" + "P-network_4_1_AskP_1" + "P-network_4_1_AskP_2" + "P-network_4_1_AskP_3" + "P-network_4_1_AskP_4" + "P-network_4_1_AnsP_0" + "P-network_4_1_AnsP_1" + "P-network_4_1_AnsP_2" + "P-network_4_1_AnsP_3" + "P-network_4_1_AnsP_4" + "P-network_4_1_RI_0" + "P-network_4_1_RI_1" + "P-network_4_1_RI_2" + "P-network_4_1_RI_3" + "P-network_4_1_RI_4" + "P-network_4_1_AI_0" + "P-network_4_1_AI_1" + "P-network_4_1_AI_2" + "P-network_4_1_AI_3" + "P-network_4_1_AI_4" + "P-network_4_1_AnnP_0" + "P-network_4_1_AnnP_1" + "P-network_4_1_AnnP_2" + "P-network_4_1_AnnP_3" + "P-network_4_1_AnnP_4" + "P-network_4_1_RP_0" + "P-network_4_1_RP_1" + "P-network_4_1_RP_2" + "P-network_4_1_RP_3" + "P-network_4_1_RP_4" + "P-network_4_2_AskP_0" + "P-network_4_2_AskP_1" + "P-network_4_2_AskP_2" + "P-network_4_2_AskP_3" + "P-network_4_2_AskP_4" + "P-network_4_2_AnsP_0" + "P-network_4_2_AnsP_1" + "P-network_4_2_AnsP_2" + "P-network_4_2_AnsP_3" + "P-network_4_2_AnsP_4" + "P-network_4_2_RI_0" + "P-network_4_2_RI_1" + "P-network_4_2_RI_2" + "P-network_4_2_RI_3" + "P-network_4_2_RI_4" + "P-network_4_2_AI_0" + "P-network_4_2_AI_1" + "P-network_4_2_AI_2" + "P-network_4_2_AI_3" + "P-network_4_2_AI_4" + "P-network_4_2_AnnP_0" + "P-network_4_2_AnnP_1" + "P-network_4_2_AnnP_2" + "P-network_4_2_AnnP_3" + "P-network_4_2_AnnP_4" + "P-network_4_2_RP_0" + "P-network_4_2_RP_1" + "P-network_4_2_RP_2" + "P-network_4_2_RP_3" + "P-network_4_2_RP_4" + "P-network_4_3_AskP_0" + "P-network_4_3_AskP_1" + "P-network_4_3_AskP_2" + "P-network_4_3_AskP_3" + "P-network_4_3_AskP_4" + "P-network_4_3_AnsP_0" + "P-network_4_3_AnsP_1" + "P-network_4_3_AnsP_2" + "P-network_4_3_AnsP_3" + "P-network_4_3_AnsP_4" + "P-network_4_3_RI_0" + "P-network_4_3_RI_1" + "P-network_4_3_RI_2" + "P-network_4_3_RI_3" + "P-network_4_3_RI_4" + "P-network_4_3_AI_0" + "P-network_4_3_AI_1" + "P-network_4_3_AI_2" + "P-network_4_3_AI_3" + "P-network_4_3_AI_4" + "P-network_4_3_AnnP_0" + "P-network_4_3_AnnP_1" + "P-network_4_3_AnnP_2" + "P-network_4_3_AnnP_3" + "P-network_4_3_AnnP_4" + "P-network_4_3_RP_0" + "P-network_4_3_RP_1" + "P-network_4_3_RP_2" + "P-network_4_3_RP_3" + "P-network_4_3_RP_4" + "P-network_4_4_AskP_0" + "P-network_4_4_AskP_1" + "P-network_4_4_AskP_2" + "P-network_4_4_AskP_3" + "P-network_4_4_AskP_4" + "P-network_4_4_AnsP_0" + "P-network_4_4_AnsP_1" + "P-network_4_4_AnsP_2" + "P-network_4_4_AnsP_3" + "P-network_4_4_AnsP_4" + "P-network_4_4_RI_0" + "P-network_4_4_RI_1" + "P-network_4_4_RI_2" + "P-network_4_4_RI_3" + "P-network_4_4_RI_4" + "P-network_4_4_AI_0" + "P-network_4_4_AI_1" + "P-network_4_4_AI_2" + "P-network_4_4_AI_3" + "P-network_4_4_AI_4" + "P-network_4_4_AnnP_0" + "P-network_4_4_AnnP_1" + "P-network_4_4_AnnP_2" + "P-network_4_4_AnnP_3" + "P-network_4_4_AnnP_4" + "P-network_4_4_RP_0" + "P-network_4_4_RP_1" + "P-network_4_4_RP_2" + "P-network_4_4_RP_3" + "P-network_4_4_RP_4")) )

query: EF not ( (("P-poll__pollEnd_0" + "P-poll__pollEnd_1" + "P-poll__pollEnd_2" + "P-poll__pollEnd_3" + "P-poll__pollEnd_4") <= ("P-network_0_0_AskP_0" + "P-network_0_0_AskP_1" + "P-network_0_0_AskP_2" + "P-network_0_0_AskP_3" + "P-network_0_0_AskP_4" + "P-network_0_0_AnsP_0" + "P-network_0_0_AnsP_1" + "P-network_0_0_AnsP_2" + "P-network_0_0_AnsP_3" + "P-network_0_0_AnsP_4" + "P-network_0_0_RI_0" + "P-network_0_0_RI_1" + "P-network_0_0_RI_2" + "P-network_0_0_RI_3" + "P-network_0_0_RI_4" + "P-network_0_0_AI_0" + "P-network_0_0_AI_1" + "P-network_0_0_AI_2" + "P-network_0_0_AI_3" + "P-network_0_0_AI_4" + "P-network_0_0_AnnP_0" + "P-network_0_0_AnnP_1" + "P-network_0_0_AnnP_2" + "P-network_0_0_AnnP_3" + "P-network_0_0_AnnP_4" + "P-network_0_0_RP_0" + "P-network_0_0_RP_1" + "P-network_0_0_RP_2" + "P-network_0_0_RP_3" + "P-network_0_0_RP_4" + "P-network_0_1_AskP_0" + "P-network_0_1_AskP_1" + "P-network_0_1_AskP_2" + "P-network_0_1_AskP_3" + "P-network_0_1_AskP_4" + "P-network_0_1_AnsP_0" + "P-network_0_1_AnsP_1" + "P-network_0_1_AnsP_2" + "P-network_0_1_AnsP_3" + "P-network_0_1_AnsP_4" + "P-network_0_1_RI_0" + "P-network_0_1_RI_1" + "P-network_0_1_RI_2" + "P-network_0_1_RI_3" + "P-network_0_1_RI_4" + "P-network_0_1_AI_0" + "P-network_0_1_AI_1" + "P-network_0_1_AI_2" + "P-network_0_1_AI_3" + "P-network_0_1_AI_4" + "P-network_0_1_AnnP_0" + "P-network_0_1_AnnP_1" + "P-network_0_1_AnnP_2" + "P-network_0_1_AnnP_3" + "P-network_0_1_AnnP_4" + "P-network_0_1_RP_0" + "P-network_0_1_RP_1" + "P-network_0_1_RP_2" + "P-network_0_1_RP_3" + "P-network_0_1_RP_4" + "P-network_0_2_AskP_0" + "P-network_0_2_AskP_1" + "P-network_0_2_AskP_2" + "P-network_0_2_AskP_3" + "P-network_0_2_AskP_4" + "P-network_0_2_AnsP_0" + "P-network_0_2_AnsP_1" + "P-network_0_2_AnsP_2" + "P-network_0_2_AnsP_3" + "P-network_0_2_AnsP_4" + "P-network_0_2_RI_0" + "P-network_0_2_RI_1" + "P-network_0_2_RI_2" + "P-network_0_2_RI_3" + "P-network_0_2_RI_4" + "P-network_0_2_AI_0" + "P-network_0_2_AI_1" + "P-network_0_2_AI_2" + "P-network_0_2_AI_3" + "P-network_0_2_AI_4" + "P-network_0_2_AnnP_0" + "P-network_0_2_AnnP_1" + "P-network_0_2_AnnP_2" + "P-network_0_2_AnnP_3" + "P-network_0_2_AnnP_4" + "P-network_0_2_RP_0" + "P-network_0_2_RP_1" + "P-network_0_2_RP_2" + "P-network_0_2_RP_3" + "P-network_0_2_RP_4" + "P-network_0_3_AskP_0" + "P-network_0_3_AskP_1" + "P-network_0_3_AskP_2" + "P-network_0_3_AskP_3" + "P-network_0_3_AskP_4" + "P-network_0_3_AnsP_0" + "P-network_0_3_AnsP_1" + "P-network_0_3_AnsP_2" + "P-network_0_3_AnsP_3" + "P-network_0_3_AnsP_4" + "P-network_0_3_RI_0" + "P-network_0_3_RI_1" + "P-network_0_3_RI_2" + "P-network_0_3_RI_3" + "P-network_0_3_RI_4" + "P-network_0_3_AI_0" + "P-network_0_3_AI_1" + "P-network_0_3_AI_2" + "P-network_0_3_AI_3" + "P-network_0_3_AI_4" + "P-network_0_3_AnnP_0" + "P-network_0_3_AnnP_1" + "P-network_0_3_AnnP_2" + "P-network_0_3_AnnP_3" + "P-network_0_3_AnnP_4" + "P-network_0_3_RP_0" + "P-network_0_3_RP_1" + "P-network_0_3_RP_2" + "P-network_0_3_RP_3" + "P-network_0_3_RP_4" + "P-network_0_4_AskP_0" + "P-network_0_4_AskP_1" + "P-network_0_4_AskP_2" + "P-network_0_4_AskP_3" + "P-network_0_4_AskP_4" + "P-network_0_4_AnsP_0" + "P-network_0_4_AnsP_1" + "P-network_0_4_AnsP_2" + "P-network_0_4_AnsP_3" + "P-network_0_4_AnsP_4" + "P-network_0_4_RI_0" + "P-network_0_4_RI_1" + "P-network_0_4_RI_2" + "P-network_0_4_RI_3" + "P-network_0_4_RI_4" + "P-network_0_4_AI_0" + "P-network_0_4_AI_1" + "P-network_0_4_AI_2" + "P-network_0_4_AI_3" + "P-network_0_4_AI_4" + "P-network_0_4_AnnP_0" + "P-network_0_4_AnnP_1" + "P-network_0_4_AnnP_2" + "P-network_0_4_AnnP_3" + "P-network_0_4_AnnP_4" + "P-network_0_4_RP_0" + "P-network_0_4_RP_1" + "P-network_0_4_RP_2" + "P-network_0_4_RP_3" + "P-network_0_4_RP_4" + "P-network_1_0_AskP_0" + "P-network_1_0_AskP_1" + "P-network_1_0_AskP_2" + "P-network_1_0_AskP_3" + "P-network_1_0_AskP_4" + "P-network_1_0_AnsP_0" + "P-network_1_0_AnsP_1" + "P-network_1_0_AnsP_2" + "P-network_1_0_AnsP_3" + "P-network_1_0_AnsP_4" + "P-network_1_0_RI_0" + "P-network_1_0_RI_1" + "P-network_1_0_RI_2" + "P-network_1_0_RI_3" + "P-network_1_0_RI_4" + "P-network_1_0_AI_0" + "P-network_1_0_AI_1" + "P-network_1_0_AI_2" + "P-network_1_0_AI_3" + "P-network_1_0_AI_4" + "P-network_1_0_AnnP_0" + "P-network_1_0_AnnP_1" + "P-network_1_0_AnnP_2" + "P-network_1_0_AnnP_3" + "P-network_1_0_AnnP_4" + "P-network_1_0_RP_0" + "P-network_1_0_RP_1" + "P-network_1_0_RP_2" + "P-network_1_0_RP_3" + "P-network_1_0_RP_4" + "P-network_1_1_AskP_0" + "P-network_1_1_AskP_1" + "P-network_1_1_AskP_2" + "P-network_1_1_AskP_3" + "P-network_1_1_AskP_4" + "P-network_1_1_AnsP_0" + "P-network_1_1_AnsP_1" + "P-network_1_1_AnsP_2" + "P-network_1_1_AnsP_3" + "P-network_1_1_AnsP_4" + "P-network_1_1_RI_0" + "P-network_1_1_RI_1" + "P-network_1_1_RI_2" + "P-network_1_1_RI_3" + "P-network_1_1_RI_4" + "P-network_1_1_AI_0" + "P-network_1_1_AI_1" + "P-network_1_1_AI_2" + "P-network_1_1_AI_3" + "P-network_1_1_AI_4" + "P-network_1_1_AnnP_0" + "P-network_1_1_AnnP_1" + "P-network_1_1_AnnP_2" + "P-network_1_1_AnnP_3" + "P-network_1_1_AnnP_4" + "P-network_1_1_RP_0" + "P-network_1_1_RP_1" + "P-network_1_1_RP_2" + "P-network_1_1_RP_3" + "P-network_1_1_RP_4" + "P-network_1_2_AskP_0" + "P-network_1_2_AskP_1" + "P-network_1_2_AskP_2" + "P-network_1_2_AskP_3" + "P-network_1_2_AskP_4" + "P-network_1_2_AnsP_0" + "P-network_1_2_AnsP_1" + "P-network_1_2_AnsP_2" + "P-network_1_2_AnsP_3" + "P-network_1_2_AnsP_4" + "P-network_1_2_RI_0" + "P-network_1_2_RI_1" + "P-network_1_2_RI_2" + "P-network_1_2_RI_3" + "P-network_1_2_RI_4" + "P-network_1_2_AI_0" + "P-network_1_2_AI_1" + "P-network_1_2_AI_2" + "P-network_1_2_AI_3" + "P-network_1_2_AI_4" + "P-network_1_2_AnnP_0" + "P-network_1_2_AnnP_1" + "P-network_1_2_AnnP_2" + "P-network_1_2_AnnP_3" + "P-network_1_2_AnnP_4" + "P-network_1_2_RP_0" + "P-network_1_2_RP_1" + "P-network_1_2_RP_2" + "P-network_1_2_RP_3" + "P-network_1_2_RP_4" + "P-network_1_3_AskP_0" + "P-network_1_3_AskP_1" + "P-network_1_3_AskP_2" + "P-network_1_3_AskP_3" + "P-network_1_3_AskP_4" + "P-network_1_3_AnsP_0" + "P-network_1_3_AnsP_1" + "P-network_1_3_AnsP_2" + "P-network_1_3_AnsP_3" + "P-network_1_3_AnsP_4" + "P-network_1_3_RI_0" + "P-network_1_3_RI_1" + "P-network_1_3_RI_2" + "P-network_1_3_RI_3" + "P-network_1_3_RI_4" + "P-network_1_3_AI_0" + "P-network_1_3_AI_1" + "P-network_1_3_AI_2" + "P-network_1_3_AI_3" + "P-network_1_3_AI_4" + "P-network_1_3_AnnP_0" + "P-network_1_3_AnnP_1" + "P-network_1_3_AnnP_2" + "P-network_1_3_AnnP_3" + "P-network_1_3_AnnP_4" + "P-network_1_3_RP_0" + "P-network_1_3_RP_1" + "P-network_1_3_RP_2" + "P-network_1_3_RP_3" + "P-network_1_3_RP_4" + "P-network_1_4_AskP_0" + "P-network_1_4_AskP_1" + "P-network_1_4_AskP_2" + "P-network_1_4_AskP_3" + "P-network_1_4_AskP_4" + "P-network_1_4_AnsP_0" + "P-network_1_4_AnsP_1" + "P-network_1_4_AnsP_2" + "P-network_1_4_AnsP_3" + "P-network_1_4_AnsP_4" + "P-network_1_4_RI_0" + "P-network_1_4_RI_1" + "P-network_1_4_RI_2" + "P-network_1_4_RI_3" + "P-network_1_4_RI_4" + "P-network_1_4_AI_0" + "P-network_1_4_AI_1" + "P-network_1_4_AI_2" + "P-network_1_4_AI_3" + "P-network_1_4_AI_4" + "P-network_1_4_AnnP_0" + "P-network_1_4_AnnP_1" + "P-network_1_4_AnnP_2" + "P-network_1_4_AnnP_3" + "P-network_1_4_AnnP_4" + "P-network_1_4_RP_0" + "P-network_1_4_RP_1" + "P-network_1_4_RP_2" + "P-network_1_4_RP_3" + "P-network_1_4_RP_4" + "P-network_2_0_AskP_0" + "P-network_2_0_AskP_1" + "P-network_2_0_AskP_2" + "P-network_2_0_AskP_3" + "P-network_2_0_AskP_4" + "P-network_2_0_AnsP_0" + "P-network_2_0_AnsP_1" + "P-network_2_0_AnsP_2" + "P-network_2_0_AnsP_3" + "P-network_2_0_AnsP_4" + "P-network_2_0_RI_0" + "P-network_2_0_RI_1" + "P-network_2_0_RI_2" + "P-network_2_0_RI_3" + "P-network_2_0_RI_4" + "P-network_2_0_AI_0" + "P-network_2_0_AI_1" + "P-network_2_0_AI_2" + "P-network_2_0_AI_3" + "P-network_2_0_AI_4" + "P-network_2_0_AnnP_0" + "P-network_2_0_AnnP_1" + "P-network_2_0_AnnP_2" + "P-network_2_0_AnnP_3" + "P-network_2_0_AnnP_4" + "P-network_2_0_RP_0" + "P-network_2_0_RP_1" + "P-network_2_0_RP_2" + "P-network_2_0_RP_3" + "P-network_2_0_RP_4" + "P-network_2_1_AskP_0" + "P-network_2_1_AskP_1" + "P-network_2_1_AskP_2" + "P-network_2_1_AskP_3" + "P-network_2_1_AskP_4" + "P-network_2_1_AnsP_0" + "P-network_2_1_AnsP_1" + "P-network_2_1_AnsP_2" + "P-network_2_1_AnsP_3" + "P-network_2_1_AnsP_4" + "P-network_2_1_RI_0" + "P-network_2_1_RI_1" + "P-network_2_1_RI_2" + "P-network_2_1_RI_3" + "P-network_2_1_RI_4" + "P-network_2_1_AI_0" + "P-network_2_1_AI_1" + "P-network_2_1_AI_2" + "P-network_2_1_AI_3" + "P-network_2_1_AI_4" + "P-network_2_1_AnnP_0" + "P-network_2_1_AnnP_1" + "P-network_2_1_AnnP_2" + "P-network_2_1_AnnP_3" + "P-network_2_1_AnnP_4" + "P-network_2_1_RP_0" + "P-network_2_1_RP_1" + "P-network_2_1_RP_2" + "P-network_2_1_RP_3" + "P-network_2_1_RP_4" + "P-network_2_2_AskP_0" + "P-network_2_2_AskP_1" + "P-network_2_2_AskP_2" + "P-network_2_2_AskP_3" + "P-network_2_2_AskP_4" + "P-network_2_2_AnsP_0" + "P-network_2_2_AnsP_1" + "P-network_2_2_AnsP_2" + "P-network_2_2_AnsP_3" + "P-network_2_2_AnsP_4" + "P-network_2_2_RI_0" + "P-network_2_2_RI_1" + "P-network_2_2_RI_2" + "P-network_2_2_RI_3" + "P-network_2_2_RI_4" + "P-network_2_2_AI_0" + "P-network_2_2_AI_1" + "P-network_2_2_AI_2" + "P-network_2_2_AI_3" + "P-network_2_2_AI_4" + "P-network_2_2_AnnP_0" + "P-network_2_2_AnnP_1" + "P-network_2_2_AnnP_2" + "P-network_2_2_AnnP_3" + "P-network_2_2_AnnP_4" + "P-network_2_2_RP_0" + "P-network_2_2_RP_1" + "P-network_2_2_RP_2" + "P-network_2_2_RP_3" + "P-network_2_2_RP_4" + "P-network_2_3_AskP_0" + "P-network_2_3_AskP_1" + "P-network_2_3_AskP_2" + "P-network_2_3_AskP_3" + "P-network_2_3_AskP_4" + "P-network_2_3_AnsP_0" + "P-network_2_3_AnsP_1" + "P-network_2_3_AnsP_2" + "P-network_2_3_AnsP_3" + "P-network_2_3_AnsP_4" + "P-network_2_3_RI_0" + "P-network_2_3_RI_1" + "P-network_2_3_RI_2" + "P-network_2_3_RI_3" + "P-network_2_3_RI_4" + "P-network_2_3_AI_0" + "P-network_2_3_AI_1" + "P-network_2_3_AI_2" + "P-network_2_3_AI_3" + "P-network_2_3_AI_4" + "P-network_2_3_AnnP_0" + "P-network_2_3_AnnP_1" + "P-network_2_3_AnnP_2" + "P-network_2_3_AnnP_3" + "P-network_2_3_AnnP_4" + "P-network_2_3_RP_0" + "P-network_2_3_RP_1" + "P-network_2_3_RP_2" + "P-network_2_3_RP_3" + "P-network_2_3_RP_4" + "P-network_2_4_AskP_0" + "P-network_2_4_AskP_1" + "P-network_2_4_AskP_2" + "P-network_2_4_AskP_3" + "P-network_2_4_AskP_4" + "P-network_2_4_AnsP_0" + "P-network_2_4_AnsP_1" + "P-network_2_4_AnsP_2" + "P-network_2_4_AnsP_3" + "P-network_2_4_AnsP_4" + "P-network_2_4_RI_0" + "P-network_2_4_RI_1" + "P-network_2_4_RI_2" + "P-network_2_4_RI_3" + "P-network_2_4_RI_4" + "P-network_2_4_AI_0" + "P-network_2_4_AI_1" + "P-network_2_4_AI_2" + "P-network_2_4_AI_3" + "P-network_2_4_AI_4" + "P-network_2_4_AnnP_0" + "P-network_2_4_AnnP_1" + "P-network_2_4_AnnP_2" + "P-network_2_4_AnnP_3" + "P-network_2_4_AnnP_4" + "P-network_2_4_RP_0" + "P-network_2_4_RP_1" + "P-network_2_4_RP_2" + "P-network_2_4_RP_3" + "P-network_2_4_RP_4" + "P-network_3_0_AskP_0" + "P-network_3_0_AskP_1" + "P-network_3_0_AskP_2" + "P-network_3_0_AskP_3" + "P-network_3_0_AskP_4" + "P-network_3_0_AnsP_0" + "P-network_3_0_AnsP_1" + "P-network_3_0_AnsP_2" + "P-network_3_0_AnsP_3" + "P-network_3_0_AnsP_4" + "P-network_3_0_RI_0" + "P-network_3_0_RI_1" + "P-network_3_0_RI_2" + "P-network_3_0_RI_3" + "P-network_3_0_RI_4" + "P-network_3_0_AI_0" + "P-network_3_0_AI_1" + "P-network_3_0_AI_2" + "P-network_3_0_AI_3" + "P-network_3_0_AI_4" + "P-network_3_0_AnnP_0" + "P-network_3_0_AnnP_1" + "P-network_3_0_AnnP_2" + "P-network_3_0_AnnP_3" + "P-network_3_0_AnnP_4" + "P-network_3_0_RP_0" + "P-network_3_0_RP_1" + "P-network_3_0_RP_2" + "P-network_3_0_RP_3" + "P-network_3_0_RP_4" + "P-network_3_1_AskP_0" + "P-network_3_1_AskP_1" + "P-network_3_1_AskP_2" + "P-network_3_1_AskP_3" + "P-network_3_1_AskP_4" + "P-network_3_1_AnsP_0" + "P-network_3_1_AnsP_1" + "P-network_3_1_AnsP_2" + "P-network_3_1_AnsP_3" + "P-network_3_1_AnsP_4" + "P-network_3_1_RI_0" + "P-network_3_1_RI_1" + "P-network_3_1_RI_2" + "P-network_3_1_RI_3" + "P-network_3_1_RI_4" + "P-network_3_1_AI_0" + "P-network_3_1_AI_1" + "P-network_3_1_AI_2" + "P-network_3_1_AI_3" + "P-network_3_1_AI_4" + "P-network_3_1_AnnP_0" + "P-network_3_1_AnnP_1" + "P-network_3_1_AnnP_2" + "P-network_3_1_AnnP_3" + "P-network_3_1_AnnP_4" + "P-network_3_1_RP_0" + "P-network_3_1_RP_1" + "P-network_3_1_RP_2" + "P-network_3_1_RP_3" + "P-network_3_1_RP_4" + "P-network_3_2_AskP_0" + "P-network_3_2_AskP_1" + "P-network_3_2_AskP_2" + "P-network_3_2_AskP_3" + "P-network_3_2_AskP_4" + "P-network_3_2_AnsP_0" + "P-network_3_2_AnsP_1" + "P-network_3_2_AnsP_2" + "P-network_3_2_AnsP_3" + "P-network_3_2_AnsP_4" + "P-network_3_2_RI_0" + "P-network_3_2_RI_1" + "P-network_3_2_RI_2" + "P-network_3_2_RI_3" + "P-network_3_2_RI_4" + "P-network_3_2_AI_0" + "P-network_3_2_AI_1" + "P-network_3_2_AI_2" + "P-network_3_2_AI_3" + "P-network_3_2_AI_4" + "P-network_3_2_AnnP_0" + "P-network_3_2_AnnP_1" + "P-network_3_2_AnnP_2" + "P-network_3_2_AnnP_3" + "P-network_3_2_AnnP_4" + "P-network_3_2_RP_0" + "P-network_3_2_RP_1" + "P-network_3_2_RP_2" + "P-network_3_2_RP_3" + "P-network_3_2_RP_4" + "P-network_3_3_AskP_0" + "P-network_3_3_AskP_1" + "P-network_3_3_AskP_2" + "P-network_3_3_AskP_3" + "P-network_3_3_AskP_4" + "P-network_3_3_AnsP_0" + "P-network_3_3_AnsP_1" + "P-network_3_3_AnsP_2" + "P-network_3_3_AnsP_3" + "P-network_3_3_AnsP_4" + "P-network_3_3_RI_0" + "P-network_3_3_RI_1" + "P-network_3_3_RI_2" + "P-network_3_3_RI_3" + "P-network_3_3_RI_4" + "P-network_3_3_AI_0" + "P-network_3_3_AI_1" + "P-network_3_3_AI_2" + "P-network_3_3_AI_3" + "P-network_3_3_AI_4" + "P-network_3_3_AnnP_0" + "P-network_3_3_AnnP_1" + "P-network_3_3_AnnP_2" + "P-network_3_3_AnnP_3" + "P-network_3_3_AnnP_4" + "P-network_3_3_RP_0" + "P-network_3_3_RP_1" + "P-network_3_3_RP_2" + "P-network_3_3_RP_3" + "P-network_3_3_RP_4" + "P-network_3_4_AskP_0" + "P-network_3_4_AskP_1" + "P-network_3_4_AskP_2" + "P-network_3_4_AskP_3" + "P-network_3_4_AskP_4" + "P-network_3_4_AnsP_0" + "P-network_3_4_AnsP_1" + "P-network_3_4_AnsP_2" + "P-network_3_4_AnsP_3" + "P-network_3_4_AnsP_4" + "P-network_3_4_RI_0" + "P-network_3_4_RI_1" + "P-network_3_4_RI_2" + "P-network_3_4_RI_3" + "P-network_3_4_RI_4" + "P-network_3_4_AI_0" + "P-network_3_4_AI_1" + "P-network_3_4_AI_2" + "P-network_3_4_AI_3" + "P-network_3_4_AI_4" + "P-network_3_4_AnnP_0" + "P-network_3_4_AnnP_1" + "P-network_3_4_AnnP_2" + "P-network_3_4_AnnP_3" + "P-network_3_4_AnnP_4" + "P-network_3_4_RP_0" + "P-network_3_4_RP_1" + "P-network_3_4_RP_2" + "P-network_3_4_RP_3" + "P-network_3_4_RP_4" + "P-network_4_0_AskP_0" + "P-network_4_0_AskP_1" + "P-network_4_0_AskP_2" + "P-network_4_0_AskP_3" + "P-network_4_0_AskP_4" + "P-network_4_0_AnsP_0" + "P-network_4_0_AnsP_1" + "P-network_4_0_AnsP_2" + "P-network_4_0_AnsP_3" + "P-network_4_0_AnsP_4" + "P-network_4_0_RI_0" + "P-network_4_0_RI_1" + "P-network_4_0_RI_2" + "P-network_4_0_RI_3" + "P-network_4_0_RI_4" + "P-network_4_0_AI_0" + "P-network_4_0_AI_1" + "P-network_4_0_AI_2" + "P-network_4_0_AI_3" + "P-network_4_0_AI_4" + "P-network_4_0_AnnP_0" + "P-network_4_0_AnnP_1" + "P-network_4_0_AnnP_2" + "P-network_4_0_AnnP_3" + "P-network_4_0_AnnP_4" + "P-network_4_0_RP_0" + "P-network_4_0_RP_1" + "P-network_4_0_RP_2" + "P-network_4_0_RP_3" + "P-network_4_0_RP_4" + "P-network_4_1_AskP_0" + "P-network_4_1_AskP_1" + "P-network_4_1_AskP_2" + "P-network_4_1_AskP_3" + "P-network_4_1_AskP_4" + "P-network_4_1_AnsP_0" + "P-network_4_1_AnsP_1" + "P-network_4_1_AnsP_2" + "P-network_4_1_AnsP_3" + "P-network_4_1_AnsP_4" + "P-network_4_1_RI_0" + "P-network_4_1_RI_1" + "P-network_4_1_RI_2" + "P-network_4_1_RI_3" + "P-network_4_1_RI_4" + "P-network_4_1_AI_0" + "P-network_4_1_AI_1" + "P-network_4_1_AI_2" + "P-network_4_1_AI_3" + "P-network_4_1_AI_4" + "P-network_4_1_AnnP_0" + "P-network_4_1_AnnP_1" + "P-network_4_1_AnnP_2" + "P-network_4_1_AnnP_3" + "P-network_4_1_AnnP_4" + "P-network_4_1_RP_0" + "P-network_4_1_RP_1" + "P-network_4_1_RP_2" + "P-network_4_1_RP_3" + "P-network_4_1_RP_4" + "P-network_4_2_AskP_0" + "P-network_4_2_AskP_1" + "P-network_4_2_AskP_2" + "P-network_4_2_AskP_3" + "P-network_4_2_AskP_4" + "P-network_4_2_AnsP_0" + "P-network_4_2_AnsP_1" + "P-network_4_2_AnsP_2" + "P-network_4_2_AnsP_3" + "P-network_4_2_AnsP_4" + "P-network_4_2_RI_0" + "P-network_4_2_RI_1" + "P-network_4_2_RI_2" + "P-network_4_2_RI_3" + "P-network_4_2_RI_4" + "P-network_4_2_AI_0" + "P-network_4_2_AI_1" + "P-network_4_2_AI_2" + "P-network_4_2_AI_3" + "P-network_4_2_AI_4" + "P-network_4_2_AnnP_0" + "P-network_4_2_AnnP_1" + "P-network_4_2_AnnP_2" + "P-network_4_2_AnnP_3" + "P-network_4_2_AnnP_4" + "P-network_4_2_RP_0" + "P-network_4_2_RP_1" + "P-network_4_2_RP_2" + "P-network_4_2_RP_3" + "P-network_4_2_RP_4" + "P-network_4_3_AskP_0" + "P-network_4_3_AskP_1" + "P-network_4_3_AskP_2" + "P-network_4_3_AskP_3" + "P-network_4_3_AskP_4" + "P-network_4_3_AnsP_0" + "P-network_4_3_AnsP_1" + "P-network_4_3_AnsP_2" + "P-network_4_3_AnsP_3" + "P-network_4_3_AnsP_4" + "P-network_4_3_RI_0" + "P-network_4_3_RI_1" + "P-network_4_3_RI_2" + "P-network_4_3_RI_3" + "P-network_4_3_RI_4" + "P-network_4_3_AI_0" + "P-network_4_3_AI_1" + "P-network_4_3_AI_2" + "P-network_4_3_AI_3" + "P-network_4_3_AI_4" + "P-network_4_3_AnnP_0" + "P-network_4_3_AnnP_1" + "P-network_4_3_AnnP_2" + "P-network_4_3_AnnP_3" + "P-network_4_3_AnnP_4" + "P-network_4_3_RP_0" + "P-network_4_3_RP_1" + "P-network_4_3_RP_2" + "P-network_4_3_RP_3" + "P-network_4_3_RP_4" + "P-network_4_4_AskP_0" + "P-network_4_4_AskP_1" + "P-network_4_4_AskP_2" + "P-network_4_4_AskP_3" + "P-network_4_4_AskP_4" + "P-network_4_4_AnsP_0" + "P-network_4_4_AnsP_1" + "P-network_4_4_AnsP_2" + "P-network_4_4_AnsP_3" + "P-network_4_4_AnsP_4" + "P-network_4_4_RI_0" + "P-network_4_4_RI_1" + "P-network_4_4_RI_2" + "P-network_4_4_RI_3" + "P-network_4_4_RI_4" + "P-network_4_4_AI_0" + "P-network_4_4_AI_1" + "P-network_4_4_AI_2" + "P-network_4_4_AI_3" + "P-network_4_4_AI_4" + "P-network_4_4_AnnP_0" + "P-network_4_4_AnnP_1" + "P-network_4_4_AnnP_2" + "P-network_4_4_AnnP_3" + "P-network_4_4_AnnP_4" + "P-network_4_4_RP_0" + "P-network_4_4_RP_1" + "P-network_4_4_RP_2" + "P-network_4_4_RP_3" + "P-network_4_4_RP_4")) )
FORMULA NeoElection-COL-4-ReachabilityCardinality-0 FALSE TECHNIQUES PARALLEL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION

Query is NOT satisfied.

NeoElection-COL-4-ReachabilityCardinality-1: not EF not ( not((2 <= ("P-poll__pollEnd_0" + "P-poll__pollEnd_1" + "P-poll__pollEnd_2" + "P-poll__pollEnd_3" + "P-poll__pollEnd_4"))) )

query: EF not ( not((2 <= ("P-poll__pollEnd_0" + "P-poll__pollEnd_1" + "P-poll__pollEnd_2" + "P-poll__pollEnd_3" + "P-poll__pollEnd_4"))) )
FORMULA NeoElection-COL-4-ReachabilityCardinality-1 FALSE TECHNIQUES PARALLEL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION

Query is NOT satisfied.

NeoElection-COL-4-ReachabilityCardinality-2: not EF not ( not((((("P-poll__pollEnd_0" + "P-poll__pollEnd_1" + "P-poll__pollEnd_2" + "P-poll__pollEnd_3" + "P-poll__pollEnd_4") <= ("P-electedSecondary_0" + "P-electedSecondary_1" + "P-electedSecondary_2" + "P-electedSecondary_3" + "P-electedSecondary_4")) or (("P-negotiation_0_0_NONE" + "P-negotiation_0_0_CO" + "P-negotiation_0_0_DONE" + "P-negotiation_0_1_NONE" + "P-negotiation_0_1_CO" + "P-negotiation_0_1_DONE" + "P-negotiation_0_2_NONE" + "P-negotiation_0_2_CO" + "P-negotiation_0_2_DONE" + "P-negotiation_0_3_NONE" + "P-negotiation_0_3_CO" + "P-negotiation_0_3_DONE" + "P-negotiation_0_4_NONE" + "P-negotiation_0_4_CO" + "P-negotiation_0_4_DONE" + "P-negotiation_1_0_NONE" + "P-negotiation_1_0_CO" + "P-negotiation_1_0_DONE" + "P-negotiation_1_1_NONE" + "P-negotiation_1_1_CO" + "P-negotiation_1_1_DONE" + "P-negotiation_1_2_NONE" + "P-negotiation_1_2_CO" + "P-negotiation_1_2_DONE" + "P-negotiation_1_3_NONE" + "P-negotiation_1_3_CO" + "P-negotiation_1_3_DONE" + "P-negotiation_1_4_NONE" + "P-negotiation_1_4_CO" + "P-negotiation_1_4_DONE" + "P-negotiation_2_0_NONE" + "P-negotiation_2_0_CO" + "P-negotiation_2_0_DONE" + "P-negotiation_2_1_NONE" + "P-negotiation_2_1_CO" + "P-negotiation_2_1_DONE" + "P-negotiation_2_2_NONE" + "P-negotiation_2_2_CO" + "P-negotiation_2_2_DONE" + "P-negotiation_2_3_NONE" + "P-negotiation_2_3_CO" + "P-negotiation_2_3_DONE" + "P-negotiation_2_4_NONE" + "P-negotiation_2_4_CO" + "P-negotiation_2_4_DONE" + "P-negotiation_3_0_NONE" + "P-negotiation_3_0_CO" + "P-negotiation_3_0_DONE" + "P-negotiation_3_1_NONE" + "P-negotiation_3_1_CO" + "P-negotiation_3_1_DONE" + "P-negotiation_3_2_NONE" + "P-negotiation_3_2_CO" + "P-negotiation_3_2_DONE" + "P-negotiation_3_3_NONE" + "P-negotiation_3_3_CO" + "P-negotiation_3_3_DONE" + "P-negotiation_3_4_NONE" + "P-negotiation_3_4_CO" + "P-negotiation_3_4_DONE" + "P-negotiation_4_0_NONE" + "P-negotiation_4_0_CO" + "P-negotiation_4_0_DONE" + "P-negotiation_4_1_NONE" + "P-negotiation_4_1_CO" + "P-negotiation_4_1_DONE" + "P-negotiation_4_2_NONE" + "P-negotiation_4_2_CO" + "P-negotiation_4_2_DONE" + "P-negotiation_4_3_NONE" + "P-negotiation_4_3_CO" + "P-negotiation_4_3_DONE" + "P-negotiation_4_4_NONE" + "P-negotiation_4_4_CO" + "P-negotiation_4_4_DONE") <= ("P-electedSecondary_0" + "P-electedSecondary_1" + "P-electedSecondary_2" + "P-electedSecondary_3" + "P-electedSecondary_4"))) and ((3 <= ("P-electionFailed_0" + "P-electionFailed_1" + "P-electionFailed_2" + "P-electionFailed_3" + "P-electionFailed_4")) and (2 <= ("P-poll__networl_0_0_AskP_0" + "P-poll__networl_0_0_AskP_1" + "P-poll__networl_0_0_AskP_2" + "P-poll__networl_0_0_AskP_3" + "P-poll__networl_0_0_AskP_4" + "P-poll__networl_0_0_AnsP_0" + "P-poll__networl_0_0_AnsP_1" + "P-poll__networl_0_0_AnsP_2" + "P-poll__networl_0_0_AnsP_3" + "P-poll__networl_0_0_AnsP_4" + "P-poll__networl_0_0_RI_0" + "P-poll__networl_0_0_RI_1" + "P-poll__networl_0_0_RI_2" + "P-poll__networl_0_0_RI_3" + "P-poll__networl_0_0_RI_4" + "P-poll__networl_0_0_AI_0" + "P-poll__networl_0_0_AI_1" + "P-poll__networl_0_0_AI_2" + "P-poll__networl_0_0_AI_3" + "P-poll__networl_0_0_AI_4" + "P-poll__networl_0_0_AnnP_0" + "P-poll__networl_0_0_AnnP_1" + "P-poll__networl_0_0_AnnP_2" + "P-poll__networl_0_0_AnnP_3" + "P-poll__networl_0_0_AnnP_4" + "P-poll__networl_0_0_RP_0" + "P-poll__networl_0_0_RP_1" + "P-poll__networl_0_0_RP_2" + "P-poll__networl_0_0_RP_3" + "P-poll__networl_0_0_RP_4" + "P-poll__networl_0_1_AskP_0" + "P-poll__networl_0_1_AskP_1" + "P-poll__networl_0_1_AskP_2" + "P-poll__networl_0_1_AskP_3" + "P-poll__networl_0_1_AskP_4" + "P-poll__networl_0_1_AnsP_0" + "P-poll__networl_0_1_AnsP_1" + "P-poll__networl_0_1_AnsP_2" + "P-poll__networl_0_1_AnsP_3" + "P-poll__networl_0_1_AnsP_4" + "P-poll__networl_0_1_RI_0" + "P-poll__networl_0_1_RI_1" + "P-poll__networl_0_1_RI_2" + "P-poll__networl_0_1_RI_3" + "P-poll__networl_0_1_RI_4" + "P-poll__networl_0_1_AI_0" + "P-poll__networl_0_1_AI_1" + "P-poll__networl_0_1_AI_2" + "P-poll__networl_0_1_AI_3" + "P-poll__networl_0_1_AI_4" + "P-poll__networl_0_1_AnnP_0" + "P-poll__networl_0_1_AnnP_1" + "P-poll__networl_0_1_AnnP_2" + "P-poll__networl_0_1_AnnP_3" + "P-poll__networl_0_1_AnnP_4" + "P-poll__networl_0_1_RP_0" + "P-poll__networl_0_1_RP_1" + "P-poll__networl_0_1_RP_2" + "P-poll__networl_0_1_RP_3" + "P-poll__networl_0_1_RP_4" + "P-poll__networl_0_2_AskP_0" + "P-poll__networl_0_2_AskP_1" + "P-poll__networl_0_2_AskP_2" + "P-poll__networl_0_2_AskP_3" + "P-poll__networl_0_2_AskP_4" + "P-poll__networl_0_2_AnsP_0" + "P-poll__networl_0_2_AnsP_1" + "P-poll__networl_0_2_AnsP_2" + "P-poll__networl_0_2_AnsP_3" + "P-poll__networl_0_2_AnsP_4" + "P-poll__networl_0_2_RI_0" + "P-poll__networl_0_2_RI_1" + "P-poll__networl_0_2_RI_2" + "P-poll__networl_0_2_RI_3" + "P-poll__networl_0_2_RI_4" + "P-poll__networl_0_2_AI_0" + "P-poll__networl_0_2_AI_1" + "P-poll__networl_0_2_AI_2" + "P-poll__networl_0_2_AI_3" + "P-poll__networl_0_2_AI_4" + "P-poll__networl_0_2_AnnP_0" + "P-poll__networl_0_2_AnnP_1" + "P-poll__networl_0_2_AnnP_2" + "P-poll__networl_0_2_AnnP_3" + "P-poll__networl_0_2_AnnP_4" + "P-poll__networl_0_2_RP_0" + "P-poll__networl_0_2_RP_1" + "P-poll__networl_0_2_RP_2" + "P-poll__networl_0_2_RP_3" + "P-poll__networl_0_2_RP_4" + "P-poll__networl_0_3_AskP_0" + "P-poll__networl_0_3_AskP_1" + "P-poll__networl_0_3_AskP_2" + "P-poll__networl_0_3_AskP_3" + "P-poll__networl_0_3_AskP_4" + "P-poll__networl_0_3_AnsP_0" + "P-poll__networl_0_3_AnsP_1" + "P-poll__networl_0_3_AnsP_2" + "P-poll__networl_0_3_AnsP_3" + "P-poll__networl_0_3_AnsP_4" + "P-poll__networl_0_3_RI_0" + "P-poll__networl_0_3_RI_1" + "P-poll__networl_0_3_RI_2" + "P-poll__networl_0_3_RI_3" + "P-poll__networl_0_3_RI_4" + "P-poll__networl_0_3_AI_0" + "P-poll__networl_0_3_AI_1" + "P-poll__networl_0_3_AI_2" + "P-poll__networl_0_3_AI_3" + "P-poll__networl_0_3_AI_4" + "P-poll__networl_0_3_AnnP_0" + "P-poll__networl_0_3_AnnP_1" + "P-poll__networl_0_3_AnnP_2" + "P-poll__networl_0_3_AnnP_3" + "P-poll__networl_0_3_AnnP_4" + "P-poll__networl_0_3_RP_0" + "P-poll__networl_0_3_RP_1" + "P-poll__networl_0_3_RP_2" + "P-poll__networl_0_3_RP_3" + "P-poll__networl_0_3_RP_4" + "P-poll__networl_0_4_AskP_0" + "P-poll__networl_0_4_AskP_1" + "P-poll__networl_0_4_AskP_2" + "P-poll__networl_0_4_AskP_3" + "P-poll__networl_0_4_AskP_4" + "P-poll__networl_0_4_AnsP_0" + "P-poll__networl_0_4_AnsP_1" + "P-poll__networl_0_4_AnsP_2" + "P-poll__networl_0_4_AnsP_3" + "P-poll__networl_0_4_AnsP_4" + "P-poll__networl_0_4_RI_0" + "P-poll__networl_0_4_RI_1" + "P-poll__networl_0_4_RI_2" + "P-poll__networl_0_4_RI_3" + "P-poll__networl_0_4_RI_4" + "P-poll__networl_0_4_AI_0" + "P-poll__networl_0_4_AI_1" + "P-poll__networl_0_4_AI_2" + "P-poll__networl_0_4_AI_3" + "P-poll__networl_0_4_AI_4" + "P-poll__networl_0_4_AnnP_0" + "P-poll__networl_0_4_AnnP_1" + "P-poll__networl_0_4_AnnP_2" + "P-poll__networl_0_4_AnnP_3" + "P-poll__networl_0_4_AnnP_4" + "P-poll__networl_0_4_RP_0" + "P-poll__networl_0_4_RP_1" + "P-poll__networl_0_4_RP_2" + "P-poll__networl_0_4_RP_3" + "P-poll__networl_0_4_RP_4" + "P-poll__networl_1_0_AskP_0" + "P-poll__networl_1_0_AskP_1" + "P-poll__networl_1_0_AskP_2" + "P-poll__networl_1_0_AskP_3" + "P-poll__networl_1_0_AskP_4" + "P-poll__networl_1_0_AnsP_0" + "P-poll__networl_1_0_AnsP_1" + "P-poll__networl_1_0_AnsP_2" + "P-poll__networl_1_0_AnsP_3" + "P-poll__networl_1_0_AnsP_4" + "P-poll__networl_1_0_RI_0" + "P-poll__networl_1_0_RI_1" + "P-poll__networl_1_0_RI_2" + "P-poll__networl_1_0_RI_3" + "P-poll__networl_1_0_RI_4" + "P-poll__networl_1_0_AI_0" + "P-poll__networl_1_0_AI_1" + "P-poll__networl_1_0_AI_2" + "P-poll__networl_1_0_AI_3" + "P-poll__networl_1_0_AI_4" + "P-poll__networl_1_0_AnnP_0" + "P-poll__networl_1_0_AnnP_1" + "P-poll__networl_1_0_AnnP_2" + "P-poll__networl_1_0_AnnP_3" + "P-poll__networl_1_0_AnnP_4" + "P-poll__networl_1_0_RP_0" + "P-poll__networl_1_0_RP_1" + "P-poll__networl_1_0_RP_2" + "P-poll__networl_1_0_RP_3" + "P-poll__networl_1_0_RP_4" + "P-poll__networl_1_1_AskP_0" + "P-poll__networl_1_1_AskP_1" + "P-poll__networl_1_1_AskP_2" + "P-poll__networl_1_1_AskP_3" + "P-poll__networl_1_1_AskP_4" + "P-poll__networl_1_1_AnsP_0" + "P-poll__networl_1_1_AnsP_1" + "P-poll__networl_1_1_AnsP_2" + "P-poll__networl_1_1_AnsP_3" + "P-poll__networl_1_1_AnsP_4" + "P-poll__networl_1_1_RI_0" + "P-poll__networl_1_1_RI_1" + "P-poll__networl_1_1_RI_2" + "P-poll__networl_1_1_RI_3" + "P-poll__networl_1_1_RI_4" + "P-poll__networl_1_1_AI_0" + "P-poll__networl_1_1_AI_1" + "P-poll__networl_1_1_AI_2" + "P-poll__networl_1_1_AI_3" + "P-poll__networl_1_1_AI_4" + "P-poll__networl_1_1_AnnP_0" + "P-poll__networl_1_1_AnnP_1" + "P-poll__networl_1_1_AnnP_2" + "P-poll__networl_1_1_AnnP_3" + "P-poll__networl_1_1_AnnP_4" + "P-poll__networl_1_1_RP_0" + "P-poll__networl_1_1_RP_1" + "P-poll__networl_1_1_RP_2" + "P-poll__networl_1_1_RP_3" + "P-poll__networl_1_1_RP_4" + "P-poll__networl_1_2_AskP_0" + "P-poll__networl_1_2_AskP_1" + "P-poll__networl_1_2_AskP_2" + "P-poll__networl_1_2_AskP_3" + "P-poll__networl_1_2_AskP_4" + "P-poll__networl_1_2_AnsP_0" + "P-poll__networl_1_2_AnsP_1" + "P-poll__networl_1_2_AnsP_2" + "P-poll__networl_1_2_AnsP_3" + "P-poll__networl_1_2_AnsP_4" + "P-poll__networl_1_2_RI_0" + "P-poll__networl_1_2_RI_1" + "P-poll__networl_1_2_RI_2" + "P-poll__networl_1_2_RI_3" + "P-poll__networl_1_2_RI_4" + "P-poll__networl_1_2_AI_0" + "P-poll__networl_1_2_AI_1" + "P-poll__networl_1_2_AI_2" + "P-poll__networl_1_2_AI_3" + "P-poll__networl_1_2_AI_4" + "P-poll__networl_1_2_AnnP_0" + "P-poll__networl_1_2_AnnP_1" + "P-poll__networl_1_2_AnnP_2" + "P-poll__networl_1_2_AnnP_3" + "P-poll__networl_1_2_AnnP_4" + "P-poll__networl_1_2_RP_0" + "P-poll__networl_1_2_RP_1" + "P-poll__networl_1_2_RP_2" + "P-poll__networl_1_2_RP_3" + "P-poll__networl_1_2_RP_4" + "P-poll__networl_1_3_AskP_0" + "P-poll__networl_1_3_AskP_1" + "P-poll__networl_1_3_AskP_2" + "P-poll__networl_1_3_AskP_3" + "P-poll__networl_1_3_AskP_4" + "P-poll__networl_1_3_AnsP_0" + "P-poll__networl_1_3_AnsP_1" + "P-poll__networl_1_3_AnsP_2" + "P-poll__networl_1_3_AnsP_3" + "P-poll__networl_1_3_AnsP_4" + "P-poll__networl_1_3_RI_0" + "P-poll__networl_1_3_RI_1" + "P-poll__networl_1_3_RI_2" + "P-poll__networl_1_3_RI_3" + "P-poll__networl_1_3_RI_4" + "P-poll__networl_1_3_AI_0" + "P-poll__networl_1_3_AI_1" + "P-poll__networl_1_3_AI_2" + "P-poll__networl_1_3_AI_3" + "P-poll__networl_1_3_AI_4" + "P-poll__networl_1_3_AnnP_0" + "P-poll__networl_1_3_AnnP_1" + "P-poll__networl_1_3_AnnP_2" + "P-poll__networl_1_3_AnnP_3" + "P-poll__networl_1_3_AnnP_4" + "P-poll__networl_1_3_RP_0" + "P-poll__networl_1_3_RP_1" + "P-poll__networl_1_3_RP_2" + "P-poll__networl_1_3_RP_3" + "P-poll__networl_1_3_RP_4" + "P-poll__networl_1_4_AskP_0" + "P-poll__networl_1_4_AskP_1" + "P-poll__networl_1_4_AskP_2" + "P-poll__networl_1_4_AskP_3" + "P-poll__networl_1_4_AskP_4" + "P-poll__networl_1_4_AnsP_0" + "P-poll__networl_1_4_AnsP_1" + "P-poll__networl_1_4_AnsP_2" + "P-poll__networl_1_4_AnsP_3" + "P-poll__networl_1_4_AnsP_4" + "P-poll__networl_1_4_RI_0" + "P-poll__networl_1_4_RI_1" + "P-poll__networl_1_4_RI_2" + "P-poll__networl_1_4_RI_3" + "P-poll__networl_1_4_RI_4" + "P-poll__networl_1_4_AI_0" + "P-poll__networl_1_4_AI_1" + "P-poll__networl_1_4_AI_2" + "P-poll__networl_1_4_AI_3" + "P-poll__networl_1_4_AI_4" + "P-poll__networl_1_4_AnnP_0" + "P-poll__networl_1_4_AnnP_1" + "P-poll__networl_1_4_AnnP_2" + "P-poll__networl_1_4_AnnP_3" + "P-poll__networl_1_4_AnnP_4" + "P-poll__networl_1_4_RP_0" + "P-poll__networl_1_4_RP_1" + "P-poll__networl_1_4_RP_2" + "P-poll__networl_1_4_RP_3" + "P-poll__networl_1_4_RP_4" + "P-poll__networl_2_0_AskP_0" + "P-poll__networl_2_0_AskP_1" + "P-poll__networl_2_0_AskP_2" + "P-poll__networl_2_0_AskP_3" + "P-poll__networl_2_0_AskP_4" + "P-poll__networl_2_0_AnsP_0" + "P-poll__networl_2_0_AnsP_1" + "P-poll__networl_2_0_AnsP_2" + "P-poll__networl_2_0_AnsP_3" + "P-poll__networl_2_0_AnsP_4" + "P-poll__networl_2_0_RI_0" + "P-poll__networl_2_0_RI_1" + "P-poll__networl_2_0_RI_2" + "P-poll__networl_2_0_RI_3" + "P-poll__networl_2_0_RI_4" + "P-poll__networl_2_0_AI_0" + "P-poll__networl_2_0_AI_1" + "P-poll__networl_2_0_AI_2" + "P-poll__networl_2_0_AI_3" + "P-poll__networl_2_0_AI_4" + "P-poll__networl_2_0_AnnP_0" + "P-poll__networl_2_0_AnnP_1" + "P-poll__networl_2_0_AnnP_2" + "P-poll__networl_2_0_AnnP_3" + "P-poll__networl_2_0_AnnP_4" + "P-poll__networl_2_0_RP_0" + "P-poll__networl_2_0_RP_1" + "P-poll__networl_2_0_RP_2" + "P-poll__networl_2_0_RP_3" + "P-poll__networl_2_0_RP_4" + "P-poll__networl_2_1_AskP_0" + "P-poll__networl_2_1_AskP_1" + "P-poll__networl_2_1_AskP_2" + "P-poll__networl_2_1_AskP_3" + "P-poll__networl_2_1_AskP_4" + "P-poll__networl_2_1_AnsP_0" + "P-poll__networl_2_1_AnsP_1" + "P-poll__networl_2_1_AnsP_2" + "P-poll__networl_2_1_AnsP_3" + "P-poll__networl_2_1_AnsP_4" + "P-poll__networl_2_1_RI_0" + "P-poll__networl_2_1_RI_1" + "P-poll__networl_2_1_RI_2" + "P-poll__networl_2_1_RI_3" + "P-poll__networl_2_1_RI_4" + "P-poll__networl_2_1_AI_0" + "P-poll__networl_2_1_AI_1" + "P-poll__networl_2_1_AI_2" + "P-poll__networl_2_1_AI_3" + "P-poll__networl_2_1_AI_4" + "P-poll__networl_2_1_AnnP_0" + "P-poll__networl_2_1_AnnP_1" + "P-poll__networl_2_1_AnnP_2" + "P-poll__networl_2_1_AnnP_3" + "P-poll__networl_2_1_AnnP_4" + "P-poll__networl_2_1_RP_0" + "P-poll__networl_2_1_RP_1" + "P-poll__networl_2_1_RP_2" + "P-poll__networl_2_1_RP_3" + "P-poll__networl_2_1_RP_4" + "P-poll__networl_2_2_AskP_0" + "P-poll__networl_2_2_AskP_1" + "P-poll__networl_2_2_AskP_2" + "P-poll__networl_2_2_AskP_3" + "P-poll__networl_2_2_AskP_4" + "P-poll__networl_2_2_AnsP_0" + "P-poll__networl_2_2_AnsP_1" + "P-poll__networl_2_2_AnsP_2" + "P-poll__networl_2_2_AnsP_3" + "P-poll__networl_2_2_AnsP_4" + "P-poll__networl_2_2_RI_0" + "P-poll__networl_2_2_RI_1" + "P-poll__networl_2_2_RI_2" + "P-poll__networl_2_2_RI_3" + "P-poll__networl_2_2_RI_4" + "P-poll__networl_2_2_AI_0" + "P-poll__networl_2_2_AI_1" + "P-poll__networl_2_2_AI_2" + "P-poll__networl_2_2_AI_3" + "P-poll__networl_2_2_AI_4" + "P-poll__networl_2_2_AnnP_0" + "P-poll__networl_2_2_AnnP_1" + "P-poll__networl_2_2_AnnP_2" + "P-poll__networl_2_2_AnnP_3" + "P-poll__networl_2_2_AnnP_4" + "P-poll__networl_2_2_RP_0" + "P-poll__networl_2_2_RP_1" + "P-poll__networl_2_2_RP_2" + "P-poll__networl_2_2_RP_3" + "P-poll__networl_2_2_RP_4" + "P-poll__networl_2_3_AskP_0" + "P-poll__networl_2_3_AskP_1" + "P-poll__networl_2_3_AskP_2" + "P-poll__networl_2_3_AskP_3" + "P-poll__networl_2_3_AskP_4" + "P-poll__networl_2_3_AnsP_0" + "P-poll__networl_2_3_AnsP_1" + "P-poll__networl_2_3_AnsP_2" + "P-poll__networl_2_3_AnsP_3" + "P-poll__networl_2_3_AnsP_4" + "P-poll__networl_2_3_RI_0" + "P-poll__networl_2_3_RI_1" + "P-poll__networl_2_3_RI_2" + "P-poll__networl_2_3_RI_3" + "P-poll__networl_2_3_RI_4" + "P-poll__networl_2_3_AI_0" + "P-poll__networl_2_3_AI_1" + "P-poll__networl_2_3_AI_2" + "P-poll__networl_2_3_AI_3" + "P-poll__networl_2_3_AI_4" + "P-poll__networl_2_3_AnnP_0" + "P-poll__networl_2_3_AnnP_1" + "P-poll__networl_2_3_AnnP_2" + "P-poll__networl_2_3_AnnP_3" + "P-poll__networl_2_3_AnnP_4" + "P-poll__networl_2_3_RP_0" + "P-poll__networl_2_3_RP_1" + "P-poll__networl_2_3_RP_2" + "P-poll__networl_2_3_RP_3" + "P-poll__networl_2_3_RP_4" + "P-poll__networl_2_4_AskP_0" + "P-poll__networl_2_4_AskP_1" + "P-poll__networl_2_4_AskP_2" + "P-poll__networl_2_4_AskP_3" + "P-poll__networl_2_4_AskP_4" + "P-poll__networl_2_4_AnsP_0" + "P-poll__networl_2_4_AnsP_1" + "P-poll__networl_2_4_AnsP_2" + "P-poll__networl_2_4_AnsP_3" + "P-poll__networl_2_4_AnsP_4" + "P-poll__networl_2_4_RI_0" + "P-poll__networl_2_4_RI_1" + "P-poll__networl_2_4_RI_2" + "P-poll__networl_2_4_RI_3" + "P-poll__networl_2_4_RI_4" + "P-poll__networl_2_4_AI_0" + "P-poll__networl_2_4_AI_1" + "P-poll__networl_2_4_AI_2" + "P-poll__networl_2_4_AI_3" + "P-poll__networl_2_4_AI_4" + "P-poll__networl_2_4_AnnP_0" + "P-poll__networl_2_4_AnnP_1" + "P-poll__networl_2_4_AnnP_2" + "P-poll__networl_2_4_AnnP_3" + "P-poll__networl_2_4_AnnP_4" + "P-poll__networl_2_4_RP_0" + "P-poll__networl_2_4_RP_1" + "P-poll__networl_2_4_RP_2" + "P-poll__networl_2_4_RP_3" + "P-poll__networl_2_4_RP_4" + "P-poll__networl_3_0_AskP_0" + "P-poll__networl_3_0_AskP_1" + "P-poll__networl_3_0_AskP_2" + "P-poll__networl_3_0_AskP_3" + "P-poll__networl_3_0_AskP_4" + "P-poll__networl_3_0_AnsP_0" + "P-poll__networl_3_0_AnsP_1" + "P-poll__networl_3_0_AnsP_2" + "P-poll__networl_3_0_AnsP_3" + "P-poll__networl_3_0_AnsP_4" + "P-poll__networl_3_0_RI_0" + "P-poll__networl_3_0_RI_1" + "P-poll__networl_3_0_RI_2" + "P-poll__networl_3_0_RI_3" + "P-poll__networl_3_0_RI_4" + "P-poll__networl_3_0_AI_0" + "P-poll__networl_3_0_AI_1" + "P-poll__networl_3_0_AI_2" + "P-poll__networl_3_0_AI_3" + "P-poll__networl_3_0_AI_4" + "P-poll__networl_3_0_AnnP_0" + "P-poll__networl_3_0_AnnP_1" + "P-poll__networl_3_0_AnnP_2" + "P-poll__networl_3_0_AnnP_3" + "P-poll__networl_3_0_AnnP_4" + "P-poll__networl_3_0_RP_0" + "P-poll__networl_3_0_RP_1" + "P-poll__networl_3_0_RP_2" + "P-poll__networl_3_0_RP_3" + "P-poll__networl_3_0_RP_4" + "P-poll__networl_3_1_AskP_0" + "P-poll__networl_3_1_AskP_1" + "P-poll__networl_3_1_AskP_2" + "P-poll__networl_3_1_AskP_3" + "P-poll__networl_3_1_AskP_4" + "P-poll__networl_3_1_AnsP_0" + "P-poll__networl_3_1_AnsP_1" + "P-poll__networl_3_1_AnsP_2" + "P-poll__networl_3_1_AnsP_3" + "P-poll__networl_3_1_AnsP_4" + "P-poll__networl_3_1_RI_0" + "P-poll__networl_3_1_RI_1" + "P-poll__networl_3_1_RI_2" + "P-poll__networl_3_1_RI_3" + "P-poll__networl_3_1_RI_4" + "P-poll__networl_3_1_AI_0" + "P-poll__networl_3_1_AI_1" + "P-poll__networl_3_1_AI_2" + "P-poll__networl_3_1_AI_3" + "P-poll__networl_3_1_AI_4" + "P-poll__networl_3_1_AnnP_0" + "P-poll__networl_3_1_AnnP_1" + "P-poll__networl_3_1_AnnP_2" + "P-poll__networl_3_1_AnnP_3" + "P-poll__networl_3_1_AnnP_4" + "P-poll__networl_3_1_RP_0" + "P-poll__networl_3_1_RP_1" + "P-poll__networl_3_1_RP_2" + "P-poll__networl_3_1_RP_3" + "P-poll__networl_3_1_RP_4" + "P-poll__networl_3_2_AskP_0" + "P-poll__networl_3_2_AskP_1" + "P-poll__networl_3_2_AskP_2" + "P-poll__networl_3_2_AskP_3" + "P-poll__networl_3_2_AskP_4" + "P-poll__networl_3_2_AnsP_0" + "P-poll__networl_3_2_AnsP_1" + "P-poll__networl_3_2_AnsP_2" + "P-poll__networl_3_2_AnsP_3" + "P-poll__networl_3_2_AnsP_4" + "P-poll__networl_3_2_RI_0" + "P-poll__networl_3_2_RI_1" + "P-poll__networl_3_2_RI_2" + "P-poll__networl_3_2_RI_3" + "P-poll__networl_3_2_RI_4" + "P-poll__networl_3_2_AI_0" + "P-poll__networl_3_2_AI_1" + "P-poll__networl_3_2_AI_2" + "P-poll__networl_3_2_AI_3" + "P-poll__networl_3_2_AI_4" + "P-poll__networl_3_2_AnnP_0" + "P-poll__networl_3_2_AnnP_1" + "P-poll__networl_3_2_AnnP_2" + "P-poll__networl_3_2_AnnP_3" + "P-poll__networl_3_2_AnnP_4" + "P-poll__networl_3_2_RP_0" + "P-poll__networl_3_2_RP_1" + "P-poll__networl_3_2_RP_2" + "P-poll__networl_3_2_RP_3" + "P-poll__networl_3_2_RP_4" + "P-poll__networl_3_3_AskP_0" + "P-poll__networl_3_3_AskP_1" + "P-poll__networl_3_3_AskP_2" + "P-poll__networl_3_3_AskP_3" + "P-poll__networl_3_3_AskP_4" + "P-poll__networl_3_3_AnsP_0" + "P-poll__networl_3_3_AnsP_1" + "P-poll__networl_3_3_AnsP_2" + "P-poll__networl_3_3_AnsP_3" + "P-poll__networl_3_3_AnsP_4" + "P-poll__networl_3_3_RI_0" + "P-poll__networl_3_3_RI_1" + "P-poll__networl_3_3_RI_2" + "P-poll__networl_3_3_RI_3" + "P-poll__networl_3_3_RI_4" + "P-poll__networl_3_3_AI_0" + "P-poll__networl_3_3_AI_1" + "P-poll__networl_3_3_AI_2" + "P-poll__networl_3_3_AI_3" + "P-poll__networl_3_3_AI_4" + "P-poll__networl_3_3_AnnP_0" + "P-poll__networl_3_3_AnnP_1" + "P-poll__networl_3_3_AnnP_2" + "P-poll__networl_3_3_AnnP_3" + "P-poll__networl_3_3_AnnP_4" + "P-poll__networl_3_3_RP_0" + "P-poll__networl_3_3_RP_1" + "P-poll__networl_3_3_RP_2" + "P-poll__networl_3_3_RP_3" + "P-poll__networl_3_3_RP_4" + "P-poll__networl_3_4_AskP_0" + "P-poll__networl_3_4_AskP_1" + "P-poll__networl_3_4_AskP_2" + "P-poll__networl_3_4_AskP_3" + "P-poll__networl_3_4_AskP_4" + "P-poll__networl_3_4_AnsP_0" + "P-poll__networl_3_4_AnsP_1" + "P-poll__networl_3_4_AnsP_2" + "P-poll__networl_3_4_AnsP_3" + "P-poll__networl_3_4_AnsP_4" + "P-poll__networl_3_4_RI_0" + "P-poll__networl_3_4_RI_1" + "P-poll__networl_3_4_RI_2" + "P-poll__networl_3_4_RI_3" + "P-poll__networl_3_4_RI_4" + "P-poll__networl_3_4_AI_0" + "P-poll__networl_3_4_AI_1" + "P-poll__networl_3_4_AI_2" + "P-poll__networl_3_4_AI_3" + "P-poll__networl_3_4_AI_4" + "P-poll__networl_3_4_AnnP_0" + "P-poll__networl_3_4_AnnP_1" + "P-poll__networl_3_4_AnnP_2" + "P-poll__networl_3_4_AnnP_3" + "P-poll__networl_3_4_AnnP_4" + "P-poll__networl_3_4_RP_0" + "P-poll__networl_3_4_RP_1" + "P-poll__networl_3_4_RP_2" + "P-poll__networl_3_4_RP_3" + "P-poll__networl_3_4_RP_4" + "P-poll__networl_4_0_AskP_0" + "P-poll__networl_4_0_AskP_1" + "P-poll__networl_4_0_AskP_2" + "P-poll__networl_4_0_AskP_3" + "P-poll__networl_4_0_AskP_4" + "P-poll__networl_4_0_AnsP_0" + "P-poll__networl_4_0_AnsP_1" + "P-poll__networl_4_0_AnsP_2" + "P-poll__networl_4_0_AnsP_3" + "P-poll__networl_4_0_AnsP_4" + "P-poll__networl_4_0_RI_0" + "P-poll__networl_4_0_RI_1" + "P-poll__networl_4_0_RI_2" + "P-poll__networl_4_0_RI_3" + "P-poll__networl_4_0_RI_4" + "P-poll__networl_4_0_AI_0" + "P-poll__networl_4_0_AI_1" + "P-poll__networl_4_0_AI_2" + "P-poll__networl_4_0_AI_3" + "P-poll__networl_4_0_AI_4" + "P-poll__networl_4_0_AnnP_0" + "P-poll__networl_4_0_AnnP_1" + "P-poll__networl_4_0_AnnP_2" + "P-poll__networl_4_0_AnnP_3" + "P-poll__networl_4_0_AnnP_4" + "P-poll__networl_4_0_RP_0" + "P-poll__networl_4_0_RP_1" + "P-poll__networl_4_0_RP_2" + "P-poll__networl_4_0_RP_3" + "P-poll__networl_4_0_RP_4" + "P-poll__networl_4_1_AskP_0" + "P-poll__networl_4_1_AskP_1" + "P-poll__networl_4_1_AskP_2" + "P-poll__networl_4_1_AskP_3" + "P-poll__networl_4_1_AskP_4" + "P-poll__networl_4_1_AnsP_0" + "P-poll__networl_4_1_AnsP_1" + "P-poll__networl_4_1_AnsP_2" + "P-poll__networl_4_1_AnsP_3" + "P-poll__networl_4_1_AnsP_4" + "P-poll__networl_4_1_RI_0" + "P-poll__networl_4_1_RI_1" + "P-poll__networl_4_1_RI_2" + "P-poll__networl_4_1_RI_3" + "P-poll__networl_4_1_RI_4" + "P-poll__networl_4_1_AI_0" + "P-poll__networl_4_1_AI_1" + "P-poll__networl_4_1_AI_2" + "P-poll__networl_4_1_AI_3" + "P-poll__networl_4_1_AI_4" + "P-poll__networl_4_1_AnnP_0" + "P-poll__networl_4_1_AnnP_1" + "P-poll__networl_4_1_AnnP_2" + "P-poll__networl_4_1_AnnP_3" + "P-poll__networl_4_1_AnnP_4" + "P-poll__networl_4_1_RP_0" + "P-poll__networl_4_1_RP_1" + "P-poll__networl_4_1_RP_2" + "P-poll__networl_4_1_RP_3" + "P-poll__networl_4_1_RP_4" + "P-poll__networl_4_2_AskP_0" + "P-poll__networl_4_2_AskP_1" + "P-poll__networl_4_2_AskP_2" + "P-poll__networl_4_2_AskP_3" + "P-poll__networl_4_2_AskP_4" + "P-poll__networl_4_2_AnsP_0" + "P-poll__networl_4_2_AnsP_1" + "P-poll__networl_4_2_AnsP_2" + "P-poll__networl_4_2_AnsP_3" + "P-poll__networl_4_2_AnsP_4" + "P-poll__networl_4_2_RI_0" + "P-poll__networl_4_2_RI_1" + "P-poll__networl_4_2_RI_2" + "P-poll__networl_4_2_RI_3" + "P-poll__networl_4_2_RI_4" + "P-poll__networl_4_2_AI_0" + "P-poll__networl_4_2_AI_1" + "P-poll__networl_4_2_AI_2" + "P-poll__networl_4_2_AI_3" + "P-poll__networl_4_2_AI_4" + "P-poll__networl_4_2_AnnP_0" + "P-poll__networl_4_2_AnnP_1" + "P-poll__networl_4_2_AnnP_2" + "P-poll__networl_4_2_AnnP_3" + "P-poll__networl_4_2_AnnP_4" + "P-poll__networl_4_2_RP_0" + "P-poll__networl_4_2_RP_1" + "P-poll__networl_4_2_RP_2" + "P-poll__networl_4_2_RP_3" + "P-poll__networl_4_2_RP_4" + "P-poll__networl_4_3_AskP_0" + "P-poll__networl_4_3_AskP_1" + "P-poll__networl_4_3_AskP_2" + "P-poll__networl_4_3_AskP_3" + "P-poll__networl_4_3_AskP_4" + "P-poll__networl_4_3_AnsP_0" + "P-poll__networl_4_3_AnsP_1" + "P-poll__networl_4_3_AnsP_2" + "P-poll__networl_4_3_AnsP_3" + "P-poll__networl_4_3_AnsP_4" + "P-poll__networl_4_3_RI_0" + "P-poll__networl_4_3_RI_1" + "P-poll__networl_4_3_RI_2" + "P-poll__networl_4_3_RI_3" + "P-poll__networl_4_3_RI_4" + "P-poll__networl_4_3_AI_0" + "P-poll__networl_4_3_AI_1" + "P-poll__networl_4_3_AI_2" + "P-poll__networl_4_3_AI_3" + "P-poll__networl_4_3_AI_4" + "P-poll__networl_4_3_AnnP_0" + "P-poll__networl_4_3_AnnP_1" + "P-poll__networl_4_3_AnnP_2" + "P-poll__networl_4_3_AnnP_3" + "P-poll__networl_4_3_AnnP_4" + "P-poll__networl_4_3_RP_0" + "P-poll__networl_4_3_RP_1" + "P-poll__networl_4_3_RP_2" + "P-poll__networl_4_3_RP_3" + "P-poll__networl_4_3_RP_4" + "P-poll__networl_4_4_AskP_0" + "P-poll__networl_4_4_AskP_1" + "P-poll__networl_4_4_AskP_2" + "P-poll__networl_4_4_AskP_3" + "P-poll__networl_4_4_AskP_4" + "P-poll__networl_4_4_AnsP_0" + "P-poll__networl_4_4_AnsP_1" + "P-poll__networl_4_4_AnsP_2" + "P-poll__networl_4_4_AnsP_3" + "P-poll__networl_4_4_AnsP_4" + "P-poll__networl_4_4_RI_0" + "P-poll__networl_4_4_RI_1" + "P-poll__networl_4_4_RI_2" + "P-poll__networl_4_4_RI_3" + "P-poll__networl_4_4_RI_4" + "P-poll__networl_4_4_AI_0" + "P-poll__networl_4_4_AI_1" + "P-poll__networl_4_4_AI_2" + "P-poll__networl_4_4_AI_3" + "P-poll__networl_4_4_AI_4" + "P-poll__networl_4_4_AnnP_0" + "P-poll__networl_4_4_AnnP_1" + "P-poll__networl_4_4_AnnP_2" + "P-poll__networl_4_4_AnnP_3" + "P-poll__networl_4_4_AnnP_4" + "P-poll__networl_4_4_RP_0" + "P-poll__networl_4_4_RP_1" + "P-poll__networl_4_4_RP_2" + "P-poll__networl_4_4_RP_3" + "P-poll__networl_4_4_RP_4"))))) )

query: EF not ( not((((("P-poll__pollEnd_0" + "P-poll__pollEnd_1" + "P-poll__pollEnd_2" + "P-poll__pollEnd_3" + "P-poll__pollEnd_4") <= ("P-electedSecondary_0" + "P-electedSecondary_1" + "P-electedSecondary_2" + "P-electedSecondary_3" + "P-electedSecondary_4")) or (("P-negotiation_0_0_NONE" + "P-negotiation_0_0_CO" + "P-negotiation_0_0_DONE" + "P-negotiation_0_1_NONE" + "P-negotiation_0_1_CO" + "P-negotiation_0_1_DONE" + "P-negotiation_0_2_NONE" + "P-negotiation_0_2_CO" + "P-negotiation_0_2_DONE" + "P-negotiation_0_3_NONE" + "P-negotiation_0_3_CO" + "P-negotiation_0_3_DONE" + "P-negotiation_0_4_NONE" + "P-negotiation_0_4_CO" + "P-negotiation_0_4_DONE" + "P-negotiation_1_0_NONE" + "P-negotiation_1_0_CO" + "P-negotiation_1_0_DONE" + "P-negotiation_1_1_NONE" + "P-negotiation_1_1_CO" + "P-negotiation_1_1_DONE" + "P-negotiation_1_2_NONE" + "P-negotiation_1_2_CO" + "P-negotiation_1_2_DONE" + "P-negotiation_1_3_NONE" + "P-negotiation_1_3_CO" + "P-negotiation_1_3_DONE" + "P-negotiation_1_4_NONE" + "P-negotiation_1_4_CO" + "P-negotiation_1_4_DONE" + "P-negotiation_2_0_NONE" + "P-negotiation_2_0_CO" + "P-negotiation_2_0_DONE" + "P-negotiation_2_1_NONE" + "P-negotiation_2_1_CO" + "P-negotiation_2_1_DONE" + "P-negotiation_2_2_NONE" + "P-negotiation_2_2_CO" + "P-negotiation_2_2_DONE" + "P-negotiation_2_3_NONE" + "P-negotiation_2_3_CO" + "P-negotiation_2_3_DONE" + "P-negotiation_2_4_NONE" + "P-negotiation_2_4_CO" + "P-negotiation_2_4_DONE" + "P-negotiation_3_0_NONE" + "P-negotiation_3_0_CO" + "P-negotiation_3_0_DONE" + "P-negotiation_3_1_NONE" + "P-negotiation_3_1_CO" + "P-negotiation_3_1_DONE" + "P-negotiation_3_2_NONE" + "P-negotiation_3_2_CO" + "P-negotiation_3_2_DONE" + "P-negotiation_3_3_NONE" + "P-negotiation_3_3_CO" + "P-negotiation_3_3_DONE" + "P-negotiation_3_4_NONE" + "P-negotiation_3_4_CO" + "P-negotiation_3_4_DONE" + "P-negotiation_4_0_NONE" + "P-negotiation_4_0_CO" + "P-negotiation_4_0_DONE" + "P-negotiation_4_1_NONE" + "P-negotiation_4_1_CO" + "P-negotiation_4_1_DONE" + "P-negotiation_4_2_NONE" + "P-negotiation_4_2_CO" + "P-negotiation_4_2_DONE" + "P-negotiation_4_3_NONE" + "P-negotiation_4_3_CO" + "P-negotiation_4_3_DONE" + "P-negotiation_4_4_NONE" + "P-negotiation_4_4_CO" + "P-negotiation_4_4_DONE") <= ("P-electedSecondary_0" + "P-electedSecondary_1" + "P-electedSecondary_2" + "P-electedSecondary_3" + "P-electedSecondary_4"))) and ((3 <= ("P-electionFailed_0" + "P-electionFailed_1" + "P-electionFailed_2" + "P-electionFailed_3" + "P-electionFailed_4")) and (2 <= ("P-poll__networl_0_0_AskP_0" + "P-poll__networl_0_0_AskP_1" + "P-poll__networl_0_0_AskP_2" + "P-poll__networl_0_0_AskP_3" + "P-poll__networl_0_0_AskP_4" + "P-poll__networl_0_0_AnsP_0" + "P-poll__networl_0_0_AnsP_1" + "P-poll__networl_0_0_AnsP_2" + "P-poll__networl_0_0_AnsP_3" + "P-poll__networl_0_0_AnsP_4" + "P-poll__networl_0_0_RI_0" + "P-poll__networl_0_0_RI_1" + "P-poll__networl_0_0_RI_2" + "P-poll__networl_0_0_RI_3" + "P-poll__networl_0_0_RI_4" + "P-poll__networl_0_0_AI_0" + "P-poll__networl_0_0_AI_1" + "P-poll__networl_0_0_AI_2" + "P-poll__networl_0_0_AI_3" + "P-poll__networl_0_0_AI_4" + "P-poll__networl_0_0_AnnP_0" + "P-poll__networl_0_0_AnnP_1" + "P-poll__networl_0_0_AnnP_2" + "P-poll__networl_0_0_AnnP_3" + "P-poll__networl_0_0_AnnP_4" + "P-poll__networl_0_0_RP_0" + "P-poll__networl_0_0_RP_1" + "P-poll__networl_0_0_RP_2" + "P-poll__networl_0_0_RP_3" + "P-poll__networl_0_0_RP_4" + "P-poll__networl_0_1_AskP_0" + "P-poll__networl_0_1_AskP_1" + "P-poll__networl_0_1_AskP_2" + "P-poll__networl_0_1_AskP_3" + "P-poll__networl_0_1_AskP_4" + "P-poll__networl_0_1_AnsP_0" + "P-poll__networl_0_1_AnsP_1" + "P-poll__networl_0_1_AnsP_2" + "P-poll__networl_0_1_AnsP_3" + "P-poll__networl_0_1_AnsP_4" + "P-poll__networl_0_1_RI_0" + "P-poll__networl_0_1_RI_1" + "P-poll__networl_0_1_RI_2" + "P-poll__networl_0_1_RI_3" + "P-poll__networl_0_1_RI_4" + "P-poll__networl_0_1_AI_0" + "P-poll__networl_0_1_AI_1" + "P-poll__networl_0_1_AI_2" + "P-poll__networl_0_1_AI_3" + "P-poll__networl_0_1_AI_4" + "P-poll__networl_0_1_AnnP_0" + "P-poll__networl_0_1_AnnP_1" + "P-poll__networl_0_1_AnnP_2" + "P-poll__networl_0_1_AnnP_3" + "P-poll__networl_0_1_AnnP_4" + "P-poll__networl_0_1_RP_0" + "P-poll__networl_0_1_RP_1" + "P-poll__networl_0_1_RP_2" + "P-poll__networl_0_1_RP_3" + "P-poll__networl_0_1_RP_4" + "P-poll__networl_0_2_AskP_0" + "P-poll__networl_0_2_AskP_1" + "P-poll__networl_0_2_AskP_2" + "P-poll__networl_0_2_AskP_3" + "P-poll__networl_0_2_AskP_4" + "P-poll__networl_0_2_AnsP_0" + "P-poll__networl_0_2_AnsP_1" + "P-poll__networl_0_2_AnsP_2" + "P-poll__networl_0_2_AnsP_3" + "P-poll__networl_0_2_AnsP_4" + "P-poll__networl_0_2_RI_0" + "P-poll__networl_0_2_RI_1" + "P-poll__networl_0_2_RI_2" + "P-poll__networl_0_2_RI_3" + "P-poll__networl_0_2_RI_4" + "P-poll__networl_0_2_AI_0" + "P-poll__networl_0_2_AI_1" + "P-poll__networl_0_2_AI_2" + "P-poll__networl_0_2_AI_3" + "P-poll__networl_0_2_AI_4" + "P-poll__networl_0_2_AnnP_0" + "P-poll__networl_0_2_AnnP_1" + "P-poll__networl_0_2_AnnP_2" + "P-poll__networl_0_2_AnnP_3" + "P-poll__networl_0_2_AnnP_4" + "P-poll__networl_0_2_RP_0" + "P-poll__networl_0_2_RP_1" + "P-poll__networl_0_2_RP_2" + "P-poll__networl_0_2_RP_3" + "P-poll__networl_0_2_RP_4" + "P-poll__networl_0_3_AskP_0" + "P-poll__networl_0_3_AskP_1" + "P-poll__networl_0_3_AskP_2" + "P-poll__networl_0_3_AskP_3" + "P-poll__networl_0_3_AskP_4" + "P-poll__networl_0_3_AnsP_0" + "P-poll__networl_0_3_AnsP_1" + "P-poll__networl_0_3_AnsP_2" + "P-poll__networl_0_3_AnsP_3" + "P-poll__networl_0_3_AnsP_4" + "P-poll__networl_0_3_RI_0" + "P-poll__networl_0_3_RI_1" + "P-poll__networl_0_3_RI_2" + "P-poll__networl_0_3_RI_3" + "P-poll__networl_0_3_RI_4" + "P-poll__networl_0_3_AI_0" + "P-poll__networl_0_3_AI_1" + "P-poll__networl_0_3_AI_2" + "P-poll__networl_0_3_AI_3" + "P-poll__networl_0_3_AI_4" + "P-poll__networl_0_3_AnnP_0" + "P-poll__networl_0_3_AnnP_1" + "P-poll__networl_0_3_AnnP_2" + "P-poll__networl_0_3_AnnP_3" + "P-poll__networl_0_3_AnnP_4" + "P-poll__networl_0_3_RP_0" + "P-poll__networl_0_3_RP_1" + "P-poll__networl_0_3_RP_2" + "P-poll__networl_0_3_RP_3" + "P-poll__networl_0_3_RP_4" + "P-poll__networl_0_4_AskP_0" + "P-poll__networl_0_4_AskP_1" + "P-poll__networl_0_4_AskP_2" + "P-poll__networl_0_4_AskP_3" + "P-poll__networl_0_4_AskP_4" + "P-poll__networl_0_4_AnsP_0" + "P-poll__networl_0_4_AnsP_1" + "P-poll__networl_0_4_AnsP_2" + "P-poll__networl_0_4_AnsP_3" + "P-poll__networl_0_4_AnsP_4" + "P-poll__networl_0_4_RI_0" + "P-poll__networl_0_4_RI_1" + "P-poll__networl_0_4_RI_2" + "P-poll__networl_0_4_RI_3" + "P-poll__networl_0_4_RI_4" + "P-poll__networl_0_4_AI_0" + "P-poll__networl_0_4_AI_1" + "P-poll__networl_0_4_AI_2" + "P-poll__networl_0_4_AI_3" + "P-poll__networl_0_4_AI_4" + "P-poll__networl_0_4_AnnP_0" + "P-poll__networl_0_4_AnnP_1" + "P-poll__networl_0_4_AnnP_2" + "P-poll__networl_0_4_AnnP_3" + "P-poll__networl_0_4_AnnP_4" + "P-poll__networl_0_4_RP_0" + "P-poll__networl_0_4_RP_1" + "P-poll__networl_0_4_RP_2" + "P-poll__networl_0_4_RP_3" + "P-poll__networl_0_4_RP_4" + "P-poll__networl_1_0_AskP_0" + "P-poll__networl_1_0_AskP_1" + "P-poll__networl_1_0_AskP_2" + "P-poll__networl_1_0_AskP_3" + "P-poll__networl_1_0_AskP_4" + "P-poll__networl_1_0_AnsP_0" + "P-poll__networl_1_0_AnsP_1" + "P-poll__networl_1_0_AnsP_2" + "P-poll__networl_1_0_AnsP_3" + "P-poll__networl_1_0_AnsP_4" + "P-poll__networl_1_0_RI_0" + "P-poll__networl_1_0_RI_1" + "P-poll__networl_1_0_RI_2" + "P-poll__networl_1_0_RI_3" + "P-poll__networl_1_0_RI_4" + "P-poll__networl_1_0_AI_0" + "P-poll__networl_1_0_AI_1" + "P-poll__networl_1_0_AI_2" + "P-poll__networl_1_0_AI_3" + "P-poll__networl_1_0_AI_4" + "P-poll__networl_1_0_AnnP_0" + "P-poll__networl_1_0_AnnP_1" + "P-poll__networl_1_0_AnnP_2" + "P-poll__networl_1_0_AnnP_3" + "P-poll__networl_1_0_AnnP_4" + "P-poll__networl_1_0_RP_0" + "P-poll__networl_1_0_RP_1" + "P-poll__networl_1_0_RP_2" + "P-poll__networl_1_0_RP_3" + "P-poll__networl_1_0_RP_4" + "P-poll__networl_1_1_AskP_0" + "P-poll__networl_1_1_AskP_1" + "P-poll__networl_1_1_AskP_2" + "P-poll__networl_1_1_AskP_3" + "P-poll__networl_1_1_AskP_4" + "P-poll__networl_1_1_AnsP_0" + "P-poll__networl_1_1_AnsP_1" + "P-poll__networl_1_1_AnsP_2" + "P-poll__networl_1_1_AnsP_3" + "P-poll__networl_1_1_AnsP_4" + "P-poll__networl_1_1_RI_0" + "P-poll__networl_1_1_RI_1" + "P-poll__networl_1_1_RI_2" + "P-poll__networl_1_1_RI_3" + "P-poll__networl_1_1_RI_4" + "P-poll__networl_1_1_AI_0" + "P-poll__networl_1_1_AI_1" + "P-poll__networl_1_1_AI_2" + "P-poll__networl_1_1_AI_3" + "P-poll__networl_1_1_AI_4" + "P-poll__networl_1_1_AnnP_0" + "P-poll__networl_1_1_AnnP_1" + "P-poll__networl_1_1_AnnP_2" + "P-poll__networl_1_1_AnnP_3" + "P-poll__networl_1_1_AnnP_4" + "P-poll__networl_1_1_RP_0" + "P-poll__networl_1_1_RP_1" + "P-poll__networl_1_1_RP_2" + "P-poll__networl_1_1_RP_3" + "P-poll__networl_1_1_RP_4" + "P-poll__networl_1_2_AskP_0" + "P-poll__networl_1_2_AskP_1" + "P-poll__networl_1_2_AskP_2" + "P-poll__networl_1_2_AskP_3" + "P-poll__networl_1_2_AskP_4" + "P-poll__networl_1_2_AnsP_0" + "P-poll__networl_1_2_AnsP_1" + "P-poll__networl_1_2_AnsP_2" + "P-poll__networl_1_2_AnsP_3" + "P-poll__networl_1_2_AnsP_4" + "P-poll__networl_1_2_RI_0" + "P-poll__networl_1_2_RI_1" + "P-poll__networl_1_2_RI_2" + "P-poll__networl_1_2_RI_3" + "P-poll__networl_1_2_RI_4" + "P-poll__networl_1_2_AI_0" + "P-poll__networl_1_2_AI_1" + "P-poll__networl_1_2_AI_2" + "P-poll__networl_1_2_AI_3" + "P-poll__networl_1_2_AI_4" + "P-poll__networl_1_2_AnnP_0" + "P-poll__networl_1_2_AnnP_1" + "P-poll__networl_1_2_AnnP_2" + "P-poll__networl_1_2_AnnP_3" + "P-poll__networl_1_2_AnnP_4" + "P-poll__networl_1_2_RP_0" + "P-poll__networl_1_2_RP_1" + "P-poll__networl_1_2_RP_2" + "P-poll__networl_1_2_RP_3" + "P-poll__networl_1_2_RP_4" + "P-poll__networl_1_3_AskP_0" + "P-poll__networl_1_3_AskP_1" + "P-poll__networl_1_3_AskP_2" + "P-poll__networl_1_3_AskP_3" + "P-poll__networl_1_3_AskP_4" + "P-poll__networl_1_3_AnsP_0" + "P-poll__networl_1_3_AnsP_1" + "P-poll__networl_1_3_AnsP_2" + "P-poll__networl_1_3_AnsP_3" + "P-poll__networl_1_3_AnsP_4" + "P-poll__networl_1_3_RI_0" + "P-poll__networl_1_3_RI_1" + "P-poll__networl_1_3_RI_2" + "P-poll__networl_1_3_RI_3" + "P-poll__networl_1_3_RI_4" + "P-poll__networl_1_3_AI_0" + "P-poll__networl_1_3_AI_1" + "P-poll__networl_1_3_AI_2" + "P-poll__networl_1_3_AI_3" + "P-poll__networl_1_3_AI_4" + "P-poll__networl_1_3_AnnP_0" + "P-poll__networl_1_3_AnnP_1" + "P-poll__networl_1_3_AnnP_2" + "P-poll__networl_1_3_AnnP_3" + "P-poll__networl_1_3_AnnP_4" + "P-poll__networl_1_3_RP_0" + "P-poll__networl_1_3_RP_1" + "P-poll__networl_1_3_RP_2" + "P-poll__networl_1_3_RP_3" + "P-poll__networl_1_3_RP_4" + "P-poll__networl_1_4_AskP_0" + "P-poll__networl_1_4_AskP_1" + "P-poll__networl_1_4_AskP_2" + "P-poll__networl_1_4_AskP_3" + "P-poll__networl_1_4_AskP_4" + "P-poll__networl_1_4_AnsP_0" + "P-poll__networl_1_4_AnsP_1" + "P-poll__networl_1_4_AnsP_2" + "P-poll__networl_1_4_AnsP_3" + "P-poll__networl_1_4_AnsP_4" + "P-poll__networl_1_4_RI_0" + "P-poll__networl_1_4_RI_1" + "P-poll__networl_1_4_RI_2" + "P-poll__networl_1_4_RI_3" + "P-poll__networl_1_4_RI_4" + "P-poll__networl_1_4_AI_0" + "P-poll__networl_1_4_AI_1" + "P-poll__networl_1_4_AI_2" + "P-poll__networl_1_4_AI_3" + "P-poll__networl_1_4_AI_4" + "P-poll__networl_1_4_AnnP_0" + "P-poll__networl_1_4_AnnP_1" + "P-poll__networl_1_4_AnnP_2" + "P-poll__networl_1_4_AnnP_3" + "P-poll__networl_1_4_AnnP_4" + "P-poll__networl_1_4_RP_0" + "P-poll__networl_1_4_RP_1" + "P-poll__networl_1_4_RP_2" + "P-poll__networl_1_4_RP_3" + "P-poll__networl_1_4_RP_4" + "P-poll__networl_2_0_AskP_0" + "P-poll__networl_2_0_AskP_1" + "P-poll__networl_2_0_AskP_2" + "P-poll__networl_2_0_AskP_3" + "P-poll__networl_2_0_AskP_4" + "P-poll__networl_2_0_AnsP_0" + "P-poll__networl_2_0_AnsP_1" + "P-poll__networl_2_0_AnsP_2" + "P-poll__networl_2_0_AnsP_3" + "P-poll__networl_2_0_AnsP_4" + "P-poll__networl_2_0_RI_0" + "P-poll__networl_2_0_RI_1" + "P-poll__networl_2_0_RI_2" + "P-poll__networl_2_0_RI_3" + "P-poll__networl_2_0_RI_4" + "P-poll__networl_2_0_AI_0" + "P-poll__networl_2_0_AI_1" + "P-poll__networl_2_0_AI_2" + "P-poll__networl_2_0_AI_3" + "P-poll__networl_2_0_AI_4" + "P-poll__networl_2_0_AnnP_0" + "P-poll__networl_2_0_AnnP_1" + "P-poll__networl_2_0_AnnP_2" + "P-poll__networl_2_0_AnnP_3" + "P-poll__networl_2_0_AnnP_4" + "P-poll__networl_2_0_RP_0" + "P-poll__networl_2_0_RP_1" + "P-poll__networl_2_0_RP_2" + "P-poll__networl_2_0_RP_3" + "P-poll__networl_2_0_RP_4" + "P-poll__networl_2_1_AskP_0" + "P-poll__networl_2_1_AskP_1" + "P-poll__networl_2_1_AskP_2" + "P-poll__networl_2_1_AskP_3" + "P-poll__networl_2_1_AskP_4" + "P-poll__networl_2_1_AnsP_0" + "P-poll__networl_2_1_AnsP_1" + "P-poll__networl_2_1_AnsP_2" + "P-poll__networl_2_1_AnsP_3" + "P-poll__networl_2_1_AnsP_4" + "P-poll__networl_2_1_RI_0" + "P-poll__networl_2_1_RI_1" + "P-poll__networl_2_1_RI_2" + "P-poll__networl_2_1_RI_3" + "P-poll__networl_2_1_RI_4" + "P-poll__networl_2_1_AI_0" + "P-poll__networl_2_1_AI_1" + "P-poll__networl_2_1_AI_2" + "P-poll__networl_2_1_AI_3" + "P-poll__networl_2_1_AI_4" + "P-poll__networl_2_1_AnnP_0" + "P-poll__networl_2_1_AnnP_1" + "P-poll__networl_2_1_AnnP_2" + "P-poll__networl_2_1_AnnP_3" + "P-poll__networl_2_1_AnnP_4" + "P-poll__networl_2_1_RP_0" + "P-poll__networl_2_1_RP_1" + "P-poll__networl_2_1_RP_2" + "P-poll__networl_2_1_RP_3" + "P-poll__networl_2_1_RP_4" + "P-poll__networl_2_2_AskP_0" + "P-poll__networl_2_2_AskP_1" + "P-poll__networl_2_2_AskP_2" + "P-poll__networl_2_2_AskP_3" + "P-poll__networl_2_2_AskP_4" + "P-poll__networl_2_2_AnsP_0" + "P-poll__networl_2_2_AnsP_1" + "P-poll__networl_2_2_AnsP_2" + "P-poll__networl_2_2_AnsP_3" + "P-poll__networl_2_2_AnsP_4" + "P-poll__networl_2_2_RI_0" + "P-poll__networl_2_2_RI_1" + "P-poll__networl_2_2_RI_2" + "P-poll__networl_2_2_RI_3" + "P-poll__networl_2_2_RI_4" + "P-poll__networl_2_2_AI_0" + "P-poll__networl_2_2_AI_1" + "P-poll__networl_2_2_AI_2" + "P-poll__networl_2_2_AI_3" + "P-poll__networl_2_2_AI_4" + "P-poll__networl_2_2_AnnP_0" + "P-poll__networl_2_2_AnnP_1" + "P-poll__networl_2_2_AnnP_2" + "P-poll__networl_2_2_AnnP_3" + "P-poll__networl_2_2_AnnP_4" + "P-poll__networl_2_2_RP_0" + "P-poll__networl_2_2_RP_1" + "P-poll__networl_2_2_RP_2" + "P-poll__networl_2_2_RP_3" + "P-poll__networl_2_2_RP_4" + "P-poll__networl_2_3_AskP_0" + "P-poll__networl_2_3_AskP_1" + "P-poll__networl_2_3_AskP_2" + "P-poll__networl_2_3_AskP_3" + "P-poll__networl_2_3_AskP_4" + "P-poll__networl_2_3_AnsP_0" + "P-poll__networl_2_3_AnsP_1" + "P-poll__networl_2_3_AnsP_2" + "P-poll__networl_2_3_AnsP_3" + "P-poll__networl_2_3_AnsP_4" + "P-poll__networl_2_3_RI_0" + "P-poll__networl_2_3_RI_1" + "P-poll__networl_2_3_RI_2" + "P-poll__networl_2_3_RI_3" + "P-poll__networl_2_3_RI_4" + "P-poll__networl_2_3_AI_0" + "P-poll__networl_2_3_AI_1" + "P-poll__networl_2_3_AI_2" + "P-poll__networl_2_3_AI_3" + "P-poll__networl_2_3_AI_4" + "P-poll__networl_2_3_AnnP_0" + "P-poll__networl_2_3_AnnP_1" + "P-poll__networl_2_3_AnnP_2" + "P-poll__networl_2_3_AnnP_3" + "P-poll__networl_2_3_AnnP_4" + "P-poll__networl_2_3_RP_0" + "P-poll__networl_2_3_RP_1" + "P-poll__networl_2_3_RP_2" + "P-poll__networl_2_3_RP_3" + "P-poll__networl_2_3_RP_4" + "P-poll__networl_2_4_AskP_0" + "P-poll__networl_2_4_AskP_1" + "P-poll__networl_2_4_AskP_2" + "P-poll__networl_2_4_AskP_3" + "P-poll__networl_2_4_AskP_4" + "P-poll__networl_2_4_AnsP_0" + "P-poll__networl_2_4_AnsP_1" + "P-poll__networl_2_4_AnsP_2" + "P-poll__networl_2_4_AnsP_3" + "P-poll__networl_2_4_AnsP_4" + "P-poll__networl_2_4_RI_0" + "P-poll__networl_2_4_RI_1" + "P-poll__networl_2_4_RI_2" + "P-poll__networl_2_4_RI_3" + "P-poll__networl_2_4_RI_4" + "P-poll__networl_2_4_AI_0" + "P-poll__networl_2_4_AI_1" + "P-poll__networl_2_4_AI_2" + "P-poll__networl_2_4_AI_3" + "P-poll__networl_2_4_AI_4" + "P-poll__networl_2_4_AnnP_0" + "P-poll__networl_2_4_AnnP_1" + "P-poll__networl_2_4_AnnP_2" + "P-poll__networl_2_4_AnnP_3" + "P-poll__networl_2_4_AnnP_4" + "P-poll__networl_2_4_RP_0" + "P-poll__networl_2_4_RP_1" + "P-poll__networl_2_4_RP_2" + "P-poll__networl_2_4_RP_3" + "P-poll__networl_2_4_RP_4" + "P-poll__networl_3_0_AskP_0" + "P-poll__networl_3_0_AskP_1" + "P-poll__networl_3_0_AskP_2" + "P-poll__networl_3_0_AskP_3" + "P-poll__networl_3_0_AskP_4" + "P-poll__networl_3_0_AnsP_0" + "P-poll__networl_3_0_AnsP_1" + "P-poll__networl_3_0_AnsP_2" + "P-poll__networl_3_0_AnsP_3" + "P-poll__networl_3_0_AnsP_4" + "P-poll__networl_3_0_RI_0" + "P-poll__networl_3_0_RI_1" + "P-poll__networl_3_0_RI_2" + "P-poll__networl_3_0_RI_3" + "P-poll__networl_3_0_RI_4" + "P-poll__networl_3_0_AI_0" + "P-poll__networl_3_0_AI_1" + "P-poll__networl_3_0_AI_2" + "P-poll__networl_3_0_AI_3" + "P-poll__networl_3_0_AI_4" + "P-poll__networl_3_0_AnnP_0" + "P-poll__networl_3_0_AnnP_1" + "P-poll__networl_3_0_AnnP_2" + "P-poll__networl_3_0_AnnP_3" + "P-poll__networl_3_0_AnnP_4" + "P-poll__networl_3_0_RP_0" + "P-poll__networl_3_0_RP_1" + "P-poll__networl_3_0_RP_2" + "P-poll__networl_3_0_RP_3" + "P-poll__networl_3_0_RP_4" + "P-poll__networl_3_1_AskP_0" + "P-poll__networl_3_1_AskP_1" + "P-poll__networl_3_1_AskP_2" + "P-poll__networl_3_1_AskP_3" + "P-poll__networl_3_1_AskP_4" + "P-poll__networl_3_1_AnsP_0" + "P-poll__networl_3_1_AnsP_1" + "P-poll__networl_3_1_AnsP_2" + "P-poll__networl_3_1_AnsP_3" + "P-poll__networl_3_1_AnsP_4" + "P-poll__networl_3_1_RI_0" + "P-poll__networl_3_1_RI_1" + "P-poll__networl_3_1_RI_2" + "P-poll__networl_3_1_RI_3" + "P-poll__networl_3_1_RI_4" + "P-poll__networl_3_1_AI_0" + "P-poll__networl_3_1_AI_1" + "P-poll__networl_3_1_AI_2" + "P-poll__networl_3_1_AI_3" + "P-poll__networl_3_1_AI_4" + "P-poll__networl_3_1_AnnP_0" + "P-poll__networl_3_1_AnnP_1" + "P-poll__networl_3_1_AnnP_2" + "P-poll__networl_3_1_AnnP_3" + "P-poll__networl_3_1_AnnP_4" + "P-poll__networl_3_1_RP_0" + "P-poll__networl_3_1_RP_1" + "P-poll__networl_3_1_RP_2" + "P-poll__networl_3_1_RP_3" + "P-poll__networl_3_1_RP_4" + "P-poll__networl_3_2_AskP_0" + "P-poll__networl_3_2_AskP_1" + "P-poll__networl_3_2_AskP_2" + "P-poll__networl_3_2_AskP_3" + "P-poll__networl_3_2_AskP_4" + "P-poll__networl_3_2_AnsP_0" + "P-poll__networl_3_2_AnsP_1" + "P-poll__networl_3_2_AnsP_2" + "P-poll__networl_3_2_AnsP_3" + "P-poll__networl_3_2_AnsP_4" + "P-poll__networl_3_2_RI_0" + "P-poll__networl_3_2_RI_1" + "P-poll__networl_3_2_RI_2" + "P-poll__networl_3_2_RI_3" + "P-poll__networl_3_2_RI_4" + "P-poll__networl_3_2_AI_0" + "P-poll__networl_3_2_AI_1" + "P-poll__networl_3_2_AI_2" + "P-poll__networl_3_2_AI_3" + "P-poll__networl_3_2_AI_4" + "P-poll__networl_3_2_AnnP_0" + "P-poll__networl_3_2_AnnP_1" + "P-poll__networl_3_2_AnnP_2" + "P-poll__networl_3_2_AnnP_3" + "P-poll__networl_3_2_AnnP_4" + "P-poll__networl_3_2_RP_0" + "P-poll__networl_3_2_RP_1" + "P-poll__networl_3_2_RP_2" + "P-poll__networl_3_2_RP_3" + "P-poll__networl_3_2_RP_4" + "P-poll__networl_3_3_AskP_0" + "P-poll__networl_3_3_AskP_1" + "P-poll__networl_3_3_AskP_2" + "P-poll__networl_3_3_AskP_3" + "P-poll__networl_3_3_AskP_4" + "P-poll__networl_3_3_AnsP_0" + "P-poll__networl_3_3_AnsP_1" + "P-poll__networl_3_3_AnsP_2" + "P-poll__networl_3_3_AnsP_3" + "P-poll__networl_3_3_AnsP_4" + "P-poll__networl_3_3_RI_0" + "P-poll__networl_3_3_RI_1" + "P-poll__networl_3_3_RI_2" + "P-poll__networl_3_3_RI_3" + "P-poll__networl_3_3_RI_4" + "P-poll__networl_3_3_AI_0" + "P-poll__networl_3_3_AI_1" + "P-poll__networl_3_3_AI_2" + "P-poll__networl_3_3_AI_3" + "P-poll__networl_3_3_AI_4" + "P-poll__networl_3_3_AnnP_0" + "P-poll__networl_3_3_AnnP_1" + "P-poll__networl_3_3_AnnP_2" + "P-poll__networl_3_3_AnnP_3" + "P-poll__networl_3_3_AnnP_4" + "P-poll__networl_3_3_RP_0" + "P-poll__networl_3_3_RP_1" + "P-poll__networl_3_3_RP_2" + "P-poll__networl_3_3_RP_3" + "P-poll__networl_3_3_RP_4" + "P-poll__networl_3_4_AskP_0" + "P-poll__networl_3_4_AskP_1" + "P-poll__networl_3_4_AskP_2" + "P-poll__networl_3_4_AskP_3" + "P-poll__networl_3_4_AskP_4" + "P-poll__networl_3_4_AnsP_0" + "P-poll__networl_3_4_AnsP_1" + "P-poll__networl_3_4_AnsP_2" + "P-poll__networl_3_4_AnsP_3" + "P-poll__networl_3_4_AnsP_4" + "P-poll__networl_3_4_RI_0" + "P-poll__networl_3_4_RI_1" + "P-poll__networl_3_4_RI_2" + "P-poll__networl_3_4_RI_3" + "P-poll__networl_3_4_RI_4" + "P-poll__networl_3_4_AI_0" + "P-poll__networl_3_4_AI_1" + "P-poll__networl_3_4_AI_2" + "P-poll__networl_3_4_AI_3" + "P-poll__networl_3_4_AI_4" + "P-poll__networl_3_4_AnnP_0" + "P-poll__networl_3_4_AnnP_1" + "P-poll__networl_3_4_AnnP_2" + "P-poll__networl_3_4_AnnP_3" + "P-poll__networl_3_4_AnnP_4" + "P-poll__networl_3_4_RP_0" + "P-poll__networl_3_4_RP_1" + "P-poll__networl_3_4_RP_2" + "P-poll__networl_3_4_RP_3" + "P-poll__networl_3_4_RP_4" + "P-poll__networl_4_0_AskP_0" + "P-poll__networl_4_0_AskP_1" + "P-poll__networl_4_0_AskP_2" + "P-poll__networl_4_0_AskP_3" + "P-poll__networl_4_0_AskP_4" + "P-poll__networl_4_0_AnsP_0" + "P-poll__networl_4_0_AnsP_1" + "P-poll__networl_4_0_AnsP_2" + "P-poll__networl_4_0_AnsP_3" + "P-poll__networl_4_0_AnsP_4" + "P-poll__networl_4_0_RI_0" + "P-poll__networl_4_0_RI_1" + "P-poll__networl_4_0_RI_2" + "P-poll__networl_4_0_RI_3" + "P-poll__networl_4_0_RI_4" + "P-poll__networl_4_0_AI_0" + "P-poll__networl_4_0_AI_1" + "P-poll__networl_4_0_AI_2" + "P-poll__networl_4_0_AI_3" + "P-poll__networl_4_0_AI_4" + "P-poll__networl_4_0_AnnP_0" + "P-poll__networl_4_0_AnnP_1" + "P-poll__networl_4_0_AnnP_2" + "P-poll__networl_4_0_AnnP_3" + "P-poll__networl_4_0_AnnP_4" + "P-poll__networl_4_0_RP_0" + "P-poll__networl_4_0_RP_1" + "P-poll__networl_4_0_RP_2" + "P-poll__networl_4_0_RP_3" + "P-poll__networl_4_0_RP_4" + "P-poll__networl_4_1_AskP_0" + "P-poll__networl_4_1_AskP_1" + "P-poll__networl_4_1_AskP_2" + "P-poll__networl_4_1_AskP_3" + "P-poll__networl_4_1_AskP_4" + "P-poll__networl_4_1_AnsP_0" + "P-poll__networl_4_1_AnsP_1" + "P-poll__networl_4_1_AnsP_2" + "P-poll__networl_4_1_AnsP_3" + "P-poll__networl_4_1_AnsP_4" + "P-poll__networl_4_1_RI_0" + "P-poll__networl_4_1_RI_1" + "P-poll__networl_4_1_RI_2" + "P-poll__networl_4_1_RI_3" + "P-poll__networl_4_1_RI_4" + "P-poll__networl_4_1_AI_0" + "P-poll__networl_4_1_AI_1" + "P-poll__networl_4_1_AI_2" + "P-poll__networl_4_1_AI_3" + "P-poll__networl_4_1_AI_4" + "P-poll__networl_4_1_AnnP_0" + "P-poll__networl_4_1_AnnP_1" + "P-poll__networl_4_1_AnnP_2" + "P-poll__networl_4_1_AnnP_3" + "P-poll__networl_4_1_AnnP_4" + "P-poll__networl_4_1_RP_0" + "P-poll__networl_4_1_RP_1" + "P-poll__networl_4_1_RP_2" + "P-poll__networl_4_1_RP_3" + "P-poll__networl_4_1_RP_4" + "P-poll__networl_4_2_AskP_0" + "P-poll__networl_4_2_AskP_1" + "P-poll__networl_4_2_AskP_2" + "P-poll__networl_4_2_AskP_3" + "P-poll__networl_4_2_AskP_4" + "P-poll__networl_4_2_AnsP_0" + "P-poll__networl_4_2_AnsP_1" + "P-poll__networl_4_2_AnsP_2" + "P-poll__networl_4_2_AnsP_3" + "P-poll__networl_4_2_AnsP_4" + "P-poll__networl_4_2_RI_0" + "P-poll__networl_4_2_RI_1" + "P-poll__networl_4_2_RI_2" + "P-poll__networl_4_2_RI_3" + "P-poll__networl_4_2_RI_4" + "P-poll__networl_4_2_AI_0" + "P-poll__networl_4_2_AI_1" + "P-poll__networl_4_2_AI_2" + "P-poll__networl_4_2_AI_3" + "P-poll__networl_4_2_AI_4" + "P-poll__networl_4_2_AnnP_0" + "P-poll__networl_4_2_AnnP_1" + "P-poll__networl_4_2_AnnP_2" + "P-poll__networl_4_2_AnnP_3" + "P-poll__networl_4_2_AnnP_4" + "P-poll__networl_4_2_RP_0" + "P-poll__networl_4_2_RP_1" + "P-poll__networl_4_2_RP_2" + "P-poll__networl_4_2_RP_3" + "P-poll__networl_4_2_RP_4" + "P-poll__networl_4_3_AskP_0" + "P-poll__networl_4_3_AskP_1" + "P-poll__networl_4_3_AskP_2" + "P-poll__networl_4_3_AskP_3" + "P-poll__networl_4_3_AskP_4" + "P-poll__networl_4_3_AnsP_0" + "P-poll__networl_4_3_AnsP_1" + "P-poll__networl_4_3_AnsP_2" + "P-poll__networl_4_3_AnsP_3" + "P-poll__networl_4_3_AnsP_4" + "P-poll__networl_4_3_RI_0" + "P-poll__networl_4_3_RI_1" + "P-poll__networl_4_3_RI_2" + "P-poll__networl_4_3_RI_3" + "P-poll__networl_4_3_RI_4" + "P-poll__networl_4_3_AI_0" + "P-poll__networl_4_3_AI_1" + "P-poll__networl_4_3_AI_2" + "P-poll__networl_4_3_AI_3" + "P-poll__networl_4_3_AI_4" + "P-poll__networl_4_3_AnnP_0" + "P-poll__networl_4_3_AnnP_1" + "P-poll__networl_4_3_AnnP_2" + "P-poll__networl_4_3_AnnP_3" + "P-poll__networl_4_3_AnnP_4" + "P-poll__networl_4_3_RP_0" + "P-poll__networl_4_3_RP_1" + "P-poll__networl_4_3_RP_2" + "P-poll__networl_4_3_RP_3" + "P-poll__networl_4_3_RP_4" + "P-poll__networl_4_4_AskP_0" + "P-poll__networl_4_4_AskP_1" + "P-poll__networl_4_4_AskP_2" + "P-poll__networl_4_4_AskP_3" + "P-poll__networl_4_4_AskP_4" + "P-poll__networl_4_4_AnsP_0" + "P-poll__networl_4_4_AnsP_1" + "P-poll__networl_4_4_AnsP_2" + "P-poll__networl_4_4_AnsP_3" + "P-poll__networl_4_4_AnsP_4" + "P-poll__networl_4_4_RI_0" + "P-poll__networl_4_4_RI_1" + "P-poll__networl_4_4_RI_2" + "P-poll__networl_4_4_RI_3" + "P-poll__networl_4_4_RI_4" + "P-poll__networl_4_4_AI_0" + "P-poll__networl_4_4_AI_1" + "P-poll__networl_4_4_AI_2" + "P-poll__networl_4_4_AI_3" + "P-poll__networl_4_4_AI_4" + "P-poll__networl_4_4_AnnP_0" + "P-poll__networl_4_4_AnnP_1" + "P-poll__networl_4_4_AnnP_2" + "P-poll__networl_4_4_AnnP_3" + "P-poll__networl_4_4_AnnP_4" + "P-poll__networl_4_4_RP_0" + "P-poll__networl_4_4_RP_1" + "P-poll__networl_4_4_RP_2" + "P-poll__networl_4_4_RP_3" + "P-poll__networl_4_4_RP_4"))))) )
NeoElection-COL-4-ReachabilityCardinality-3: not EF not ( ((("P-dead_0" + "P-dead_1" + "P-dead_2" + "P-dead_3" + "P-dead_4") <= ("P-negotiation_0_0_NONE" + "P-negotiation_0_0_CO" + "P-negotiation_0_0_DONE" + "P-negotiation_0_1_NONE" + "P-negotiation_0_1_CO" + "P-negotiation_0_1_DONE" + "P-negotiation_0_2_NONE" + "P-negotiation_0_2_CO" + "P-negotiation_0_2_DONE" + "P-negotiation_0_3_NONE" + "P-negotiation_0_3_CO" + "P-negotiation_0_3_DONE" + "P-negotiation_0_4_NONE" + "P-negotiation_0_4_CO" + "P-negotiation_0_4_DONE" + "P-negotiation_1_0_NONE" + "P-negotiation_1_0_CO" + "P-negotiation_1_0_DONE" + "P-negotiation_1_1_NONE" + "P-negotiation_1_1_CO" + "P-negotiation_1_1_DONE" + "P-negotiation_1_2_NONE" + "P-negotiation_1_2_CO" + "P-negotiation_1_2_DONE" + "P-negotiation_1_3_NONE" + "P-negotiation_1_3_CO" + "P-negotiation_1_3_DONE" + "P-negotiation_1_4_NONE" + "P-negotiation_1_4_CO" + "P-negotiation_1_4_DONE" + "P-negotiation_2_0_NONE" + "P-negotiation_2_0_CO" + "P-negotiation_2_0_DONE" + "P-negotiation_2_1_NONE" + "P-negotiation_2_1_CO" + "P-negotiation_2_1_DONE" + "P-negotiation_2_2_NONE" + "P-negotiation_2_2_CO" + "P-negotiation_2_2_DONE" + "P-negotiation_2_3_NONE" + "P-negotiation_2_3_CO" + "P-negotiation_2_3_DONE" + "P-negotiation_2_4_NONE" + "P-negotiation_2_4_CO" + "P-negotiation_2_4_DONE" + "P-negotiation_3_0_NONE" + "P-negotiation_3_0_CO" + "P-negotiation_3_0_DONE" + "P-negotiation_3_1_NONE" + "P-negotiation_3_1_CO" + "P-negotiation_3_1_DONE" + "P-negotiation_3_2_NONE" + "P-negotiation_3_2_CO" + "P-negotiation_3_2_DONE" + "P-negotiation_3_3_NONE" + "P-negotiation_3_3_CO" + "P-negotiation_3_3_DONE" + "P-negotiation_3_4_NONE" + "P-negotiation_3_4_CO" + "P-negotiation_3_4_DONE" + "P-negotiation_4_0_NONE" + "P-negotiation_4_0_CO" + "P-negotiation_4_0_DONE" + "P-negotiation_4_1_NONE" + "P-negotiation_4_1_CO" + "P-negotiation_4_1_DONE" + "P-negotiation_4_2_NONE" + "P-negotiation_4_2_CO" + "P-negotiation_4_2_DONE" + "P-negotiation_4_3_NONE" + "P-negotiation_4_3_CO" + "P-negotiation_4_3_DONE" + "P-negotiation_4_4_NONE" + "P-negotiation_4_4_CO" + "P-negotiation_4_4_DONE")) or (((3 <= ("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4")) and (("P-masterList_0_1_0" + "P-masterList_0_1_1" + "P-masterList_0_1_2" + "P-masterList_0_1_3" + "P-masterList_0_1_4" + "P-masterList_0_2_0" + "P-masterList_0_2_1" + "P-masterList_0_2_2" + "P-masterList_0_2_3" + "P-masterList_0_2_4" + "P-masterList_0_3_0" + "P-masterList_0_3_1" + "P-masterList_0_3_2" + "P-masterList_0_3_3" + "P-masterList_0_3_4" + "P-masterList_0_4_0" + "P-masterList_0_4_1" + "P-masterList_0_4_2" + "P-masterList_0_4_3" + "P-masterList_0_4_4" + "P-masterList_1_1_0" + "P-masterList_1_1_1" + "P-masterList_1_1_2" + "P-masterList_1_1_3" + "P-masterList_1_1_4" + "P-masterList_1_2_0" + "P-masterList_1_2_1" + "P-masterList_1_2_2" + "P-masterList_1_2_3" + "P-masterList_1_2_4" + "P-masterList_1_3_0" + "P-masterList_1_3_1" + "P-masterList_1_3_2" + "P-masterList_1_3_3" + "P-masterList_1_3_4" + "P-masterList_1_4_0" + "P-masterList_1_4_1" + "P-masterList_1_4_2" + "P-masterList_1_4_3" + "P-masterList_1_4_4" + "P-masterList_2_1_0" + "P-masterList_2_1_1" + "P-masterList_2_1_2" + "P-masterList_2_1_3" + "P-masterList_2_1_4" + "P-masterList_2_2_0" + "P-masterList_2_2_1" + "P-masterList_2_2_2" + "P-masterList_2_2_3" + "P-masterList_2_2_4" + "P-masterList_2_3_0" + "P-masterList_2_3_1" + "P-masterList_2_3_2" + "P-masterList_2_3_3" + "P-masterList_2_3_4" + "P-masterList_2_4_0" + "P-masterList_2_4_1" + "P-masterList_2_4_2" + "P-masterList_2_4_3" + "P-masterList_2_4_4" + "P-masterList_3_1_0" + "P-masterList_3_1_1" + "P-masterList_3_1_2" + "P-masterList_3_1_3" + "P-masterList_3_1_4" + "P-masterList_3_2_0" + "P-masterList_3_2_1" + "P-masterList_3_2_2" + "P-masterList_3_2_3" + "P-masterList_3_2_4" + "P-masterList_3_3_0" + "P-masterList_3_3_1" + "P-masterList_3_3_2" + "P-masterList_3_3_3" + "P-masterList_3_3_4" + "P-masterList_3_4_0" + "P-masterList_3_4_1" + "P-masterList_3_4_2" + "P-masterList_3_4_3" + "P-masterList_3_4_4" + "P-masterList_4_1_0" + "P-masterList_4_1_1" + "P-masterList_4_1_2" + "P-masterList_4_1_3" + "P-masterList_4_1_4" + "P-masterList_4_2_0" + "P-masterList_4_2_1" + "P-masterList_4_2_2" + "P-masterList_4_2_3" + "P-masterList_4_2_4" + "P-masterList_4_3_0" + "P-masterList_4_3_1" + "P-masterList_4_3_2" + "P-masterList_4_3_3" + "P-masterList_4_3_4" + "P-masterList_4_4_0" + "P-masterList_4_4_1" + "P-masterList_4_4_2" + "P-masterList_4_4_3" + "P-masterList_4_4_4") <= ("P-poll__networl_0_0_AskP_0" + "P-poll__networl_0_0_AskP_1" + "P-poll__networl_0_0_AskP_2" + "P-poll__networl_0_0_AskP_3" + "P-poll__networl_0_0_AskP_4" + "P-poll__networl_0_0_AnsP_0" + "P-poll__networl_0_0_AnsP_1" + "P-poll__networl_0_0_AnsP_2" + "P-poll__networl_0_0_AnsP_3" + "P-poll__networl_0_0_AnsP_4" + "P-poll__networl_0_0_RI_0" + "P-poll__networl_0_0_RI_1" + "P-poll__networl_0_0_RI_2" + "P-poll__networl_0_0_RI_3" + "P-poll__networl_0_0_RI_4" + "P-poll__networl_0_0_AI_0" + "P-poll__networl_0_0_AI_1" + "P-poll__networl_0_0_AI_2" + "P-poll__networl_0_0_AI_3" + "P-poll__networl_0_0_AI_4" + "P-poll__networl_0_0_AnnP_0" + "P-poll__networl_0_0_AnnP_1" + "P-poll__networl_0_0_AnnP_2" + "P-poll__networl_0_0_AnnP_3" + "P-poll__networl_0_0_AnnP_4" + "P-poll__networl_0_0_RP_0" + "P-poll__networl_0_0_RP_1" + "P-poll__networl_0_0_RP_2" + "P-poll__networl_0_0_RP_3" + "P-poll__networl_0_0_RP_4" + "P-poll__networl_0_1_AskP_0" + "P-poll__networl_0_1_AskP_1" + "P-poll__networl_0_1_AskP_2" + "P-poll__networl_0_1_AskP_3" + "P-poll__networl_0_1_AskP_4" + "P-poll__networl_0_1_AnsP_0" + "P-poll__networl_0_1_AnsP_1" + "P-poll__networl_0_1_AnsP_2" + "P-poll__networl_0_1_AnsP_3" + "P-poll__networl_0_1_AnsP_4" + "P-poll__networl_0_1_RI_0" + "P-poll__networl_0_1_RI_1" + "P-poll__networl_0_1_RI_2" + "P-poll__networl_0_1_RI_3" + "P-poll__networl_0_1_RI_4" + "P-poll__networl_0_1_AI_0" + "P-poll__networl_0_1_AI_1" + "P-poll__networl_0_1_AI_2" + "P-poll__networl_0_1_AI_3" + "P-poll__networl_0_1_AI_4" + "P-poll__networl_0_1_AnnP_0" + "P-poll__networl_0_1_AnnP_1" + "P-poll__networl_0_1_AnnP_2" + "P-poll__networl_0_1_AnnP_3" + "P-poll__networl_0_1_AnnP_4" + "P-poll__networl_0_1_RP_0" + "P-poll__networl_0_1_RP_1" + "P-poll__networl_0_1_RP_2" + "P-poll__networl_0_1_RP_3" + "P-poll__networl_0_1_RP_4" + "P-poll__networl_0_2_AskP_0" + "P-poll__networl_0_2_AskP_1" + "P-poll__networl_0_2_AskP_2" + "P-poll__networl_0_2_AskP_3" + "P-poll__networl_0_2_AskP_4" + "P-poll__networl_0_2_AnsP_0" + "P-poll__networl_0_2_AnsP_1" + "P-poll__networl_0_2_AnsP_2" + "P-poll__networl_0_2_AnsP_3" + "P-poll__networl_0_2_AnsP_4" + "P-poll__networl_0_2_RI_0" + "P-poll__networl_0_2_RI_1" + "P-poll__networl_0_2_RI_2" + "P-poll__networl_0_2_RI_3" + "P-poll__networl_0_2_RI_4" + "P-poll__networl_0_2_AI_0" + "P-poll__networl_0_2_AI_1" + "P-poll__networl_0_2_AI_2" + "P-poll__networl_0_2_AI_3" + "P-poll__networl_0_2_AI_4" + "P-poll__networl_0_2_AnnP_0" + "P-poll__networl_0_2_AnnP_1" + "P-poll__networl_0_2_AnnP_2" + "P-poll__networl_0_2_AnnP_3" + "P-poll__networl_0_2_AnnP_4" + "P-poll__networl_0_2_RP_0" + "P-poll__networl_0_2_RP_1" + "P-poll__networl_0_2_RP_2" + "P-poll__networl_0_2_RP_3" + "P-poll__networl_0_2_RP_4" + "P-poll__networl_0_3_AskP_0" + "P-poll__networl_0_3_AskP_1" + "P-poll__networl_0_3_AskP_2" + "P-poll__networl_0_3_AskP_3" + "P-poll__networl_0_3_AskP_4" + "P-poll__networl_0_3_AnsP_0" + "P-poll__networl_0_3_AnsP_1" + "P-poll__networl_0_3_AnsP_2" + "P-poll__networl_0_3_AnsP_3" + "P-poll__networl_0_3_AnsP_4" + "P-poll__networl_0_3_RI_0" + "P-poll__networl_0_3_RI_1" + "P-poll__networl_0_3_RI_2" + "P-poll__networl_0_3_RI_3" + "P-poll__networl_0_3_RI_4" + "P-poll__networl_0_3_AI_0" + "P-poll__networl_0_3_AI_1" + "P-poll__networl_0_3_AI_2" + "P-poll__networl_0_3_AI_3" + "P-poll__networl_0_3_AI_4" + "P-poll__networl_0_3_AnnP_0" + "P-poll__networl_0_3_AnnP_1" + "P-poll__networl_0_3_AnnP_2" + "P-poll__networl_0_3_AnnP_3" + "P-poll__networl_0_3_AnnP_4" + "P-poll__networl_0_3_RP_0" + "P-poll__networl_0_3_RP_1" + "P-poll__networl_0_3_RP_2" + "P-poll__networl_0_3_RP_3" + "P-poll__networl_0_3_RP_4" + "P-poll__networl_0_4_AskP_0" + "P-poll__networl_0_4_AskP_1" + "P-poll__networl_0_4_AskP_2" + "P-poll__networl_0_4_AskP_3" + "P-poll__networl_0_4_AskP_4" + "P-poll__networl_0_4_AnsP_0" + "P-poll__networl_0_4_AnsP_1" + "P-poll__networl_0_4_AnsP_2" + "P-poll__networl_0_4_AnsP_3" + "P-poll__networl_0_4_AnsP_4" + "P-poll__networl_0_4_RI_0" + "P-poll__networl_0_4_RI_1" + "P-poll__networl_0_4_RI_2" + "P-poll__networl_0_4_RI_3" + "P-poll__networl_0_4_RI_4" + "P-poll__networl_0_4_AI_0" + "P-poll__networl_0_4_AI_1" + "P-poll__networl_0_4_AI_2" + "P-poll__networl_0_4_AI_3" + "P-poll__networl_0_4_AI_4" + "P-poll__networl_0_4_AnnP_0" + "P-poll__networl_0_4_AnnP_1" + "P-poll__networl_0_4_AnnP_2" + "P-poll__networl_0_4_AnnP_3" + "P-poll__networl_0_4_AnnP_4" + "P-poll__networl_0_4_RP_0" + "P-poll__networl_0_4_RP_1" + "P-poll__networl_0_4_RP_2" + "P-poll__networl_0_4_RP_3" + "P-poll__networl_0_4_RP_4" + "P-poll__networl_1_0_AskP_0" + "P-poll__networl_1_0_AskP_1" + "P-poll__networl_1_0_AskP_2" + "P-poll__networl_1_0_AskP_3" + "P-poll__networl_1_0_AskP_4" + "P-poll__networl_1_0_AnsP_0" + "P-poll__networl_1_0_AnsP_1" + "P-poll__networl_1_0_AnsP_2" + "P-poll__networl_1_0_AnsP_3" + "P-poll__networl_1_0_AnsP_4" + "P-poll__networl_1_0_RI_0" + "P-poll__networl_1_0_RI_1" + "P-poll__networl_1_0_RI_2" + "P-poll__networl_1_0_RI_3" + "P-poll__networl_1_0_RI_4" + "P-poll__networl_1_0_AI_0" + "P-poll__networl_1_0_AI_1" + "P-poll__networl_1_0_AI_2" + "P-poll__networl_1_0_AI_3" + "P-poll__networl_1_0_AI_4" + "P-poll__networl_1_0_AnnP_0" + "P-poll__networl_1_0_AnnP_1" + "P-poll__networl_1_0_AnnP_2" + "P-poll__networl_1_0_AnnP_3" + "P-poll__networl_1_0_AnnP_4" + "P-poll__networl_1_0_RP_0" + "P-poll__networl_1_0_RP_1" + "P-poll__networl_1_0_RP_2" + "P-poll__networl_1_0_RP_3" + "P-poll__networl_1_0_RP_4" + "P-poll__networl_1_1_AskP_0" + "P-poll__networl_1_1_AskP_1" + "P-poll__networl_1_1_AskP_2" + "P-poll__networl_1_1_AskP_3" + "P-poll__networl_1_1_AskP_4" + "P-poll__networl_1_1_AnsP_0" + "P-poll__networl_1_1_AnsP_1" + "P-poll__networl_1_1_AnsP_2" + "P-poll__networl_1_1_AnsP_3" + "P-poll__networl_1_1_AnsP_4" + "P-poll__networl_1_1_RI_0" + "P-poll__networl_1_1_RI_1" + "P-poll__networl_1_1_RI_2" + "P-poll__networl_1_1_RI_3" + "P-poll__networl_1_1_RI_4" + "P-poll__networl_1_1_AI_0" + "P-poll__networl_1_1_AI_1" + "P-poll__networl_1_1_AI_2" + "P-poll__networl_1_1_AI_3" + "P-poll__networl_1_1_AI_4" + "P-poll__networl_1_1_AnnP_0" + "P-poll__networl_1_1_AnnP_1" + "P-poll__networl_1_1_AnnP_2" + "P-poll__networl_1_1_AnnP_3" + "P-poll__networl_1_1_AnnP_4" + "P-poll__networl_1_1_RP_0" + "P-poll__networl_1_1_RP_1" + "P-poll__networl_1_1_RP_2" + "P-poll__networl_1_1_RP_3" + "P-poll__networl_1_1_RP_4" + "P-poll__networl_1_2_AskP_0" + "P-poll__networl_1_2_AskP_1" + "P-poll__networl_1_2_AskP_2" + "P-poll__networl_1_2_AskP_3" + "P-poll__networl_1_2_AskP_4" + "P-poll__networl_1_2_AnsP_0" + "P-poll__networl_1_2_AnsP_1" + "P-poll__networl_1_2_AnsP_2" + "P-poll__networl_1_2_AnsP_3" + "P-poll__networl_1_2_AnsP_4" + "P-poll__networl_1_2_RI_0" + "P-poll__networl_1_2_RI_1" + "P-poll__networl_1_2_RI_2" + "P-poll__networl_1_2_RI_3" + "P-poll__networl_1_2_RI_4" + "P-poll__networl_1_2_AI_0" + "P-poll__networl_1_2_AI_1" + "P-poll__networl_1_2_AI_2" + "P-poll__networl_1_2_AI_3" + "P-poll__networl_1_2_AI_4" + "P-poll__networl_1_2_AnnP_0" + "P-poll__networl_1_2_AnnP_1" + "P-poll__networl_1_2_AnnP_2" + "P-poll__networl_1_2_AnnP_3" + "P-poll__networl_1_2_AnnP_4" + "P-poll__networl_1_2_RP_0" + "P-poll__networl_1_2_RP_1" + "P-poll__networl_1_2_RP_2" + "P-poll__networl_1_2_RP_3" + "P-poll__networl_1_2_RP_4" + "P-poll__networl_1_3_AskP_0" + "P-poll__networl_1_3_AskP_1" + "P-poll__networl_1_3_AskP_2" + "P-poll__networl_1_3_AskP_3" + "P-poll__networl_1_3_AskP_4" + "P-poll__networl_1_3_AnsP_0" + "P-poll__networl_1_3_AnsP_1" + "P-poll__networl_1_3_AnsP_2" + "P-poll__networl_1_3_AnsP_3" + "P-poll__networl_1_3_AnsP_4" + "P-poll__networl_1_3_RI_0" + "P-poll__networl_1_3_RI_1" + "P-poll__networl_1_3_RI_2" + "P-poll__networl_1_3_RI_3" + "P-poll__networl_1_3_RI_4" + "P-poll__networl_1_3_AI_0" + "P-poll__networl_1_3_AI_1" + "P-poll__networl_1_3_AI_2" + "P-poll__networl_1_3_AI_3" + "P-poll__networl_1_3_AI_4" + "P-poll__networl_1_3_AnnP_0" + "P-poll__networl_1_3_AnnP_1" + "P-poll__networl_1_3_AnnP_2" + "P-poll__networl_1_3_AnnP_3" + "P-poll__networl_1_3_AnnP_4" + "P-poll__networl_1_3_RP_0" + "P-poll__networl_1_3_RP_1" + "P-poll__networl_1_3_RP_2" + "P-poll__networl_1_3_RP_3" + "P-poll__networl_1_3_RP_4" + "P-poll__networl_1_4_AskP_0" + "P-poll__networl_1_4_AskP_1" + "P-poll__networl_1_4_AskP_2" + "P-poll__networl_1_4_AskP_3" + "P-poll__networl_1_4_AskP_4" + "P-poll__networl_1_4_AnsP_0" + "P-poll__networl_1_4_AnsP_1" + "P-poll__networl_1_4_AnsP_2" + "P-poll__networl_1_4_AnsP_3" + "P-poll__networl_1_4_AnsP_4" + "P-poll__networl_1_4_RI_0" + "P-poll__networl_1_4_RI_1" + "P-poll__networl_1_4_RI_2" + "P-poll__networl_1_4_RI_3" + "P-poll__networl_1_4_RI_4" + "P-poll__networl_1_4_AI_0" + "P-poll__networl_1_4_AI_1" + "P-poll__networl_1_4_AI_2" + "P-poll__networl_1_4_AI_3" + "P-poll__networl_1_4_AI_4" + "P-poll__networl_1_4_AnnP_0" + "P-poll__networl_1_4_AnnP_1" + "P-poll__networl_1_4_AnnP_2" + "P-poll__networl_1_4_AnnP_3" + "P-poll__networl_1_4_AnnP_4" + "P-poll__networl_1_4_RP_0" + "P-poll__networl_1_4_RP_1" + "P-poll__networl_1_4_RP_2" + "P-poll__networl_1_4_RP_3" + "P-poll__networl_1_4_RP_4" + "P-poll__networl_2_0_AskP_0" + "P-poll__networl_2_0_AskP_1" + "P-poll__networl_2_0_AskP_2" + "P-poll__networl_2_0_AskP_3" + "P-poll__networl_2_0_AskP_4" + "P-poll__networl_2_0_AnsP_0" + "P-poll__networl_2_0_AnsP_1" + "P-poll__networl_2_0_AnsP_2" + "P-poll__networl_2_0_AnsP_3" + "P-poll__networl_2_0_AnsP_4" + "P-poll__networl_2_0_RI_0" + "P-poll__networl_2_0_RI_1" + "P-poll__networl_2_0_RI_2" + "P-poll__networl_2_0_RI_3" + "P-poll__networl_2_0_RI_4" + "P-poll__networl_2_0_AI_0" + "P-poll__networl_2_0_AI_1" + "P-poll__networl_2_0_AI_2" + "P-poll__networl_2_0_AI_3" + "P-poll__networl_2_0_AI_4" + "P-poll__networl_2_0_AnnP_0" + "P-poll__networl_2_0_AnnP_1" + "P-poll__networl_2_0_AnnP_2" + "P-poll__networl_2_0_AnnP_3" + "P-poll__networl_2_0_AnnP_4" + "P-poll__networl_2_0_RP_0" + "P-poll__networl_2_0_RP_1" + "P-poll__networl_2_0_RP_2" + "P-poll__networl_2_0_RP_3" + "P-poll__networl_2_0_RP_4" + "P-poll__networl_2_1_AskP_0" + "P-poll__networl_2_1_AskP_1" + "P-poll__networl_2_1_AskP_2" + "P-poll__networl_2_1_AskP_3" + "P-poll__networl_2_1_AskP_4" + "P-poll__networl_2_1_AnsP_0" + "P-poll__networl_2_1_AnsP_1" + "P-poll__networl_2_1_AnsP_2" + "P-poll__networl_2_1_AnsP_3" + "P-poll__networl_2_1_AnsP_4" + "P-poll__networl_2_1_RI_0" + "P-poll__networl_2_1_RI_1" + "P-poll__networl_2_1_RI_2" + "P-poll__networl_2_1_RI_3" + "P-poll__networl_2_1_RI_4" + "P-poll__networl_2_1_AI_0" + "P-poll__networl_2_1_AI_1" + "P-poll__networl_2_1_AI_2" + "P-poll__networl_2_1_AI_3" + "P-poll__networl_2_1_AI_4" + "P-poll__networl_2_1_AnnP_0" + "P-poll__networl_2_1_AnnP_1" + "P-poll__networl_2_1_AnnP_2" + "P-poll__networl_2_1_AnnP_3" + "P-poll__networl_2_1_AnnP_4" + "P-poll__networl_2_1_RP_0" + "P-poll__networl_2_1_RP_1" + "P-poll__networl_2_1_RP_2" + "P-poll__networl_2_1_RP_3" + "P-poll__networl_2_1_RP_4" + "P-poll__networl_2_2_AskP_0" + "P-poll__networl_2_2_AskP_1" + "P-poll__networl_2_2_AskP_2" + "P-poll__networl_2_2_AskP_3" + "P-poll__networl_2_2_AskP_4" + "P-poll__networl_2_2_AnsP_0" + "P-poll__networl_2_2_AnsP_1" + "P-poll__networl_2_2_AnsP_2" + "P-poll__networl_2_2_AnsP_3" + "P-poll__networl_2_2_AnsP_4" + "P-poll__networl_2_2_RI_0" + "P-poll__networl_2_2_RI_1" + "P-poll__networl_2_2_RI_2" + "P-poll__networl_2_2_RI_3" + "P-poll__networl_2_2_RI_4" + "P-poll__networl_2_2_AI_0" + "P-poll__networl_2_2_AI_1" + "P-poll__networl_2_2_AI_2" + "P-poll__networl_2_2_AI_3" + "P-poll__networl_2_2_AI_4" + "P-poll__networl_2_2_AnnP_0" + "P-poll__networl_2_2_AnnP_1" + "P-poll__networl_2_2_AnnP_2" + "P-poll__networl_2_2_AnnP_3" + "P-poll__networl_2_2_AnnP_4" + "P-poll__networl_2_2_RP_0" + "P-poll__networl_2_2_RP_1" + "P-poll__networl_2_2_RP_2" + "P-poll__networl_2_2_RP_3" + "P-poll__networl_2_2_RP_4" + "P-poll__networl_2_3_AskP_0" + "P-poll__networl_2_3_AskP_1" + "P-poll__networl_2_3_AskP_2" + "P-poll__networl_2_3_AskP_3" + "P-poll__networl_2_3_AskP_4" + "P-poll__networl_2_3_AnsP_0" + "P-poll__networl_2_3_AnsP_1" + "P-poll__networl_2_3_AnsP_2" + "P-poll__networl_2_3_AnsP_3" + "P-poll__networl_2_3_AnsP_4" + "P-poll__networl_2_3_RI_0" + "P-poll__networl_2_3_RI_1" + "P-poll__networl_2_3_RI_2" + "P-poll__networl_2_3_RI_3" + "P-poll__networl_2_3_RI_4" + "P-poll__networl_2_3_AI_0" + "P-poll__networl_2_3_AI_1" + "P-poll__networl_2_3_AI_2" + "P-poll__networl_2_3_AI_3" + "P-poll__networl_2_3_AI_4" + "P-poll__networl_2_3_AnnP_0" + "P-poll__networl_2_3_AnnP_1" + "P-poll__networl_2_3_AnnP_2" + "P-poll__networl_2_3_AnnP_3" + "P-poll__networl_2_3_AnnP_4" + "P-poll__networl_2_3_RP_0" + "P-poll__networl_2_3_RP_1" + "P-poll__networl_2_3_RP_2" + "P-poll__networl_2_3_RP_3" + "P-poll__networl_2_3_RP_4" + "P-poll__networl_2_4_AskP_0" + "P-poll__networl_2_4_AskP_1" + "P-poll__networl_2_4_AskP_2" + "P-poll__networl_2_4_AskP_3" + "P-poll__networl_2_4_AskP_4" + "P-poll__networl_2_4_AnsP_0" + "P-poll__networl_2_4_AnsP_1" + "P-poll__networl_2_4_AnsP_2" + "P-poll__networl_2_4_AnsP_3" + "P-poll__networl_2_4_AnsP_4" + "P-poll__networl_2_4_RI_0" + "P-poll__networl_2_4_RI_1" + "P-poll__networl_2_4_RI_2" + "P-poll__networl_2_4_RI_3" + "P-poll__networl_2_4_RI_4" + "P-poll__networl_2_4_AI_0" + "P-poll__networl_2_4_AI_1" + "P-poll__networl_2_4_AI_2" + "P-poll__networl_2_4_AI_3" + "P-poll__networl_2_4_AI_4" + "P-poll__networl_2_4_AnnP_0" + "P-poll__networl_2_4_AnnP_1" + "P-poll__networl_2_4_AnnP_2" + "P-poll__networl_2_4_AnnP_3" + "P-poll__networl_2_4_AnnP_4" + "P-poll__networl_2_4_RP_0" + "P-poll__networl_2_4_RP_1" + "P-poll__networl_2_4_RP_2" + "P-poll__networl_2_4_RP_3" + "P-poll__networl_2_4_RP_4" + "P-poll__networl_3_0_AskP_0" + "P-poll__networl_3_0_AskP_1" + "P-poll__networl_3_0_AskP_2" + "P-poll__networl_3_0_AskP_3" + "P-poll__networl_3_0_AskP_4" + "P-poll__networl_3_0_AnsP_0" + "P-poll__networl_3_0_AnsP_1" + "P-poll__networl_3_0_AnsP_2" + "P-poll__networl_3_0_AnsP_3" + "P-poll__networl_3_0_AnsP_4" + "P-poll__networl_3_0_RI_0" + "P-poll__networl_3_0_RI_1" + "P-poll__networl_3_0_RI_2" + "P-poll__networl_3_0_RI_3" + "P-poll__networl_3_0_RI_4" + "P-poll__networl_3_0_AI_0" + "P-poll__networl_3_0_AI_1" + "P-poll__networl_3_0_AI_2" + "P-poll__networl_3_0_AI_3" + "P-poll__networl_3_0_AI_4" + "P-poll__networl_3_0_AnnP_0" + "P-poll__networl_3_0_AnnP_1" + "P-poll__networl_3_0_AnnP_2" + "P-poll__networl_3_0_AnnP_3" + "P-poll__networl_3_0_AnnP_4" + "P-poll__networl_3_0_RP_0" + "P-poll__networl_3_0_RP_1" + "P-poll__networl_3_0_RP_2" + "P-poll__networl_3_0_RP_3" + "P-poll__networl_3_0_RP_4" + "P-poll__networl_3_1_AskP_0" + "P-poll__networl_3_1_AskP_1" + "P-poll__networl_3_1_AskP_2" + "P-poll__networl_3_1_AskP_3" + "P-poll__networl_3_1_AskP_4" + "P-poll__networl_3_1_AnsP_0" + "P-poll__networl_3_1_AnsP_1" + "P-poll__networl_3_1_AnsP_2" + "P-poll__networl_3_1_AnsP_3" + "P-poll__networl_3_1_AnsP_4" + "P-poll__networl_3_1_RI_0" + "P-poll__networl_3_1_RI_1" + "P-poll__networl_3_1_RI_2" + "P-poll__networl_3_1_RI_3" + "P-poll__networl_3_1_RI_4" + "P-poll__networl_3_1_AI_0" + "P-poll__networl_3_1_AI_1" + "P-poll__networl_3_1_AI_2" + "P-poll__networl_3_1_AI_3" + "P-poll__networl_3_1_AI_4" + "P-poll__networl_3_1_AnnP_0" + "P-poll__networl_3_1_AnnP_1" + "P-poll__networl_3_1_AnnP_2" + "P-poll__networl_3_1_AnnP_3" + "P-poll__networl_3_1_AnnP_4" + "P-poll__networl_3_1_RP_0" + "P-poll__networl_3_1_RP_1" + "P-poll__networl_3_1_RP_2" + "P-poll__networl_3_1_RP_3" + "P-poll__networl_3_1_RP_4" + "P-poll__networl_3_2_AskP_0" + "P-poll__networl_3_2_AskP_1" + "P-poll__networl_3_2_AskP_2" + "P-poll__networl_3_2_AskP_3" + "P-poll__networl_3_2_AskP_4" + "P-poll__networl_3_2_AnsP_0" + "P-poll__networl_3_2_AnsP_1" + "P-poll__networl_3_2_AnsP_2" + "P-poll__networl_3_2_AnsP_3" + "P-poll__networl_3_2_AnsP_4" + "P-poll__networl_3_2_RI_0" + "P-poll__networl_3_2_RI_1" + "P-poll__networl_3_2_RI_2" + "P-poll__networl_3_2_RI_3" + "P-poll__networl_3_2_RI_4" + "P-poll__networl_3_2_AI_0" + "P-poll__networl_3_2_AI_1" + "P-poll__networl_3_2_AI_2" + "P-poll__networl_3_2_AI_3" + "P-poll__networl_3_2_AI_4" + "P-poll__networl_3_2_AnnP_0" + "P-poll__networl_3_2_AnnP_1" + "P-poll__networl_3_2_AnnP_2" + "P-poll__networl_3_2_AnnP_3" + "P-poll__networl_3_2_AnnP_4" + "P-poll__networl_3_2_RP_0" + "P-poll__networl_3_2_RP_1" + "P-poll__networl_3_2_RP_2" + "P-poll__networl_3_2_RP_3" + "P-poll__networl_3_2_RP_4" + "P-poll__networl_3_3_AskP_0" + "P-poll__networl_3_3_AskP_1" + "P-poll__networl_3_3_AskP_2" + "P-poll__networl_3_3_AskP_3" + "P-poll__networl_3_3_AskP_4" + "P-poll__networl_3_3_AnsP_0" + "P-poll__networl_3_3_AnsP_1" + "P-poll__networl_3_3_AnsP_2" + "P-poll__networl_3_3_AnsP_3" + "P-poll__networl_3_3_AnsP_4" + "P-poll__networl_3_3_RI_0" + "P-poll__networl_3_3_RI_1" + "P-poll__networl_3_3_RI_2" + "P-poll__networl_3_3_RI_3" + "P-poll__networl_3_3_RI_4" + "P-poll__networl_3_3_AI_0" + "P-poll__networl_3_3_AI_1" + "P-poll__networl_3_3_AI_2" + "P-poll__networl_3_3_AI_3" + "P-poll__networl_3_3_AI_4" + "P-poll__networl_3_3_AnnP_0" + "P-poll__networl_3_3_AnnP_1" + "P-poll__networl_3_3_AnnP_2" + "P-poll__networl_3_3_AnnP_3" + "P-poll__networl_3_3_AnnP_4" + "P-poll__networl_3_3_RP_0" + "P-poll__networl_3_3_RP_1" + "P-poll__networl_3_3_RP_2" + "P-poll__networl_3_3_RP_3" + "P-poll__networl_3_3_RP_4" + "P-poll__networl_3_4_AskP_0" + "P-poll__networl_3_4_AskP_1" + "P-poll__networl_3_4_AskP_2" + "P-poll__networl_3_4_AskP_3" + "P-poll__networl_3_4_AskP_4" + "P-poll__networl_3_4_AnsP_0" + "P-poll__networl_3_4_AnsP_1" + "P-poll__networl_3_4_AnsP_2" + "P-poll__networl_3_4_AnsP_3" + "P-poll__networl_3_4_AnsP_4" + "P-poll__networl_3_4_RI_0" + "P-poll__networl_3_4_RI_1" + "P-poll__networl_3_4_RI_2" + "P-poll__networl_3_4_RI_3" + "P-poll__networl_3_4_RI_4" + "P-poll__networl_3_4_AI_0" + "P-poll__networl_3_4_AI_1" + "P-poll__networl_3_4_AI_2" + "P-poll__networl_3_4_AI_3" + "P-poll__networl_3_4_AI_4" + "P-poll__networl_3_4_AnnP_0" + "P-poll__networl_3_4_AnnP_1" + "P-poll__networl_3_4_AnnP_2" + "P-poll__networl_3_4_AnnP_3" + "P-poll__networl_3_4_AnnP_4" + "P-poll__networl_3_4_RP_0" + "P-poll__networl_3_4_RP_1" + "P-poll__networl_3_4_RP_2" + "P-poll__networl_3_4_RP_3" + "P-poll__networl_3_4_RP_4" + "P-poll__networl_4_0_AskP_0" + "P-poll__networl_4_0_AskP_1" + "P-poll__networl_4_0_AskP_2" + "P-poll__networl_4_0_AskP_3" + "P-poll__networl_4_0_AskP_4" + "P-poll__networl_4_0_AnsP_0" + "P-poll__networl_4_0_AnsP_1" + "P-poll__networl_4_0_AnsP_2" + "P-poll__networl_4_0_AnsP_3" + "P-poll__networl_4_0_AnsP_4" + "P-poll__networl_4_0_RI_0" + "P-poll__networl_4_0_RI_1" + "P-poll__networl_4_0_RI_2" + "P-poll__networl_4_0_RI_3" + "P-poll__networl_4_0_RI_4" + "P-poll__networl_4_0_AI_0" + "P-poll__networl_4_0_AI_1" + "P-poll__networl_4_0_AI_2" + "P-poll__networl_4_0_AI_3" + "P-poll__networl_4_0_AI_4" + "P-poll__networl_4_0_AnnP_0" + "P-poll__networl_4_0_AnnP_1" + "P-poll__networl_4_0_AnnP_2" + "P-poll__networl_4_0_AnnP_3" + "P-poll__networl_4_0_AnnP_4" + "P-poll__networl_4_0_RP_0" + "P-poll__networl_4_0_RP_1" + "P-poll__networl_4_0_RP_2" + "P-poll__networl_4_0_RP_3" + "P-poll__networl_4_0_RP_4" + "P-poll__networl_4_1_AskP_0" + "P-poll__networl_4_1_AskP_1" + "P-poll__networl_4_1_AskP_2" + "P-poll__networl_4_1_AskP_3" + "P-poll__networl_4_1_AskP_4" + "P-poll__networl_4_1_AnsP_0" + "P-poll__networl_4_1_AnsP_1" + "P-poll__networl_4_1_AnsP_2" + "P-poll__networl_4_1_AnsP_3" + "P-poll__networl_4_1_AnsP_4" + "P-poll__networl_4_1_RI_0" + "P-poll__networl_4_1_RI_1" + "P-poll__networl_4_1_RI_2" + "P-poll__networl_4_1_RI_3" + "P-poll__networl_4_1_RI_4" + "P-poll__networl_4_1_AI_0" + "P-poll__networl_4_1_AI_1" + "P-poll__networl_4_1_AI_2" + "P-poll__networl_4_1_AI_3" + "P-poll__networl_4_1_AI_4" + "P-poll__networl_4_1_AnnP_0" + "P-poll__networl_4_1_AnnP_1" + "P-poll__networl_4_1_AnnP_2" + "P-poll__networl_4_1_AnnP_3" + "P-poll__networl_4_1_AnnP_4" + "P-poll__networl_4_1_RP_0" + "P-poll__networl_4_1_RP_1" + "P-poll__networl_4_1_RP_2" + "P-poll__networl_4_1_RP_3" + "P-poll__networl_4_1_RP_4" + "P-poll__networl_4_2_AskP_0" + "P-poll__networl_4_2_AskP_1" + "P-poll__networl_4_2_AskP_2" + "P-poll__networl_4_2_AskP_3" + "P-poll__networl_4_2_AskP_4" + "P-poll__networl_4_2_AnsP_0" + "P-poll__networl_4_2_AnsP_1" + "P-poll__networl_4_2_AnsP_2" + "P-poll__networl_4_2_AnsP_3" + "P-poll__networl_4_2_AnsP_4" + "P-poll__networl_4_2_RI_0" + "P-poll__networl_4_2_RI_1" + "P-poll__networl_4_2_RI_2" + "P-poll__networl_4_2_RI_3" + "P-poll__networl_4_2_RI_4" + "P-poll__networl_4_2_AI_0" + "P-poll__networl_4_2_AI_1" + "P-poll__networl_4_2_AI_2" + "P-poll__networl_4_2_AI_3" + "P-poll__networl_4_2_AI_4" + "P-poll__networl_4_2_AnnP_0" + "P-poll__networl_4_2_AnnP_1" + "P-poll__networl_4_2_AnnP_2" + "P-poll__networl_4_2_AnnP_3" + "P-poll__networl_4_2_AnnP_4" + "P-poll__networl_4_2_RP_0" + "P-poll__networl_4_2_RP_1" + "P-poll__networl_4_2_RP_2" + "P-poll__networl_4_2_RP_3" + "P-poll__networl_4_2_RP_4" + "P-poll__networl_4_3_AskP_0" + "P-poll__networl_4_3_AskP_1" + "P-poll__networl_4_3_AskP_2" + "P-poll__networl_4_3_AskP_3" + "P-poll__networl_4_3_AskP_4" + "P-poll__networl_4_3_AnsP_0" + "P-poll__networl_4_3_AnsP_1" + "P-poll__networl_4_3_AnsP_2" + "P-poll__networl_4_3_AnsP_3" + "P-poll__networl_4_3_AnsP_4" + "P-poll__networl_4_3_RI_0" + "P-poll__networl_4_3_RI_1" + "P-poll__networl_4_3_RI_2" + "P-poll__networl_4_3_RI_3" + "P-poll__networl_4_3_RI_4" + "P-poll__networl_4_3_AI_0" + "P-poll__networl_4_3_AI_1" + "P-poll__networl_4_3_AI_2" + "P-poll__networl_4_3_AI_3" + "P-poll__networl_4_3_AI_4" + "P-poll__networl_4_3_AnnP_0" + "P-poll__networl_4_3_AnnP_1" + "P-poll__networl_4_3_AnnP_2" + "P-poll__networl_4_3_AnnP_3" + "P-poll__networl_4_3_AnnP_4" + "P-poll__networl_4_3_RP_0" + "P-poll__networl_4_3_RP_1" + "P-poll__networl_4_3_RP_2" + "P-poll__networl_4_3_RP_3" + "P-poll__networl_4_3_RP_4" + "P-poll__networl_4_4_AskP_0" + "P-poll__networl_4_4_AskP_1" + "P-poll__networl_4_4_AskP_2" + "P-poll__networl_4_4_AskP_3" + "P-poll__networl_4_4_AskP_4" + "P-poll__networl_4_4_AnsP_0" + "P-poll__networl_4_4_AnsP_1" + "P-poll__networl_4_4_AnsP_2" + "P-poll__networl_4_4_AnsP_3" + "P-poll__networl_4_4_AnsP_4" + "P-poll__networl_4_4_RI_0" + "P-poll__networl_4_4_RI_1" + "P-poll__networl_4_4_RI_2" + "P-poll__networl_4_4_RI_3" + "P-poll__networl_4_4_RI_4" + "P-poll__networl_4_4_AI_0" + "P-poll__networl_4_4_AI_1" + "P-poll__networl_4_4_AI_2" + "P-poll__networl_4_4_AI_3" + "P-poll__networl_4_4_AI_4" + "P-poll__networl_4_4_AnnP_0" + "P-poll__networl_4_4_AnnP_1" + "P-poll__networl_4_4_AnnP_2" + "P-poll__networl_4_4_AnnP_3" + "P-poll__networl_4_4_AnnP_4" + "P-poll__networl_4_4_RP_0" + "P-poll__networl_4_4_RP_1" + "P-poll__networl_4_4_RP_2" + "P-poll__networl_4_4_RP_3" + "P-poll__networl_4_4_RP_4"))) and ((("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4") <= ("P-masterList_0_1_0" + "P-masterList_0_1_1" + "P-masterList_0_1_2" + "P-masterList_0_1_3" + "P-masterList_0_1_4" + "P-masterList_0_2_0" + "P-masterList_0_2_1" + "P-masterList_0_2_2" + "P-masterList_0_2_3" + "P-masterList_0_2_4" + "P-masterList_0_3_0" + "P-masterList_0_3_1" + "P-masterList_0_3_2" + "P-masterList_0_3_3" + "P-masterList_0_3_4" + "P-masterList_0_4_0" + "P-masterList_0_4_1" + "P-masterList_0_4_2" + "P-masterList_0_4_3" + "P-masterList_0_4_4" + "P-masterList_1_1_0" + "P-masterList_1_1_1" + "P-masterList_1_1_2" + "P-masterList_1_1_3" + "P-masterList_1_1_4" + "P-masterList_1_2_0" + "P-masterList_1_2_1" + "P-masterList_1_2_2" + "P-masterList_1_2_3" + "P-masterList_1_2_4" + "P-masterList_1_3_0" + "P-masterList_1_3_1" + "P-masterList_1_3_2" + "P-masterList_1_3_3" + "P-masterList_1_3_4" + "P-masterList_1_4_0" + "P-masterList_1_4_1" + "P-masterList_1_4_2" + "P-masterList_1_4_3" + "P-masterList_1_4_4" + "P-masterList_2_1_0" + "P-masterList_2_1_1" + "P-masterList_2_1_2" + "P-masterList_2_1_3" + "P-masterList_2_1_4" + "P-masterList_2_2_0" + "P-masterList_2_2_1" + "P-masterList_2_2_2" + "P-masterList_2_2_3" + "P-masterList_2_2_4" + "P-masterList_2_3_0" + "P-masterList_2_3_1" + "P-masterList_2_3_2" + "P-masterList_2_3_3" + "P-masterList_2_3_4" + "P-masterList_2_4_0" + "P-masterList_2_4_1" + "P-masterList_2_4_2" + "P-masterList_2_4_3" + "P-masterList_2_4_4" + "P-masterList_3_1_0" + "P-masterList_3_1_1" + "P-masterList_3_1_2" + "P-masterList_3_1_3" + "P-masterList_3_1_4" + "P-masterList_3_2_0" + "P-masterList_3_2_1" + "P-masterList_3_2_2" + "P-masterList_3_2_3" + "P-masterList_3_2_4" + "P-masterList_3_3_0" + "P-masterList_3_3_1" + "P-masterList_3_3_2" + "P-masterList_3_3_3" + "P-masterList_3_3_4" + "P-masterList_3_4_0" + "P-masterList_3_4_1" + "P-masterList_3_4_2" + "P-masterList_3_4_3" + "P-masterList_3_4_4" + "P-masterList_4_1_0" + "P-masterList_4_1_1" + "P-masterList_4_1_2" + "P-masterList_4_1_3" + "P-masterList_4_1_4" + "P-masterList_4_2_0" + "P-masterList_4_2_1" + "P-masterList_4_2_2" + "P-masterList_4_2_3" + "P-masterList_4_2_4" + "P-masterList_4_3_0" + "P-masterList_4_3_1" + "P-masterList_4_3_2" + "P-masterList_4_3_3" + "P-masterList_4_3_4" + "P-masterList_4_4_0" + "P-masterList_4_4_1" + "P-masterList_4_4_2" + "P-masterList_4_4_3" + "P-masterList_4_4_4")) or (("P-electionFailed_0" + "P-electionFailed_1" + "P-electionFailed_2" + "P-electionFailed_3" + "P-electionFailed_4") <= ("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4"))))) )

query: EF not ( ((("P-dead_0" + "P-dead_1" + "P-dead_2" + "P-dead_3" + "P-dead_4") <= ("P-negotiation_0_0_NONE" + "P-negotiation_0_0_CO" + "P-negotiation_0_0_DONE" + "P-negotiation_0_1_NONE" + "P-negotiation_0_1_CO" + "P-negotiation_0_1_DONE" + "P-negotiation_0_2_NONE" + "P-negotiation_0_2_CO" + "P-negotiation_0_2_DONE" + "P-negotiation_0_3_NONE" + "P-negotiation_0_3_CO" + "P-negotiation_0_3_DONE" + "P-negotiation_0_4_NONE" + "P-negotiation_0_4_CO" + "P-negotiation_0_4_DONE" + "P-negotiation_1_0_NONE" + "P-negotiation_1_0_CO" + "P-negotiation_1_0_DONE" + "P-negotiation_1_1_NONE" + "P-negotiation_1_1_CO" + "P-negotiation_1_1_DONE" + "P-negotiation_1_2_NONE" + "P-negotiation_1_2_CO" + "P-negotiation_1_2_DONE" + "P-negotiation_1_3_NONE" + "P-negotiation_1_3_CO" + "P-negotiation_1_3_DONE" + "P-negotiation_1_4_NONE" + "P-negotiation_1_4_CO" + "P-negotiation_1_4_DONE" + "P-negotiation_2_0_NONE" + "P-negotiation_2_0_CO" + "P-negotiation_2_0_DONE" + "P-negotiation_2_1_NONE" + "P-negotiation_2_1_CO" + "P-negotiation_2_1_DONE" + "P-negotiation_2_2_NONE" + "P-negotiation_2_2_CO" + "P-negotiation_2_2_DONE" + "P-negotiation_2_3_NONE" + "P-negotiation_2_3_CO" + "P-negotiation_2_3_DONE" + "P-negotiation_2_4_NONE" + "P-negotiation_2_4_CO" + "P-negotiation_2_4_DONE" + "P-negotiation_3_0_NONE" + "P-negotiation_3_0_CO" + "P-negotiation_3_0_DONE" + "P-negotiation_3_1_NONE" + "P-negotiation_3_1_CO" + "P-negotiation_3_1_DONE" + "P-negotiation_3_2_NONE" + "P-negotiation_3_2_CO" + "P-negotiation_3_2_DONE" + "P-negotiation_3_3_NONE" + "P-negotiation_3_3_CO" + "P-negotiation_3_3_DONE" + "P-negotiation_3_4_NONE" + "P-negotiation_3_4_CO" + "P-negotiation_3_4_DONE" + "P-negotiation_4_0_NONE" + "P-negotiation_4_0_CO" + "P-negotiation_4_0_DONE" + "P-negotiation_4_1_NONE" + "P-negotiation_4_1_CO" + "P-negotiation_4_1_DONE" + "P-negotiation_4_2_NONE" + "P-negotiation_4_2_CO" + "P-negotiation_4_2_DONE" + "P-negotiation_4_3_NONE" + "P-negotiation_4_3_CO" + "P-negotiation_4_3_DONE" + "P-negotiation_4_4_NONE" + "P-negotiation_4_4_CO" + "P-negotiation_4_4_DONE")) or (((3 <= ("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4")) and (("P-masterList_0_1_0" + "P-masterList_0_1_1" + "P-masterList_0_1_2" + "P-masterList_0_1_3" + "P-masterList_0_1_4" + "P-masterList_0_2_0" + "P-masterList_0_2_1" + "P-masterList_0_2_2" + "P-masterList_0_2_3" + "P-masterList_0_2_4" + "P-masterList_0_3_0" + "P-masterList_0_3_1" + "P-masterList_0_3_2" + "P-masterList_0_3_3" + "P-masterList_0_3_4" + "P-masterList_0_4_0" + "P-masterList_0_4_1" + "P-masterList_0_4_2" + "P-masterList_0_4_3" + "P-masterList_0_4_4" + "P-masterList_1_1_0" + "P-masterList_1_1_1" + "P-masterList_1_1_2" + "P-masterList_1_1_3" + "P-masterList_1_1_4" + "P-masterList_1_2_0" + "P-masterList_1_2_1" + "P-masterList_1_2_2" + "P-masterList_1_2_3" + "P-masterList_1_2_4" + "P-masterList_1_3_0" + "P-masterList_1_3_1" + "P-masterList_1_3_2" + "P-masterList_1_3_3" + "P-masterList_1_3_4" + "P-masterList_1_4_0" + "P-masterList_1_4_1" + "P-masterList_1_4_2" + "P-masterList_1_4_3" + "P-masterList_1_4_4" + "P-masterList_2_1_0" + "P-masterList_2_1_1" + "P-masterList_2_1_2" + "P-masterList_2_1_3" + "P-masterList_2_1_4" + "P-masterList_2_2_0" + "P-masterList_2_2_1" + "P-masterList_2_2_2" + "P-masterList_2_2_3" + "P-masterList_2_2_4" + "P-masterList_2_3_0" + "P-masterList_2_3_1" + "P-masterList_2_3_2" + "P-masterList_2_3_3" + "P-masterList_2_3_4" + "P-masterList_2_4_0" + "P-masterList_2_4_1" + "P-masterList_2_4_2" + "P-masterList_2_4_3" + "P-masterList_2_4_4" + "P-masterList_3_1_0" + "P-masterList_3_1_1" + "P-masterList_3_1_2" + "P-masterList_3_1_3" + "P-masterList_3_1_4" + "P-masterList_3_2_0" + "P-masterList_3_2_1" + "P-masterList_3_2_2" + "P-masterList_3_2_3" + "P-masterList_3_2_4" + "P-masterList_3_3_0" + "P-masterList_3_3_1" + "P-masterList_3_3_2" + "P-masterList_3_3_3" + "P-masterList_3_3_4" + "P-masterList_3_4_0" + "P-masterList_3_4_1" + "P-masterList_3_4_2" + "P-masterList_3_4_3" + "P-masterList_3_4_4" + "P-masterList_4_1_0" + "P-masterList_4_1_1" + "P-masterList_4_1_2" + "P-masterList_4_1_3" + "P-masterList_4_1_4" + "P-masterList_4_2_0" + "P-masterList_4_2_1" + "P-masterList_4_2_2" + "P-masterList_4_2_3" + "P-masterList_4_2_4" + "P-masterList_4_3_0" + "P-masterList_4_3_1" + "P-masterList_4_3_2" + "P-masterList_4_3_3" + "P-masterList_4_3_4" + "P-masterList_4_4_0" + "P-masterList_4_4_1" + "P-masterList_4_4_2" + "P-masterList_4_4_3" + "P-masterList_4_4_4") <= ("P-poll__networl_0_0_AskP_0" + "P-poll__networl_0_0_AskP_1" + "P-poll__networl_0_0_AskP_2" + "P-poll__networl_0_0_AskP_3" + "P-poll__networl_0_0_AskP_4" + "P-poll__networl_0_0_AnsP_0" + "P-poll__networl_0_0_AnsP_1" + "P-poll__networl_0_0_AnsP_2" + "P-poll__networl_0_0_AnsP_3" + "P-poll__networl_0_0_AnsP_4" + "P-poll__networl_0_0_RI_0" + "P-poll__networl_0_0_RI_1" + "P-poll__networl_0_0_RI_2" + "P-poll__networl_0_0_RI_3" + "P-poll__networl_0_0_RI_4" + "P-poll__networl_0_0_AI_0" + "P-poll__networl_0_0_AI_1" + "P-poll__networl_0_0_AI_2" + "P-poll__networl_0_0_AI_3" + "P-poll__networl_0_0_AI_4" + "P-poll__networl_0_0_AnnP_0" + "P-poll__networl_0_0_AnnP_1" + "P-poll__networl_0_0_AnnP_2" + "P-poll__networl_0_0_AnnP_3" + "P-poll__networl_0_0_AnnP_4" + "P-poll__networl_0_0_RP_0" + "P-poll__networl_0_0_RP_1" + "P-poll__networl_0_0_RP_2" + "P-poll__networl_0_0_RP_3" + "P-poll__networl_0_0_RP_4" + "P-poll__networl_0_1_AskP_0" + "P-poll__networl_0_1_AskP_1" + "P-poll__networl_0_1_AskP_2" + "P-poll__networl_0_1_AskP_3" + "P-poll__networl_0_1_AskP_4" + "P-poll__networl_0_1_AnsP_0" + "P-poll__networl_0_1_AnsP_1" + "P-poll__networl_0_1_AnsP_2" + "P-poll__networl_0_1_AnsP_3" + "P-poll__networl_0_1_AnsP_4" + "P-poll__networl_0_1_RI_0" + "P-poll__networl_0_1_RI_1" + "P-poll__networl_0_1_RI_2" + "P-poll__networl_0_1_RI_3" + "P-poll__networl_0_1_RI_4" + "P-poll__networl_0_1_AI_0" + "P-poll__networl_0_1_AI_1" + "P-poll__networl_0_1_AI_2" + "P-poll__networl_0_1_AI_3" + "P-poll__networl_0_1_AI_4" + "P-poll__networl_0_1_AnnP_0" + "P-poll__networl_0_1_AnnP_1" + "P-poll__networl_0_1_AnnP_2" + "P-poll__networl_0_1_AnnP_3" + "P-poll__networl_0_1_AnnP_4" + "P-poll__networl_0_1_RP_0" + "P-poll__networl_0_1_RP_1" + "P-poll__networl_0_1_RP_2" + "P-poll__networl_0_1_RP_3" + "P-poll__networl_0_1_RP_4" + "P-poll__networl_0_2_AskP_0" + "P-poll__networl_0_2_AskP_1" + "P-poll__networl_0_2_AskP_2" + "P-poll__networl_0_2_AskP_3" + "P-poll__networl_0_2_AskP_4" + "P-poll__networl_0_2_AnsP_0" + "P-poll__networl_0_2_AnsP_1" + "P-poll__networl_0_2_AnsP_2" + "P-poll__networl_0_2_AnsP_3" + "P-poll__networl_0_2_AnsP_4" + "P-poll__networl_0_2_RI_0" + "P-poll__networl_0_2_RI_1" + "P-poll__networl_0_2_RI_2" + "P-poll__networl_0_2_RI_3" + "P-poll__networl_0_2_RI_4" + "P-poll__networl_0_2_AI_0" + "P-poll__networl_0_2_AI_1" + "P-poll__networl_0_2_AI_2" + "P-poll__networl_0_2_AI_3" + "P-poll__networl_0_2_AI_4" + "P-poll__networl_0_2_AnnP_0" + "P-poll__networl_0_2_AnnP_1" + "P-poll__networl_0_2_AnnP_2" + "P-poll__networl_0_2_AnnP_3" + "P-poll__networl_0_2_AnnP_4" + "P-poll__networl_0_2_RP_0" + "P-poll__networl_0_2_RP_1" + "P-poll__networl_0_2_RP_2" + "P-poll__networl_0_2_RP_3" + "P-poll__networl_0_2_RP_4" + "P-poll__networl_0_3_AskP_0" + "P-poll__networl_0_3_AskP_1" + "P-poll__networl_0_3_AskP_2" + "P-poll__networl_0_3_AskP_3" + "P-poll__networl_0_3_AskP_4" + "P-poll__networl_0_3_AnsP_0" + "P-poll__networl_0_3_AnsP_1" + "P-poll__networl_0_3_AnsP_2" + "P-poll__networl_0_3_AnsP_3" + "P-poll__networl_0_3_AnsP_4" + "P-poll__networl_0_3_RI_0" + "P-poll__networl_0_3_RI_1" + "P-poll__networl_0_3_RI_2" + "P-poll__networl_0_3_RI_3" + "P-poll__networl_0_3_RI_4" + "P-poll__networl_0_3_AI_0" + "P-poll__networl_0_3_AI_1" + "P-poll__networl_0_3_AI_2" + "P-poll__networl_0_3_AI_3" + "P-poll__networl_0_3_AI_4" + "P-poll__networl_0_3_AnnP_0" + "P-poll__networl_0_3_AnnP_1" + "P-poll__networl_0_3_AnnP_2" + "P-poll__networl_0_3_AnnP_3" + "P-poll__networl_0_3_AnnP_4" + "P-poll__networl_0_3_RP_0" + "P-poll__networl_0_3_RP_1" + "P-poll__networl_0_3_RP_2" + "P-poll__networl_0_3_RP_3" + "P-poll__networl_0_3_RP_4" + "P-poll__networl_0_4_AskP_0" + "P-poll__networl_0_4_AskP_1" + "P-poll__networl_0_4_AskP_2" + "P-poll__networl_0_4_AskP_3" + "P-poll__networl_0_4_AskP_4" + "P-poll__networl_0_4_AnsP_0" + "P-poll__networl_0_4_AnsP_1" + "P-poll__networl_0_4_AnsP_2" + "P-poll__networl_0_4_AnsP_3" + "P-poll__networl_0_4_AnsP_4" + "P-poll__networl_0_4_RI_0" + "P-poll__networl_0_4_RI_1" + "P-poll__networl_0_4_RI_2" + "P-poll__networl_0_4_RI_3" + "P-poll__networl_0_4_RI_4" + "P-poll__networl_0_4_AI_0" + "P-poll__networl_0_4_AI_1" + "P-poll__networl_0_4_AI_2" + "P-poll__networl_0_4_AI_3" + "P-poll__networl_0_4_AI_4" + "P-poll__networl_0_4_AnnP_0" + "P-poll__networl_0_4_AnnP_1" + "P-poll__networl_0_4_AnnP_2" + "P-poll__networl_0_4_AnnP_3" + "P-poll__networl_0_4_AnnP_4" + "P-poll__networl_0_4_RP_0" + "P-poll__networl_0_4_RP_1" + "P-poll__networl_0_4_RP_2" + "P-poll__networl_0_4_RP_3" + "P-poll__networl_0_4_RP_4" + "P-poll__networl_1_0_AskP_0" + "P-poll__networl_1_0_AskP_1" + "P-poll__networl_1_0_AskP_2" + "P-poll__networl_1_0_AskP_3" + "P-poll__networl_1_0_AskP_4" + "P-poll__networl_1_0_AnsP_0" + "P-poll__networl_1_0_AnsP_1" + "P-poll__networl_1_0_AnsP_2" + "P-poll__networl_1_0_AnsP_3" + "P-poll__networl_1_0_AnsP_4" + "P-poll__networl_1_0_RI_0" + "P-poll__networl_1_0_RI_1" + "P-poll__networl_1_0_RI_2" + "P-poll__networl_1_0_RI_3" + "P-poll__networl_1_0_RI_4" + "P-poll__networl_1_0_AI_0" + "P-poll__networl_1_0_AI_1" + "P-poll__networl_1_0_AI_2" + "P-poll__networl_1_0_AI_3" + "P-poll__networl_1_0_AI_4" + "P-poll__networl_1_0_AnnP_0" + "P-poll__networl_1_0_AnnP_1" + "P-poll__networl_1_0_AnnP_2" + "P-poll__networl_1_0_AnnP_3" + "P-poll__networl_1_0_AnnP_4" + "P-poll__networl_1_0_RP_0" + "P-poll__networl_1_0_RP_1" + "P-poll__networl_1_0_RP_2" + "P-poll__networl_1_0_RP_3" + "P-poll__networl_1_0_RP_4" + "P-poll__networl_1_1_AskP_0" + "P-poll__networl_1_1_AskP_1" + "P-poll__networl_1_1_AskP_2" + "P-poll__networl_1_1_AskP_3" + "P-poll__networl_1_1_AskP_4" + "P-poll__networl_1_1_AnsP_0" + "P-poll__networl_1_1_AnsP_1" + "P-poll__networl_1_1_AnsP_2" + "P-poll__networl_1_1_AnsP_3" + "P-poll__networl_1_1_AnsP_4" + "P-poll__networl_1_1_RI_0" + "P-poll__networl_1_1_RI_1" + "P-poll__networl_1_1_RI_2" + "P-poll__networl_1_1_RI_3" + "P-poll__networl_1_1_RI_4" + "P-poll__networl_1_1_AI_0" + "P-poll__networl_1_1_AI_1" + "P-poll__networl_1_1_AI_2" + "P-poll__networl_1_1_AI_3" + "P-poll__networl_1_1_AI_4" + "P-poll__networl_1_1_AnnP_0" + "P-poll__networl_1_1_AnnP_1" + "P-poll__networl_1_1_AnnP_2" + "P-poll__networl_1_1_AnnP_3" + "P-poll__networl_1_1_AnnP_4" + "P-poll__networl_1_1_RP_0" + "P-poll__networl_1_1_RP_1" + "P-poll__networl_1_1_RP_2" + "P-poll__networl_1_1_RP_3" + "P-poll__networl_1_1_RP_4" + "P-poll__networl_1_2_AskP_0" + "P-poll__networl_1_2_AskP_1" + "P-poll__networl_1_2_AskP_2" + "P-poll__networl_1_2_AskP_3" + "P-poll__networl_1_2_AskP_4" + "P-poll__networl_1_2_AnsP_0" + "P-poll__networl_1_2_AnsP_1" + "P-poll__networl_1_2_AnsP_2" + "P-poll__networl_1_2_AnsP_3" + "P-poll__networl_1_2_AnsP_4" + "P-poll__networl_1_2_RI_0" + "P-poll__networl_1_2_RI_1" + "P-poll__networl_1_2_RI_2" + "P-poll__networl_1_2_RI_3" + "P-poll__networl_1_2_RI_4" + "P-poll__networl_1_2_AI_0" + "P-poll__networl_1_2_AI_1" + "P-poll__networl_1_2_AI_2" + "P-poll__networl_1_2_AI_3" + "P-poll__networl_1_2_AI_4" + "P-poll__networl_1_2_AnnP_0" + "P-poll__networl_1_2_AnnP_1" + "P-poll__networl_1_2_AnnP_2" + "P-poll__networl_1_2_AnnP_3" + "P-poll__networl_1_2_AnnP_4" + "P-poll__networl_1_2_RP_0" + "P-poll__networl_1_2_RP_1" + "P-poll__networl_1_2_RP_2" + "P-poll__networl_1_2_RP_3" + "P-poll__networl_1_2_RP_4" + "P-poll__networl_1_3_AskP_0" + "P-poll__networl_1_3_AskP_1" + "P-poll__networl_1_3_AskP_2" + "P-poll__networl_1_3_AskP_3" + "P-poll__networl_1_3_AskP_4" + "P-poll__networl_1_3_AnsP_0" + "P-poll__networl_1_3_AnsP_1" + "P-poll__networl_1_3_AnsP_2" + "P-poll__networl_1_3_AnsP_3" + "P-poll__networl_1_3_AnsP_4" + "P-poll__networl_1_3_RI_0" + "P-poll__networl_1_3_RI_1" + "P-poll__networl_1_3_RI_2" + "P-poll__networl_1_3_RI_3" + "P-poll__networl_1_3_RI_4" + "P-poll__networl_1_3_AI_0" + "P-poll__networl_1_3_AI_1" + "P-poll__networl_1_3_AI_2" + "P-poll__networl_1_3_AI_3" + "P-poll__networl_1_3_AI_4" + "P-poll__networl_1_3_AnnP_0" + "P-poll__networl_1_3_AnnP_1" + "P-poll__networl_1_3_AnnP_2" + "P-poll__networl_1_3_AnnP_3" + "P-poll__networl_1_3_AnnP_4" + "P-poll__networl_1_3_RP_0" + "P-poll__networl_1_3_RP_1" + "P-poll__networl_1_3_RP_2" + "P-poll__networl_1_3_RP_3" + "P-poll__networl_1_3_RP_4" + "P-poll__networl_1_4_AskP_0" + "P-poll__networl_1_4_AskP_1" + "P-poll__networl_1_4_AskP_2" + "P-poll__networl_1_4_AskP_3" + "P-poll__networl_1_4_AskP_4" + "P-poll__networl_1_4_AnsP_0" + "P-poll__networl_1_4_AnsP_1" + "P-poll__networl_1_4_AnsP_2" + "P-poll__networl_1_4_AnsP_3" + "P-poll__networl_1_4_AnsP_4" + "P-poll__networl_1_4_RI_0" + "P-poll__networl_1_4_RI_1" + "P-poll__networl_1_4_RI_2" + "P-poll__networl_1_4_RI_3" + "P-poll__networl_1_4_RI_4" + "P-poll__networl_1_4_AI_0" + "P-poll__networl_1_4_AI_1" + "P-poll__networl_1_4_AI_2" + "P-poll__networl_1_4_AI_3" + "P-poll__networl_1_4_AI_4" + "P-poll__networl_1_4_AnnP_0" + "P-poll__networl_1_4_AnnP_1" + "P-poll__networl_1_4_AnnP_2" + "P-poll__networl_1_4_AnnP_3" + "P-poll__networl_1_4_AnnP_4" + "P-poll__networl_1_4_RP_0" + "P-poll__networl_1_4_RP_1" + "P-poll__networl_1_4_RP_2" + "P-poll__networl_1_4_RP_3" + "P-poll__networl_1_4_RP_4" + "P-poll__networl_2_0_AskP_0" + "P-poll__networl_2_0_AskP_1" + "P-poll__networl_2_0_AskP_2" + "P-poll__networl_2_0_AskP_3" + "P-poll__networl_2_0_AskP_4" + "P-poll__networl_2_0_AnsP_0" + "P-poll__networl_2_0_AnsP_1" + "P-poll__networl_2_0_AnsP_2" + "P-poll__networl_2_0_AnsP_3" + "P-poll__networl_2_0_AnsP_4" + "P-poll__networl_2_0_RI_0" + "P-poll__networl_2_0_RI_1" + "P-poll__networl_2_0_RI_2" + "P-poll__networl_2_0_RI_3" + "P-poll__networl_2_0_RI_4" + "P-poll__networl_2_0_AI_0" + "P-poll__networl_2_0_AI_1" + "P-poll__networl_2_0_AI_2" + "P-poll__networl_2_0_AI_3" + "P-poll__networl_2_0_AI_4" + "P-poll__networl_2_0_AnnP_0" + "P-poll__networl_2_0_AnnP_1" + "P-poll__networl_2_0_AnnP_2" + "P-poll__networl_2_0_AnnP_3" + "P-poll__networl_2_0_AnnP_4" + "P-poll__networl_2_0_RP_0" + "P-poll__networl_2_0_RP_1" + "P-poll__networl_2_0_RP_2" + "P-poll__networl_2_0_RP_3" + "P-poll__networl_2_0_RP_4" + "P-poll__networl_2_1_AskP_0" + "P-poll__networl_2_1_AskP_1" + "P-poll__networl_2_1_AskP_2" + "P-poll__networl_2_1_AskP_3" + "P-poll__networl_2_1_AskP_4" + "P-poll__networl_2_1_AnsP_0" + "P-poll__networl_2_1_AnsP_1" + "P-poll__networl_2_1_AnsP_2" + "P-poll__networl_2_1_AnsP_3" + "P-poll__networl_2_1_AnsP_4" + "P-poll__networl_2_1_RI_0" + "P-poll__networl_2_1_RI_1" + "P-poll__networl_2_1_RI_2" + "P-poll__networl_2_1_RI_3" + "P-poll__networl_2_1_RI_4" + "P-poll__networl_2_1_AI_0" + "P-poll__networl_2_1_AI_1" + "P-poll__networl_2_1_AI_2" + "P-poll__networl_2_1_AI_3" + "P-poll__networl_2_1_AI_4" + "P-poll__networl_2_1_AnnP_0" + "P-poll__networl_2_1_AnnP_1" + "P-poll__networl_2_1_AnnP_2" + "P-poll__networl_2_1_AnnP_3" + "P-poll__networl_2_1_AnnP_4" + "P-poll__networl_2_1_RP_0" + "P-poll__networl_2_1_RP_1" + "P-poll__networl_2_1_RP_2" + "P-poll__networl_2_1_RP_3" + "P-poll__networl_2_1_RP_4" + "P-poll__networl_2_2_AskP_0" + "P-poll__networl_2_2_AskP_1" + "P-poll__networl_2_2_AskP_2" + "P-poll__networl_2_2_AskP_3" + "P-poll__networl_2_2_AskP_4" + "P-poll__networl_2_2_AnsP_0" + "P-poll__networl_2_2_AnsP_1" + "P-poll__networl_2_2_AnsP_2" + "P-poll__networl_2_2_AnsP_3" + "P-poll__networl_2_2_AnsP_4" + "P-poll__networl_2_2_RI_0" + "P-poll__networl_2_2_RI_1" + "P-poll__networl_2_2_RI_2" + "P-poll__networl_2_2_RI_3" + "P-poll__networl_2_2_RI_4" + "P-poll__networl_2_2_AI_0" + "P-poll__networl_2_2_AI_1" + "P-poll__networl_2_2_AI_2" + "P-poll__networl_2_2_AI_3" + "P-poll__networl_2_2_AI_4" + "P-poll__networl_2_2_AnnP_0" + "P-poll__networl_2_2_AnnP_1" + "P-poll__networl_2_2_AnnP_2" + "P-poll__networl_2_2_AnnP_3" + "P-poll__networl_2_2_AnnP_4" + "P-poll__networl_2_2_RP_0" + "P-poll__networl_2_2_RP_1" + "P-poll__networl_2_2_RP_2" + "P-poll__networl_2_2_RP_3" + "P-poll__networl_2_2_RP_4" + "P-poll__networl_2_3_AskP_0" + "P-poll__networl_2_3_AskP_1" + "P-poll__networl_2_3_AskP_2" + "P-poll__networl_2_3_AskP_3" + "P-poll__networl_2_3_AskP_4" + "P-poll__networl_2_3_AnsP_0" + "P-poll__networl_2_3_AnsP_1" + "P-poll__networl_2_3_AnsP_2" + "P-poll__networl_2_3_AnsP_3" + "P-poll__networl_2_3_AnsP_4" + "P-poll__networl_2_3_RI_0" + "P-poll__networl_2_3_RI_1" + "P-poll__networl_2_3_RI_2" + "P-poll__networl_2_3_RI_3" + "P-poll__networl_2_3_RI_4" + "P-poll__networl_2_3_AI_0" + "P-poll__networl_2_3_AI_1" + "P-poll__networl_2_3_AI_2" + "P-poll__networl_2_3_AI_3" + "P-poll__networl_2_3_AI_4" + "P-poll__networl_2_3_AnnP_0" + "P-poll__networl_2_3_AnnP_1" + "P-poll__networl_2_3_AnnP_2" + "P-poll__networl_2_3_AnnP_3" + "P-poll__networl_2_3_AnnP_4" + "P-poll__networl_2_3_RP_0" + "P-poll__networl_2_3_RP_1" + "P-poll__networl_2_3_RP_2" + "P-poll__networl_2_3_RP_3" + "P-poll__networl_2_3_RP_4" + "P-poll__networl_2_4_AskP_0" + "P-poll__networl_2_4_AskP_1" + "P-poll__networl_2_4_AskP_2" + "P-poll__networl_2_4_AskP_3" + "P-poll__networl_2_4_AskP_4" + "P-poll__networl_2_4_AnsP_0" + "P-poll__networl_2_4_AnsP_1" + "P-poll__networl_2_4_AnsP_2" + "P-poll__networl_2_4_AnsP_3" + "P-poll__networl_2_4_AnsP_4" + "P-poll__networl_2_4_RI_0" + "P-poll__networl_2_4_RI_1" + "P-poll__networl_2_4_RI_2" + "P-poll__networl_2_4_RI_3" + "P-poll__networl_2_4_RI_4" + "P-poll__networl_2_4_AI_0" + "P-poll__networl_2_4_AI_1" + "P-poll__networl_2_4_AI_2" + "P-poll__networl_2_4_AI_3" + "P-poll__networl_2_4_AI_4" + "P-poll__networl_2_4_AnnP_0" + "P-poll__networl_2_4_AnnP_1" + "P-poll__networl_2_4_AnnP_2" + "P-poll__networl_2_4_AnnP_3" + "P-poll__networl_2_4_AnnP_4" + "P-poll__networl_2_4_RP_0" + "P-poll__networl_2_4_RP_1" + "P-poll__networl_2_4_RP_2" + "P-poll__networl_2_4_RP_3" + "P-poll__networl_2_4_RP_4" + "P-poll__networl_3_0_AskP_0" + "P-poll__networl_3_0_AskP_1" + "P-poll__networl_3_0_AskP_2" + "P-poll__networl_3_0_AskP_3" + "P-poll__networl_3_0_AskP_4" + "P-poll__networl_3_0_AnsP_0" + "P-poll__networl_3_0_AnsP_1" + "P-poll__networl_3_0_AnsP_2" + "P-poll__networl_3_0_AnsP_3" + "P-poll__networl_3_0_AnsP_4" + "P-poll__networl_3_0_RI_0" + "P-poll__networl_3_0_RI_1" + "P-poll__networl_3_0_RI_2" + "P-poll__networl_3_0_RI_3" + "P-poll__networl_3_0_RI_4" + "P-poll__networl_3_0_AI_0" + "P-poll__networl_3_0_AI_1" + "P-poll__networl_3_0_AI_2" + "P-poll__networl_3_0_AI_3" + "P-poll__networl_3_0_AI_4" + "P-poll__networl_3_0_AnnP_0" + "P-poll__networl_3_0_AnnP_1" + "P-poll__networl_3_0_AnnP_2" + "P-poll__networl_3_0_AnnP_3" + "P-poll__networl_3_0_AnnP_4" + "P-poll__networl_3_0_RP_0" + "P-poll__networl_3_0_RP_1" + "P-poll__networl_3_0_RP_2" + "P-poll__networl_3_0_RP_3" + "P-poll__networl_3_0_RP_4" + "P-poll__networl_3_1_AskP_0" + "P-poll__networl_3_1_AskP_1" + "P-poll__networl_3_1_AskP_2" + "P-poll__networl_3_1_AskP_3" + "P-poll__networl_3_1_AskP_4" + "P-poll__networl_3_1_AnsP_0" + "P-poll__networl_3_1_AnsP_1" + "P-poll__networl_3_1_AnsP_2" + "P-poll__networl_3_1_AnsP_3" + "P-poll__networl_3_1_AnsP_4" + "P-poll__networl_3_1_RI_0" + "P-poll__networl_3_1_RI_1" + "P-poll__networl_3_1_RI_2" + "P-poll__networl_3_1_RI_3" + "P-poll__networl_3_1_RI_4" + "P-poll__networl_3_1_AI_0" + "P-poll__networl_3_1_AI_1" + "P-poll__networl_3_1_AI_2" + "P-poll__networl_3_1_AI_3" + "P-poll__networl_3_1_AI_4" + "P-poll__networl_3_1_AnnP_0" + "P-poll__networl_3_1_AnnP_1" + "P-poll__networl_3_1_AnnP_2" + "P-poll__networl_3_1_AnnP_3" + "P-poll__networl_3_1_AnnP_4" + "P-poll__networl_3_1_RP_0" + "P-poll__networl_3_1_RP_1" + "P-poll__networl_3_1_RP_2" + "P-poll__networl_3_1_RP_3" + "P-poll__networl_3_1_RP_4" + "P-poll__networl_3_2_AskP_0" + "P-poll__networl_3_2_AskP_1" + "P-poll__networl_3_2_AskP_2" + "P-poll__networl_3_2_AskP_3" + "P-poll__networl_3_2_AskP_4" + "P-poll__networl_3_2_AnsP_0" + "P-poll__networl_3_2_AnsP_1" + "P-poll__networl_3_2_AnsP_2" + "P-poll__networl_3_2_AnsP_3" + "P-poll__networl_3_2_AnsP_4" + "P-poll__networl_3_2_RI_0" + "P-poll__networl_3_2_RI_1" + "P-poll__networl_3_2_RI_2" + "P-poll__networl_3_2_RI_3" + "P-poll__networl_3_2_RI_4" + "P-poll__networl_3_2_AI_0" + "P-poll__networl_3_2_AI_1" + "P-poll__networl_3_2_AI_2" + "P-poll__networl_3_2_AI_3" + "P-poll__networl_3_2_AI_4" + "P-poll__networl_3_2_AnnP_0" + "P-poll__networl_3_2_AnnP_1" + "P-poll__networl_3_2_AnnP_2" + "P-poll__networl_3_2_AnnP_3" + "P-poll__networl_3_2_AnnP_4" + "P-poll__networl_3_2_RP_0" + "P-poll__networl_3_2_RP_1" + "P-poll__networl_3_2_RP_2" + "P-poll__networl_3_2_RP_3" + "P-poll__networl_3_2_RP_4" + "P-poll__networl_3_3_AskP_0" + "P-poll__networl_3_3_AskP_1" + "P-poll__networl_3_3_AskP_2" + "P-poll__networl_3_3_AskP_3" + "P-poll__networl_3_3_AskP_4" + "P-poll__networl_3_3_AnsP_0" + "P-poll__networl_3_3_AnsP_1" + "P-poll__networl_3_3_AnsP_2" + "P-poll__networl_3_3_AnsP_3" + "P-poll__networl_3_3_AnsP_4" + "P-poll__networl_3_3_RI_0" + "P-poll__networl_3_3_RI_1" + "P-poll__networl_3_3_RI_2" + "P-poll__networl_3_3_RI_3" + "P-poll__networl_3_3_RI_4" + "P-poll__networl_3_3_AI_0" + "P-poll__networl_3_3_AI_1" + "P-poll__networl_3_3_AI_2" + "P-poll__networl_3_3_AI_3" + "P-poll__networl_3_3_AI_4" + "P-poll__networl_3_3_AnnP_0" + "P-poll__networl_3_3_AnnP_1" + "P-poll__networl_3_3_AnnP_2" + "P-poll__networl_3_3_AnnP_3" + "P-poll__networl_3_3_AnnP_4" + "P-poll__networl_3_3_RP_0" + "P-poll__networl_3_3_RP_1" + "P-poll__networl_3_3_RP_2" + "P-poll__networl_3_3_RP_3" + "P-poll__networl_3_3_RP_4" + "P-poll__networl_3_4_AskP_0" + "P-poll__networl_3_4_AskP_1" + "P-poll__networl_3_4_AskP_2" + "P-poll__networl_3_4_AskP_3" + "P-poll__networl_3_4_AskP_4" + "P-poll__networl_3_4_AnsP_0" + "P-poll__networl_3_4_AnsP_1" + "P-poll__networl_3_4_AnsP_2" + "P-poll__networl_3_4_AnsP_3" + "P-poll__networl_3_4_AnsP_4" + "P-poll__networl_3_4_RI_0" + "P-poll__networl_3_4_RI_1" + "P-poll__networl_3_4_RI_2" + "P-poll__networl_3_4_RI_3" + "P-poll__networl_3_4_RI_4" + "P-poll__networl_3_4_AI_0" + "P-poll__networl_3_4_AI_1" + "P-poll__networl_3_4_AI_2" + "P-poll__networl_3_4_AI_3" + "P-poll__networl_3_4_AI_4" + "P-poll__networl_3_4_AnnP_0" + "P-poll__networl_3_4_AnnP_1" + "P-poll__networl_3_4_AnnP_2" + "P-poll__networl_3_4_AnnP_3" + "P-poll__networl_3_4_AnnP_4" + "P-poll__networl_3_4_RP_0" + "P-poll__networl_3_4_RP_1" + "P-poll__networl_3_4_RP_2" + "P-poll__networl_3_4_RP_3" + "P-poll__networl_3_4_RP_4" + "P-poll__networl_4_0_AskP_0" + "P-poll__networl_4_0_AskP_1" + "P-poll__networl_4_0_AskP_2" + "P-poll__networl_4_0_AskP_3" + "P-poll__networl_4_0_AskP_4" + "P-poll__networl_4_0_AnsP_0" + "P-poll__networl_4_0_AnsP_1" + "P-poll__networl_4_0_AnsP_2" + "P-poll__networl_4_0_AnsP_3" + "P-poll__networl_4_0_AnsP_4" + "P-poll__networl_4_0_RI_0" + "P-poll__networl_4_0_RI_1" + "P-poll__networl_4_0_RI_2" + "P-poll__networl_4_0_RI_3" + "P-poll__networl_4_0_RI_4" + "P-poll__networl_4_0_AI_0" + "P-poll__networl_4_0_AI_1" + "P-poll__networl_4_0_AI_2" + "P-poll__networl_4_0_AI_3" + "P-poll__networl_4_0_AI_4" + "P-poll__networl_4_0_AnnP_0" + "P-poll__networl_4_0_AnnP_1" + "P-poll__networl_4_0_AnnP_2" + "P-poll__networl_4_0_AnnP_3" + "P-poll__networl_4_0_AnnP_4" + "P-poll__networl_4_0_RP_0" + "P-poll__networl_4_0_RP_1" + "P-poll__networl_4_0_RP_2" + "P-poll__networl_4_0_RP_3" + "P-poll__networl_4_0_RP_4" + "P-poll__networl_4_1_AskP_0" + "P-poll__networl_4_1_AskP_1" + "P-poll__networl_4_1_AskP_2" + "P-poll__networl_4_1_AskP_3" + "P-poll__networl_4_1_AskP_4" + "P-poll__networl_4_1_AnsP_0" + "P-poll__networl_4_1_AnsP_1" + "P-poll__networl_4_1_AnsP_2" + "P-poll__networl_4_1_AnsP_3" + "P-poll__networl_4_1_AnsP_4" + "P-poll__networl_4_1_RI_0" + "P-poll__networl_4_1_RI_1" + "P-poll__networl_4_1_RI_2" + "P-poll__networl_4_1_RI_3" + "P-poll__networl_4_1_RI_4" + "P-poll__networl_4_1_AI_0" + "P-poll__networl_4_1_AI_1" + "P-poll__networl_4_1_AI_2" + "P-poll__networl_4_1_AI_3" + "P-poll__networl_4_1_AI_4" + "P-poll__networl_4_1_AnnP_0" + "P-poll__networl_4_1_AnnP_1" + "P-poll__networl_4_1_AnnP_2" + "P-poll__networl_4_1_AnnP_3" + "P-poll__networl_4_1_AnnP_4" + "P-poll__networl_4_1_RP_0" + "P-poll__networl_4_1_RP_1" + "P-poll__networl_4_1_RP_2" + "P-poll__networl_4_1_RP_3" + "P-poll__networl_4_1_RP_4" + "P-poll__networl_4_2_AskP_0" + "P-poll__networl_4_2_AskP_1" + "P-poll__networl_4_2_AskP_2" + "P-poll__networl_4_2_AskP_3" + "P-poll__networl_4_2_AskP_4" + "P-poll__networl_4_2_AnsP_0" + "P-poll__networl_4_2_AnsP_1" + "P-poll__networl_4_2_AnsP_2" + "P-poll__networl_4_2_AnsP_3" + "P-poll__networl_4_2_AnsP_4" + "P-poll__networl_4_2_RI_0" + "P-poll__networl_4_2_RI_1" + "P-poll__networl_4_2_RI_2" + "P-poll__networl_4_2_RI_3" + "P-poll__networl_4_2_RI_4" + "P-poll__networl_4_2_AI_0" + "P-poll__networl_4_2_AI_1" + "P-poll__networl_4_2_AI_2" + "P-poll__networl_4_2_AI_3" + "P-poll__networl_4_2_AI_4" + "P-poll__networl_4_2_AnnP_0" + "P-poll__networl_4_2_AnnP_1" + "P-poll__networl_4_2_AnnP_2" + "P-poll__networl_4_2_AnnP_3" + "P-poll__networl_4_2_AnnP_4" + "P-poll__networl_4_2_RP_0" + "P-poll__networl_4_2_RP_1" + "P-poll__networl_4_2_RP_2" + "P-poll__networl_4_2_RP_3" + "P-poll__networl_4_2_RP_4" + "P-poll__networl_4_3_AskP_0" + "P-poll__networl_4_3_AskP_1" + "P-poll__networl_4_3_AskP_2" + "P-poll__networl_4_3_AskP_3" + "P-poll__networl_4_3_AskP_4" + "P-poll__networl_4_3_AnsP_0" + "P-poll__networl_4_3_AnsP_1" + "P-poll__networl_4_3_AnsP_2" + "P-poll__networl_4_3_AnsP_3" + "P-poll__networl_4_3_AnsP_4" + "P-poll__networl_4_3_RI_0" + "P-poll__networl_4_3_RI_1" + "P-poll__networl_4_3_RI_2" + "P-poll__networl_4_3_RI_3" + "P-poll__networl_4_3_RI_4" + "P-poll__networl_4_3_AI_0" + "P-poll__networl_4_3_AI_1" + "P-poll__networl_4_3_AI_2" + "P-poll__networl_4_3_AI_3" + "P-poll__networl_4_3_AI_4" + "P-poll__networl_4_3_AnnP_0" + "P-poll__networl_4_3_AnnP_1" + "P-poll__networl_4_3_AnnP_2" + "P-poll__networl_4_3_AnnP_3" + "P-poll__networl_4_3_AnnP_4" + "P-poll__networl_4_3_RP_0" + "P-poll__networl_4_3_RP_1" + "P-poll__networl_4_3_RP_2" + "P-poll__networl_4_3_RP_3" + "P-poll__networl_4_3_RP_4" + "P-poll__networl_4_4_AskP_0" + "P-poll__networl_4_4_AskP_1" + "P-poll__networl_4_4_AskP_2" + "P-poll__networl_4_4_AskP_3" + "P-poll__networl_4_4_AskP_4" + "P-poll__networl_4_4_AnsP_0" + "P-poll__networl_4_4_AnsP_1" + "P-poll__networl_4_4_AnsP_2" + "P-poll__networl_4_4_AnsP_3" + "P-poll__networl_4_4_AnsP_4" + "P-poll__networl_4_4_RI_0" + "P-poll__networl_4_4_RI_1" + "P-poll__networl_4_4_RI_2" + "P-poll__networl_4_4_RI_3" + "P-poll__networl_4_4_RI_4" + "P-poll__networl_4_4_AI_0" + "P-poll__networl_4_4_AI_1" + "P-poll__networl_4_4_AI_2" + "P-poll__networl_4_4_AI_3" + "P-poll__networl_4_4_AI_4" + "P-poll__networl_4_4_AnnP_0" + "P-poll__networl_4_4_AnnP_1" + "P-poll__networl_4_4_AnnP_2" + "P-poll__networl_4_4_AnnP_3" + "P-poll__networl_4_4_AnnP_4" + "P-poll__networl_4_4_RP_0" + "P-poll__networl_4_4_RP_1" + "P-poll__networl_4_4_RP_2" + "P-poll__networl_4_4_RP_3" + "P-poll__networl_4_4_RP_4"))) and ((("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4") <= ("P-masterList_0_1_0" + "P-masterList_0_1_1" + "P-masterList_0_1_2" + "P-masterList_0_1_3" + "P-masterList_0_1_4" + "P-masterList_0_2_0" + "P-masterList_0_2_1" + "P-masterList_0_2_2" + "P-masterList_0_2_3" + "P-masterList_0_2_4" + "P-masterList_0_3_0" + "P-masterList_0_3_1" + "P-masterList_0_3_2" + "P-masterList_0_3_3" + "P-masterList_0_3_4" + "P-masterList_0_4_0" + "P-masterList_0_4_1" + "P-masterList_0_4_2" + "P-masterList_0_4_3" + "P-masterList_0_4_4" + "P-masterList_1_1_0" + "P-masterList_1_1_1" + "P-masterList_1_1_2" + "P-masterList_1_1_3" + "P-masterList_1_1_4" + "P-masterList_1_2_0" + "P-masterList_1_2_1" + "P-masterList_1_2_2" + "P-masterList_1_2_3" + "P-masterList_1_2_4" + "P-masterList_1_3_0" + "P-masterList_1_3_1" + "P-masterList_1_3_2" + "P-masterList_1_3_3" + "P-masterList_1_3_4" + "P-masterList_1_4_0" + "P-masterList_1_4_1" + "P-masterList_1_4_2" + "P-masterList_1_4_3" + "P-masterList_1_4_4" + "P-masterList_2_1_0" + "P-masterList_2_1_1" + "P-masterList_2_1_2" + "P-masterList_2_1_3" + "P-masterList_2_1_4" + "P-masterList_2_2_0" + "P-masterList_2_2_1" + "P-masterList_2_2_2" + "P-masterList_2_2_3" + "P-masterList_2_2_4" + "P-masterList_2_3_0" + "P-masterList_2_3_1" + "P-masterList_2_3_2" + "P-masterList_2_3_3" + "P-masterList_2_3_4" + "P-masterList_2_4_0" + "P-masterList_2_4_1" + "P-masterList_2_4_2" + "P-masterList_2_4_3" + "P-masterList_2_4_4" + "P-masterList_3_1_0" + "P-masterList_3_1_1" + "P-masterList_3_1_2" + "P-masterList_3_1_3" + "P-masterList_3_1_4" + "P-masterList_3_2_0" + "P-masterList_3_2_1" + "P-masterList_3_2_2" + "P-masterList_3_2_3" + "P-masterList_3_2_4" + "P-masterList_3_3_0" + "P-masterList_3_3_1" + "P-masterList_3_3_2" + "P-masterList_3_3_3" + "P-masterList_3_3_4" + "P-masterList_3_4_0" + "P-masterList_3_4_1" + "P-masterList_3_4_2" + "P-masterList_3_4_3" + "P-masterList_3_4_4" + "P-masterList_4_1_0" + "P-masterList_4_1_1" + "P-masterList_4_1_2" + "P-masterList_4_1_3" + "P-masterList_4_1_4" + "P-masterList_4_2_0" + "P-masterList_4_2_1" + "P-masterList_4_2_2" + "P-masterList_4_2_3" + "P-masterList_4_2_4" + "P-masterList_4_3_0" + "P-masterList_4_3_1" + "P-masterList_4_3_2" + "P-masterList_4_3_3" + "P-masterList_4_3_4" + "P-masterList_4_4_0" + "P-masterList_4_4_1" + "P-masterList_4_4_2" + "P-masterList_4_4_3" + "P-masterList_4_4_4")) or (("P-electionFailed_0" + "P-electionFailed_1" + "P-electionFailed_2" + "P-electionFailed_3" + "P-electionFailed_4") <= ("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4"))))) )
NeoElection-COL-4-ReachabilityCardinality-4: EF ( (1 <= ("P-electionFailed_0" + "P-electionFailed_1" + "P-electionFailed_2" + "P-electionFailed_3" + "P-electionFailed_4")) )

query: EF ( (1 <= ("P-electionFailed_0" + "P-electionFailed_1" + "P-electionFailed_2" + "P-electionFailed_3" + "P-electionFailed_4")) )
NeoElection-COL-4-ReachabilityCardinality-5: not EF not ( (("P-electionInit_0" + "P-electionInit_1" + "P-electionInit_2" + "P-electionInit_3" + "P-electionInit_4") <= ("P-negotiation_0_0_NONE" + "P-negotiation_0_0_CO" + "P-negotiation_0_0_DONE" + "P-negotiation_0_1_NONE" + "P-negotiation_0_1_CO" + "P-negotiation_0_1_DONE" + "P-negotiation_0_2_NONE" + "P-negotiation_0_2_CO" + "P-negotiation_0_2_DONE" + "P-negotiation_0_3_NONE" + "P-negotiation_0_3_CO" + "P-negotiation_0_3_DONE" + "P-negotiation_0_4_NONE" + "P-negotiation_0_4_CO" + "P-negotiation_0_4_DONE" + "P-negotiation_1_0_NONE" + "P-negotiation_1_0_CO" + "P-negotiation_1_0_DONE" + "P-negotiation_1_1_NONE" + "P-negotiation_1_1_CO" + "P-negotiation_1_1_DONE" + "P-negotiation_1_2_NONE" + "P-negotiation_1_2_CO" + "P-negotiation_1_2_DONE" + "P-negotiation_1_3_NONE" + "P-negotiation_1_3_CO" + "P-negotiation_1_3_DONE" + "P-negotiation_1_4_NONE" + "P-negotiation_1_4_CO" + "P-negotiation_1_4_DONE" + "P-negotiation_2_0_NONE" + "P-negotiation_2_0_CO" + "P-negotiation_2_0_DONE" + "P-negotiation_2_1_NONE" + "P-negotiation_2_1_CO" + "P-negotiation_2_1_DONE" + "P-negotiation_2_2_NONE" + "P-negotiation_2_2_CO" + "P-negotiation_2_2_DONE" + "P-negotiation_2_3_NONE" + "P-negotiation_2_3_CO" + "P-negotiation_2_3_DONE" + "P-negotiation_2_4_NONE" + "P-negotiation_2_4_CO" + "P-negotiation_2_4_DONE" + "P-negotiation_3_0_NONE" + "P-negotiation_3_0_CO" + "P-negotiation_3_0_DONE" + "P-negotiation_3_1_NONE" + "P-negotiation_3_1_CO" + "P-negotiation_3_1_DONE" + "P-negotiation_3_2_NONE" + "P-negotiation_3_2_CO" + "P-negotiation_3_2_DONE" + "P-negotiation_3_3_NONE" + "P-negotiation_3_3_CO" + "P-negotiation_3_3_DONE" + "P-negotiation_3_4_NONE" + "P-negotiation_3_4_CO" + "P-negotiation_3_4_DONE" + "P-negotiation_4_0_NONE" + "P-negotiation_4_0_CO" + "P-negotiation_4_0_DONE" + "P-negotiation_4_1_NONE" + "P-negotiation_4_1_CO" + "P-negotiation_4_1_DONE" + "P-negotiation_4_2_NONE" + "P-negotiation_4_2_CO" + "P-negotiation_4_2_DONE" + "P-negotiation_4_3_NONE" + "P-negotiation_4_3_CO" + "P-negotiation_4_3_DONE" + "P-negotiation_4_4_NONE" + "P-negotiation_4_4_CO" + "P-negotiation_4_4_DONE")) )

query: EF not ( (("P-electionInit_0" + "P-electionInit_1" + "P-electionInit_2" + "P-electionInit_3" + "P-electionInit_4") <= ("P-negotiation_0_0_NONE" + "P-negotiation_0_0_CO" + "P-negotiation_0_0_DONE" + "P-negotiation_0_1_NONE" + "P-negotiation_0_1_CO" + "P-negotiation_0_1_DONE" + "P-negotiation_0_2_NONE" + "P-negotiation_0_2_CO" + "P-negotiation_0_2_DONE" + "P-negotiation_0_3_NONE" + "P-negotiation_0_3_CO" + "P-negotiation_0_3_DONE" + "P-negotiation_0_4_NONE" + "P-negotiation_0_4_CO" + "P-negotiation_0_4_DONE" + "P-negotiation_1_0_NONE" + "P-negotiation_1_0_CO" + "P-negotiation_1_0_DONE" + "P-negotiation_1_1_NONE" + "P-negotiation_1_1_CO" + "P-negotiation_1_1_DONE" + "P-negotiation_1_2_NONE" + "P-negotiation_1_2_CO" + "P-negotiation_1_2_DONE" + "P-negotiation_1_3_NONE" + "P-negotiation_1_3_CO" + "P-negotiation_1_3_DONE" + "P-negotiation_1_4_NONE" + "P-negotiation_1_4_CO" + "P-negotiation_1_4_DONE" + "P-negotiation_2_0_NONE" + "P-negotiation_2_0_CO" + "P-negotiation_2_0_DONE" + "P-negotiation_2_1_NONE" + "P-negotiation_2_1_CO" + "P-negotiation_2_1_DONE" + "P-negotiation_2_2_NONE" + "P-negotiation_2_2_CO" + "P-negotiation_2_2_DONE" + "P-negotiation_2_3_NONE" + "P-negotiation_2_3_CO" + "P-negotiation_2_3_DONE" + "P-negotiation_2_4_NONE" + "P-negotiation_2_4_CO" + "P-negotiation_2_4_DONE" + "P-negotiation_3_0_NONE" + "P-negotiation_3_0_CO" + "P-negotiation_3_0_DONE" + "P-negotiation_3_1_NONE" + "P-negotiation_3_1_CO" + "P-negotiation_3_1_DONE" + "P-negotiation_3_2_NONE" + "P-negotiation_3_2_CO" + "P-negotiation_3_2_DONE" + "P-negotiation_3_3_NONE" + "P-negotiation_3_3_CO" + "P-negotiation_3_3_DONE" + "P-negotiation_3_4_NONE" + "P-negotiation_3_4_CO" + "P-negotiation_3_4_DONE" + "P-negotiation_4_0_NONE" + "P-negotiation_4_0_CO" + "P-negotiation_4_0_DONE" + "P-negotiation_4_1_NONE" + "P-negotiation_4_1_CO" + "P-negotiation_4_1_DONE" + "P-negotiation_4_2_NONE" + "P-negotiation_4_2_CO" + "P-negotiation_4_2_DONE" + "P-negotiation_4_3_NONE" + "P-negotiation_4_3_CO" + "P-negotiation_4_3_DONE" + "P-negotiation_4_4_NONE" + "P-negotiation_4_4_CO" + "P-negotiation_4_4_DONE")) )
NeoElection-COL-4-ReachabilityCardinality-6: not EF not ( (((3 <= ("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4")) or ((("P-dead_0" + "P-dead_1" + "P-dead_2" + "P-dead_3" + "P-dead_4") <= ("P-stage_0_NEG" + "P-stage_0_PRIM" + "P-stage_0_SEC" + "P-stage_1_NEG" + "P-stage_1_PRIM" + "P-stage_1_SEC" + "P-stage_2_NEG" + "P-stage_2_PRIM" + "P-stage_2_SEC" + "P-stage_3_NEG" + "P-stage_3_PRIM" + "P-stage_3_SEC" + "P-stage_4_NEG" + "P-stage_4_PRIM" + "P-stage_4_SEC")) and (("P-electedPrimary_0" + "P-electedPrimary_1" + "P-electedPrimary_2" + "P-electedPrimary_3" + "P-electedPrimary_4") <= ("P-polling_0" + "P-polling_1" + "P-polling_2" + "P-polling_3" + "P-polling_4")))) and (("P-electedPrimary_0" + "P-electedPrimary_1" + "P-electedPrimary_2" + "P-electedPrimary_3" + "P-electedPrimary_4") <= ("P-electedPrimary_0" + "P-electedPrimary_1" + "P-electedPrimary_2" + "P-electedPrimary_3" + "P-electedPrimary_4"))) )

query: EF not ( (((3 <= ("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4")) or ((("P-dead_0" + "P-dead_1" + "P-dead_2" + "P-dead_3" + "P-dead_4") <= ("P-stage_0_NEG" + "P-stage_0_PRIM" + "P-stage_0_SEC" + "P-stage_1_NEG" + "P-stage_1_PRIM" + "P-stage_1_SEC" + "P-stage_2_NEG" + "P-stage_2_PRIM" + "P-stage_2_SEC" + "P-stage_3_NEG" + "P-stage_3_PRIM" + "P-stage_3_SEC" + "P-stage_4_NEG" + "P-stage_4_PRIM" + "P-stage_4_SEC")) and (("P-electedPrimary_0" + "P-electedPrimary_1" + "P-electedPrimary_2" + "P-electedPrimary_3" + "P-electedPrimary_4") <= ("P-polling_0" + "P-polling_1" + "P-polling_2" + "P-polling_3" + "P-polling_4")))) and (("P-electedPrimary_0" + "P-electedPrimary_1" + "P-electedPrimary_2" + "P-electedPrimary_3" + "P-electedPrimary_4") <= ("P-electedPrimary_0" + "P-electedPrimary_1" + "P-electedPrimary_2" + "P-electedPrimary_3" + "P-electedPrimary_4"))) )
NeoElection-COL-4-ReachabilityCardinality-7: not EF not ( (("P-dead_0" + "P-dead_1" + "P-dead_2" + "P-dead_3" + "P-dead_4") <= ("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4")) )

query: EF not ( (("P-dead_0" + "P-dead_1" + "P-dead_2" + "P-dead_3" + "P-dead_4") <= ("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4")) )
NeoElection-COL-4-ReachabilityCardinality-8: not EF not ( not((not((3 <= ("P-network_0_0_AskP_0" + "P-network_0_0_AskP_1" + "P-network_0_0_AskP_2" + "P-network_0_0_AskP_3" + "P-network_0_0_AskP_4" + "P-network_0_0_AnsP_0" + "P-network_0_0_AnsP_1" + "P-network_0_0_AnsP_2" + "P-network_0_0_AnsP_3" + "P-network_0_0_AnsP_4" + "P-network_0_0_RI_0" + "P-network_0_0_RI_1" + "P-network_0_0_RI_2" + "P-network_0_0_RI_3" + "P-network_0_0_RI_4" + "P-network_0_0_AI_0" + "P-network_0_0_AI_1" + "P-network_0_0_AI_2" + "P-network_0_0_AI_3" + "P-network_0_0_AI_4" + "P-network_0_0_AnnP_0" + "P-network_0_0_AnnP_1" + "P-network_0_0_AnnP_2" + "P-network_0_0_AnnP_3" + "P-network_0_0_AnnP_4" + "P-network_0_0_RP_0" + "P-network_0_0_RP_1" + "P-network_0_0_RP_2" + "P-network_0_0_RP_3" + "P-network_0_0_RP_4" + "P-network_0_1_AskP_0" + "P-network_0_1_AskP_1" + "P-network_0_1_AskP_2" + "P-network_0_1_AskP_3" + "P-network_0_1_AskP_4" + "P-network_0_1_AnsP_0" + "P-network_0_1_AnsP_1" + "P-network_0_1_AnsP_2" + "P-network_0_1_AnsP_3" + "P-network_0_1_AnsP_4" + "P-network_0_1_RI_0" + "P-network_0_1_RI_1" + "P-network_0_1_RI_2" + "P-network_0_1_RI_3" + "P-network_0_1_RI_4" + "P-network_0_1_AI_0" + "P-network_0_1_AI_1" + "P-network_0_1_AI_2" + "P-network_0_1_AI_3" + "P-network_0_1_AI_4" + "P-network_0_1_AnnP_0" + "P-network_0_1_AnnP_1" + "P-network_0_1_AnnP_2" + "P-network_0_1_AnnP_3" + "P-network_0_1_AnnP_4" + "P-network_0_1_RP_0" + "P-network_0_1_RP_1" + "P-network_0_1_RP_2" + "P-network_0_1_RP_3" + "P-network_0_1_RP_4" + "P-network_0_2_AskP_0" + "P-network_0_2_AskP_1" + "P-network_0_2_AskP_2" + "P-network_0_2_AskP_3" + "P-network_0_2_AskP_4" + "P-network_0_2_AnsP_0" + "P-network_0_2_AnsP_1" + "P-network_0_2_AnsP_2" + "P-network_0_2_AnsP_3" + "P-network_0_2_AnsP_4" + "P-network_0_2_RI_0" + "P-network_0_2_RI_1" + "P-network_0_2_RI_2" + "P-network_0_2_RI_3" + "P-network_0_2_RI_4" + "P-network_0_2_AI_0" + "P-network_0_2_AI_1" + "P-network_0_2_AI_2" + "P-network_0_2_AI_3" + "P-network_0_2_AI_4" + "P-network_0_2_AnnP_0" + "P-network_0_2_AnnP_1" + "P-network_0_2_AnnP_2" + "P-network_0_2_AnnP_3" + "P-network_0_2_AnnP_4" + "P-network_0_2_RP_0" + "P-network_0_2_RP_1" + "P-network_0_2_RP_2" + "P-network_0_2_RP_3" + "P-network_0_2_RP_4" + "P-network_0_3_AskP_0" + "P-network_0_3_AskP_1" + "P-network_0_3_AskP_2" + "P-network_0_3_AskP_3" + "P-network_0_3_AskP_4" + "P-network_0_3_AnsP_0" + "P-network_0_3_AnsP_1" + "P-network_0_3_AnsP_2" + "P-network_0_3_AnsP_3" + "P-network_0_3_AnsP_4" + "P-network_0_3_RI_0" + "P-network_0_3_RI_1" + "P-network_0_3_RI_2" + "P-network_0_3_RI_3" + "P-network_0_3_RI_4" + "P-network_0_3_AI_0" + "P-network_0_3_AI_1" + "P-network_0_3_AI_2" + "P-network_0_3_AI_3" + "P-network_0_3_AI_4" + "P-network_0_3_AnnP_0" + "P-network_0_3_AnnP_1" + "P-network_0_3_AnnP_2" + "P-network_0_3_AnnP_3" + "P-network_0_3_AnnP_4" + "P-network_0_3_RP_0" + "P-network_0_3_RP_1" + "P-network_0_3_RP_2" + "P-network_0_3_RP_3" + "P-network_0_3_RP_4" + "P-network_0_4_AskP_0" + "P-network_0_4_AskP_1" + "P-network_0_4_AskP_2" + "P-network_0_4_AskP_3" + "P-network_0_4_AskP_4" + "P-network_0_4_AnsP_0" + "P-network_0_4_AnsP_1" + "P-network_0_4_AnsP_2" + "P-network_0_4_AnsP_3" + "P-network_0_4_AnsP_4" + "P-network_0_4_RI_0" + "P-network_0_4_RI_1" + "P-network_0_4_RI_2" + "P-network_0_4_RI_3" + "P-network_0_4_RI_4" + "P-network_0_4_AI_0" + "P-network_0_4_AI_1" + "P-network_0_4_AI_2" + "P-network_0_4_AI_3" + "P-network_0_4_AI_4" + "P-network_0_4_AnnP_0" + "P-network_0_4_AnnP_1" + "P-network_0_4_AnnP_2" + "P-network_0_4_AnnP_3" + "P-network_0_4_AnnP_4" + "P-network_0_4_RP_0" + "P-network_0_4_RP_1" + "P-network_0_4_RP_2" + "P-network_0_4_RP_3" + "P-network_0_4_RP_4" + "P-network_1_0_AskP_0" + "P-network_1_0_AskP_1" + "P-network_1_0_AskP_2" + "P-network_1_0_AskP_3" + "P-network_1_0_AskP_4" + "P-network_1_0_AnsP_0" + "P-network_1_0_AnsP_1" + "P-network_1_0_AnsP_2" + "P-network_1_0_AnsP_3" + "P-network_1_0_AnsP_4" + "P-network_1_0_RI_0" + "P-network_1_0_RI_1" + "P-network_1_0_RI_2" + "P-network_1_0_RI_3" + "P-network_1_0_RI_4" + "P-network_1_0_AI_0" + "P-network_1_0_AI_1" + "P-network_1_0_AI_2" + "P-network_1_0_AI_3" + "P-network_1_0_AI_4" + "P-network_1_0_AnnP_0" + "P-network_1_0_AnnP_1" + "P-network_1_0_AnnP_2" + "P-network_1_0_AnnP_3" + "P-network_1_0_AnnP_4" + "P-network_1_0_RP_0" + "P-network_1_0_RP_1" + "P-network_1_0_RP_2" + "P-network_1_0_RP_3" + "P-network_1_0_RP_4" + "P-network_1_1_AskP_0" + "P-network_1_1_AskP_1" + "P-network_1_1_AskP_2" + "P-network_1_1_AskP_3" + "P-network_1_1_AskP_4" + "P-network_1_1_AnsP_0" + "P-network_1_1_AnsP_1" + "P-network_1_1_AnsP_2" + "P-network_1_1_AnsP_3" + "P-network_1_1_AnsP_4" + "P-network_1_1_RI_0" + "P-network_1_1_RI_1" + "P-network_1_1_RI_2" + "P-network_1_1_RI_3" + "P-network_1_1_RI_4" + "P-network_1_1_AI_0" + "P-network_1_1_AI_1" + "P-network_1_1_AI_2" + "P-network_1_1_AI_3" + "P-network_1_1_AI_4" + "P-network_1_1_AnnP_0" + "P-network_1_1_AnnP_1" + "P-network_1_1_AnnP_2" + "P-network_1_1_AnnP_3" + "P-network_1_1_AnnP_4" + "P-network_1_1_RP_0" + "P-network_1_1_RP_1" + "P-network_1_1_RP_2" + "P-network_1_1_RP_3" + "P-network_1_1_RP_4" + "P-network_1_2_AskP_0" + "P-network_1_2_AskP_1" + "P-network_1_2_AskP_2" + "P-network_1_2_AskP_3" + "P-network_1_2_AskP_4" + "P-network_1_2_AnsP_0" + "P-network_1_2_AnsP_1" + "P-network_1_2_AnsP_2" + "P-network_1_2_AnsP_3" + "P-network_1_2_AnsP_4" + "P-network_1_2_RI_0" + "P-network_1_2_RI_1" + "P-network_1_2_RI_2" + "P-network_1_2_RI_3" + "P-network_1_2_RI_4" + "P-network_1_2_AI_0" + "P-network_1_2_AI_1" + "P-network_1_2_AI_2" + "P-network_1_2_AI_3" + "P-network_1_2_AI_4" + "P-network_1_2_AnnP_0" + "P-network_1_2_AnnP_1" + "P-network_1_2_AnnP_2" + "P-network_1_2_AnnP_3" + "P-network_1_2_AnnP_4" + "P-network_1_2_RP_0" + "P-network_1_2_RP_1" + "P-network_1_2_RP_2" + "P-network_1_2_RP_3" + "P-network_1_2_RP_4" + "P-network_1_3_AskP_0" + "P-network_1_3_AskP_1" + "P-network_1_3_AskP_2" + "P-network_1_3_AskP_3" + "P-network_1_3_AskP_4" + "P-network_1_3_AnsP_0" + "P-network_1_3_AnsP_1" + "P-network_1_3_AnsP_2" + "P-network_1_3_AnsP_3" + "P-network_1_3_AnsP_4" + "P-network_1_3_RI_0" + "P-network_1_3_RI_1" + "P-network_1_3_RI_2" + "P-network_1_3_RI_3" + "P-network_1_3_RI_4" + "P-network_1_3_AI_0" + "P-network_1_3_AI_1" + "P-network_1_3_AI_2" + "P-network_1_3_AI_3" + "P-network_1_3_AI_4" + "P-network_1_3_AnnP_0" + "P-network_1_3_AnnP_1" + "P-network_1_3_AnnP_2" + "P-network_1_3_AnnP_3" + "P-network_1_3_AnnP_4" + "P-network_1_3_RP_0" + "P-network_1_3_RP_1" + "P-network_1_3_RP_2" + "P-network_1_3_RP_3" + "P-network_1_3_RP_4" + "P-network_1_4_AskP_0" + "P-network_1_4_AskP_1" + "P-network_1_4_AskP_2" + "P-network_1_4_AskP_3" + "P-network_1_4_AskP_4" + "P-network_1_4_AnsP_0" + "P-network_1_4_AnsP_1" + "P-network_1_4_AnsP_2" + "P-network_1_4_AnsP_3" + "P-network_1_4_AnsP_4" + "P-network_1_4_RI_0" + "P-network_1_4_RI_1" + "P-network_1_4_RI_2" + "P-network_1_4_RI_3" + "P-network_1_4_RI_4" + "P-network_1_4_AI_0" + "P-network_1_4_AI_1" + "P-network_1_4_AI_2" + "P-network_1_4_AI_3" + "P-network_1_4_AI_4" + "P-network_1_4_AnnP_0" + "P-network_1_4_AnnP_1" + "P-network_1_4_AnnP_2" + "P-network_1_4_AnnP_3" + "P-network_1_4_AnnP_4" + "P-network_1_4_RP_0" + "P-network_1_4_RP_1" + "P-network_1_4_RP_2" + "P-network_1_4_RP_3" + "P-network_1_4_RP_4" + "P-network_2_0_AskP_0" + "P-network_2_0_AskP_1" + "P-network_2_0_AskP_2" + "P-network_2_0_AskP_3" + "P-network_2_0_AskP_4" + "P-network_2_0_AnsP_0" + "P-network_2_0_AnsP_1" + "P-network_2_0_AnsP_2" + "P-network_2_0_AnsP_3" + "P-network_2_0_AnsP_4" + "P-network_2_0_RI_0" + "P-network_2_0_RI_1" + "P-network_2_0_RI_2" + "P-network_2_0_RI_3" + "P-network_2_0_RI_4" + "P-network_2_0_AI_0" + "P-network_2_0_AI_1" + "P-network_2_0_AI_2" + "P-network_2_0_AI_3" + "P-network_2_0_AI_4" + "P-network_2_0_AnnP_0" + "P-network_2_0_AnnP_1" + "P-network_2_0_AnnP_2" + "P-network_2_0_AnnP_3" + "P-network_2_0_AnnP_4" + "P-network_2_0_RP_0" + "P-network_2_0_RP_1" + "P-network_2_0_RP_2" + "P-network_2_0_RP_3" + "P-network_2_0_RP_4" + "P-network_2_1_AskP_0" + "P-network_2_1_AskP_1" + "P-network_2_1_AskP_2" + "P-network_2_1_AskP_3" + "P-network_2_1_AskP_4" + "P-network_2_1_AnsP_0" + "P-network_2_1_AnsP_1" + "P-network_2_1_AnsP_2" + "P-network_2_1_AnsP_3" + "P-network_2_1_AnsP_4" + "P-network_2_1_RI_0" + "P-network_2_1_RI_1" + "P-network_2_1_RI_2" + "P-network_2_1_RI_3" + "P-network_2_1_RI_4" + "P-network_2_1_AI_0" + "P-network_2_1_AI_1" + "P-network_2_1_AI_2" + "P-network_2_1_AI_3" + "P-network_2_1_AI_4" + "P-network_2_1_AnnP_0" + "P-network_2_1_AnnP_1" + "P-network_2_1_AnnP_2" + "P-network_2_1_AnnP_3" + "P-network_2_1_AnnP_4" + "P-network_2_1_RP_0" + "P-network_2_1_RP_1" + "P-network_2_1_RP_2" + "P-network_2_1_RP_3" + "P-network_2_1_RP_4" + "P-network_2_2_AskP_0" + "P-network_2_2_AskP_1" + "P-network_2_2_AskP_2" + "P-network_2_2_AskP_3" + "P-network_2_2_AskP_4" + "P-network_2_2_AnsP_0" + "P-network_2_2_AnsP_1" + "P-network_2_2_AnsP_2" + "P-network_2_2_AnsP_3" + "P-network_2_2_AnsP_4" + "P-network_2_2_RI_0" + "P-network_2_2_RI_1" + "P-network_2_2_RI_2" + "P-network_2_2_RI_3" + "P-network_2_2_RI_4" + "P-network_2_2_AI_0" + "P-network_2_2_AI_1" + "P-network_2_2_AI_2" + "P-network_2_2_AI_3" + "P-network_2_2_AI_4" + "P-network_2_2_AnnP_0" + "P-network_2_2_AnnP_1" + "P-network_2_2_AnnP_2" + "P-network_2_2_AnnP_3" + "P-network_2_2_AnnP_4" + "P-network_2_2_RP_0" + "P-network_2_2_RP_1" + "P-network_2_2_RP_2" + "P-network_2_2_RP_3" + "P-network_2_2_RP_4" + "P-network_2_3_AskP_0" + "P-network_2_3_AskP_1" + "P-network_2_3_AskP_2" + "P-network_2_3_AskP_3" + "P-network_2_3_AskP_4" + "P-network_2_3_AnsP_0" + "P-network_2_3_AnsP_1" + "P-network_2_3_AnsP_2" + "P-network_2_3_AnsP_3" + "P-network_2_3_AnsP_4" + "P-network_2_3_RI_0" + "P-network_2_3_RI_1" + "P-network_2_3_RI_2" + "P-network_2_3_RI_3" + "P-network_2_3_RI_4" + "P-network_2_3_AI_0" + "P-network_2_3_AI_1" + "P-network_2_3_AI_2" + "P-network_2_3_AI_3" + "P-network_2_3_AI_4" + "P-network_2_3_AnnP_0" + "P-network_2_3_AnnP_1" + "P-network_2_3_AnnP_2" + "P-network_2_3_AnnP_3" + "P-network_2_3_AnnP_4" + "P-network_2_3_RP_0" + "P-network_2_3_RP_1" + "P-network_2_3_RP_2" + "P-network_2_3_RP_3" + "P-network_2_3_RP_4" + "P-network_2_4_AskP_0" + "P-network_2_4_AskP_1" + "P-network_2_4_AskP_2" + "P-network_2_4_AskP_3" + "P-network_2_4_AskP_4" + "P-network_2_4_AnsP_0" + "P-network_2_4_AnsP_1" + "P-network_2_4_AnsP_2" + "P-network_2_4_AnsP_3" + "P-network_2_4_AnsP_4" + "P-network_2_4_RI_0" + "P-network_2_4_RI_1" + "P-network_2_4_RI_2" + "P-network_2_4_RI_3" + "P-network_2_4_RI_4" + "P-network_2_4_AI_0" + "P-network_2_4_AI_1" + "P-network_2_4_AI_2" + "P-network_2_4_AI_3" + "P-network_2_4_AI_4" + "P-network_2_4_AnnP_0" + "P-network_2_4_AnnP_1" + "P-network_2_4_AnnP_2" + "P-network_2_4_AnnP_3" + "P-network_2_4_AnnP_4" + "P-network_2_4_RP_0" + "P-network_2_4_RP_1" + "P-network_2_4_RP_2" + "P-network_2_4_RP_3" + "P-network_2_4_RP_4" + "P-network_3_0_AskP_0" + "P-network_3_0_AskP_1" + "P-network_3_0_AskP_2" + "P-network_3_0_AskP_3" + "P-network_3_0_AskP_4" + "P-network_3_0_AnsP_0" + "P-network_3_0_AnsP_1" + "P-network_3_0_AnsP_2" + "P-network_3_0_AnsP_3" + "P-network_3_0_AnsP_4" + "P-network_3_0_RI_0" + "P-network_3_0_RI_1" + "P-network_3_0_RI_2" + "P-network_3_0_RI_3" + "P-network_3_0_RI_4" + "P-network_3_0_AI_0" + "P-network_3_0_AI_1" + "P-network_3_0_AI_2" + "P-network_3_0_AI_3" + "P-network_3_0_AI_4" + "P-network_3_0_AnnP_0" + "P-network_3_0_AnnP_1" + "P-network_3_0_AnnP_2" + "P-network_3_0_AnnP_3" + "P-network_3_0_AnnP_4" + "P-network_3_0_RP_0" + "P-network_3_0_RP_1" + "P-network_3_0_RP_2" + "P-network_3_0_RP_3" + "P-network_3_0_RP_4" + "P-network_3_1_AskP_0" + "P-network_3_1_AskP_1" + "P-network_3_1_AskP_2" + "P-network_3_1_AskP_3" + "P-network_3_1_AskP_4" + "P-network_3_1_AnsP_0" + "P-network_3_1_AnsP_1" + "P-network_3_1_AnsP_2" + "P-network_3_1_AnsP_3" + "P-network_3_1_AnsP_4" + "P-network_3_1_RI_0" + "P-network_3_1_RI_1" + "P-network_3_1_RI_2" + "P-network_3_1_RI_3" + "P-network_3_1_RI_4" + "P-network_3_1_AI_0" + "P-network_3_1_AI_1" + "P-network_3_1_AI_2" + "P-network_3_1_AI_3" + "P-network_3_1_AI_4" + "P-network_3_1_AnnP_0" + "P-network_3_1_AnnP_1" + "P-network_3_1_AnnP_2" + "P-network_3_1_AnnP_3" + "P-network_3_1_AnnP_4" + "P-network_3_1_RP_0" + "P-network_3_1_RP_1" + "P-network_3_1_RP_2" + "P-network_3_1_RP_3" + "P-network_3_1_RP_4" + "P-network_3_2_AskP_0" + "P-network_3_2_AskP_1" + "P-network_3_2_AskP_2" + "P-network_3_2_AskP_3" + "P-network_3_2_AskP_4" + "P-network_3_2_AnsP_0" + "P-network_3_2_AnsP_1" + "P-network_3_2_AnsP_2" + "P-network_3_2_AnsP_3" + "P-network_3_2_AnsP_4" + "P-network_3_2_RI_0" + "P-network_3_2_RI_1" + "P-network_3_2_RI_2" + "P-network_3_2_RI_3" + "P-network_3_2_RI_4" + "P-network_3_2_AI_0" + "P-network_3_2_AI_1" + "P-network_3_2_AI_2" + "P-network_3_2_AI_3" + "P-network_3_2_AI_4" + "P-network_3_2_AnnP_0" + "P-network_3_2_AnnP_1" + "P-network_3_2_AnnP_2" + "P-network_3_2_AnnP_3" + "P-network_3_2_AnnP_4" + "P-network_3_2_RP_0" + "P-network_3_2_RP_1" + "P-network_3_2_RP_2" + "P-network_3_2_RP_3" + "P-network_3_2_RP_4" + "P-network_3_3_AskP_0" + "P-network_3_3_AskP_1" + "P-network_3_3_AskP_2" + "P-network_3_3_AskP_3" + "P-network_3_3_AskP_4" + "P-network_3_3_AnsP_0" + "P-network_3_3_AnsP_1" + "P-network_3_3_AnsP_2" + "P-network_3_3_AnsP_3" + "P-network_3_3_AnsP_4" + "P-network_3_3_RI_0" + "P-network_3_3_RI_1" + "P-network_3_3_RI_2" + "P-network_3_3_RI_3" + "P-network_3_3_RI_4" + "P-network_3_3_AI_0" + "P-network_3_3_AI_1" + "P-network_3_3_AI_2" + "P-network_3_3_AI_3" + "P-network_3_3_AI_4" + "P-network_3_3_AnnP_0" + "P-network_3_3_AnnP_1" + "P-network_3_3_AnnP_2" + "P-network_3_3_AnnP_3" + "P-network_3_3_AnnP_4" + "P-network_3_3_RP_0" + "P-network_3_3_RP_1" + "P-network_3_3_RP_2" + "P-network_3_3_RP_3" + "P-network_3_3_RP_4" + "P-network_3_4_AskP_0" + "P-network_3_4_AskP_1" + "P-network_3_4_AskP_2" + "P-network_3_4_AskP_3" + "P-network_3_4_AskP_4" + "P-network_3_4_AnsP_0" + "P-network_3_4_AnsP_1" + "P-network_3_4_AnsP_2" + "P-network_3_4_AnsP_3" + "P-network_3_4_AnsP_4" + "P-network_3_4_RI_0" + "P-network_3_4_RI_1" + "P-network_3_4_RI_2" + "P-network_3_4_RI_3" + "P-network_3_4_RI_4" + "P-network_3_4_AI_0" + "P-network_3_4_AI_1" + "P-network_3_4_AI_2" + "P-network_3_4_AI_3" + "P-network_3_4_AI_4" + "P-network_3_4_AnnP_0" + "P-network_3_4_AnnP_1" + "P-network_3_4_AnnP_2" + "P-network_3_4_AnnP_3" + "P-network_3_4_AnnP_4" + "P-network_3_4_RP_0" + "P-network_3_4_RP_1" + "P-network_3_4_RP_2" + "P-network_3_4_RP_3" + "P-network_3_4_RP_4" + "P-network_4_0_AskP_0" + "P-network_4_0_AskP_1" + "P-network_4_0_AskP_2" + "P-network_4_0_AskP_3" + "P-network_4_0_AskP_4" + "P-network_4_0_AnsP_0" + "P-network_4_0_AnsP_1" + "P-network_4_0_AnsP_2" + "P-network_4_0_AnsP_3" + "P-network_4_0_AnsP_4" + "P-network_4_0_RI_0" + "P-network_4_0_RI_1" + "P-network_4_0_RI_2" + "P-network_4_0_RI_3" + "P-network_4_0_RI_4" + "P-network_4_0_AI_0" + "P-network_4_0_AI_1" + "P-network_4_0_AI_2" + "P-network_4_0_AI_3" + "P-network_4_0_AI_4" + "P-network_4_0_AnnP_0" + "P-network_4_0_AnnP_1" + "P-network_4_0_AnnP_2" + "P-network_4_0_AnnP_3" + "P-network_4_0_AnnP_4" + "P-network_4_0_RP_0" + "P-network_4_0_RP_1" + "P-network_4_0_RP_2" + "P-network_4_0_RP_3" + "P-network_4_0_RP_4" + "P-network_4_1_AskP_0" + "P-network_4_1_AskP_1" + "P-network_4_1_AskP_2" + "P-network_4_1_AskP_3" + "P-network_4_1_AskP_4" + "P-network_4_1_AnsP_0" + "P-network_4_1_AnsP_1" + "P-network_4_1_AnsP_2" + "P-network_4_1_AnsP_3" + "P-network_4_1_AnsP_4" + "P-network_4_1_RI_0" + "P-network_4_1_RI_1" + "P-network_4_1_RI_2" + "P-network_4_1_RI_3" + "P-network_4_1_RI_4" + "P-network_4_1_AI_0" + "P-network_4_1_AI_1" + "P-network_4_1_AI_2" + "P-network_4_1_AI_3" + "P-network_4_1_AI_4" + "P-network_4_1_AnnP_0" + "P-network_4_1_AnnP_1" + "P-network_4_1_AnnP_2" + "P-network_4_1_AnnP_3" + "P-network_4_1_AnnP_4" + "P-network_4_1_RP_0" + "P-network_4_1_RP_1" + "P-network_4_1_RP_2" + "P-network_4_1_RP_3" + "P-network_4_1_RP_4" + "P-network_4_2_AskP_0" + "P-network_4_2_AskP_1" + "P-network_4_2_AskP_2" + "P-network_4_2_AskP_3" + "P-network_4_2_AskP_4" + "P-network_4_2_AnsP_0" + "P-network_4_2_AnsP_1" + "P-network_4_2_AnsP_2" + "P-network_4_2_AnsP_3" + "P-network_4_2_AnsP_4" + "P-network_4_2_RI_0" + "P-network_4_2_RI_1" + "P-network_4_2_RI_2" + "P-network_4_2_RI_3" + "P-network_4_2_RI_4" + "P-network_4_2_AI_0" + "P-network_4_2_AI_1" + "P-network_4_2_AI_2" + "P-network_4_2_AI_3" + "P-network_4_2_AI_4" + "P-network_4_2_AnnP_0" + "P-network_4_2_AnnP_1" + "P-network_4_2_AnnP_2" + "P-network_4_2_AnnP_3" + "P-network_4_2_AnnP_4" + "P-network_4_2_RP_0" + "P-network_4_2_RP_1" + "P-network_4_2_RP_2" + "P-network_4_2_RP_3" + "P-network_4_2_RP_4" + "P-network_4_3_AskP_0" + "P-network_4_3_AskP_1" + "P-network_4_3_AskP_2" + "P-network_4_3_AskP_3" + "P-network_4_3_AskP_4" + "P-network_4_3_AnsP_0" + "P-network_4_3_AnsP_1" + "P-network_4_3_AnsP_2" + "P-network_4_3_AnsP_3" + "P-network_4_3_AnsP_4" + "P-network_4_3_RI_0" + "P-network_4_3_RI_1" + "P-network_4_3_RI_2" + "P-network_4_3_RI_3" + "P-network_4_3_RI_4" + "P-network_4_3_AI_0" + "P-network_4_3_AI_1" + "P-network_4_3_AI_2" + "P-network_4_3_AI_3" + "P-network_4_3_AI_4" + "P-network_4_3_AnnP_0" + "P-network_4_3_AnnP_1" + "P-network_4_3_AnnP_2" + "P-network_4_3_AnnP_3" + "P-network_4_3_AnnP_4" + "P-network_4_3_RP_0" + "P-network_4_3_RP_1" + "P-network_4_3_RP_2" + "P-network_4_3_RP_3" + "P-network_4_3_RP_4" + "P-network_4_4_AskP_0" + "P-network_4_4_AskP_1" + "P-network_4_4_AskP_2" + "P-network_4_4_AskP_3" + "P-network_4_4_AskP_4" + "P-network_4_4_AnsP_0" + "P-network_4_4_AnsP_1" + "P-network_4_4_AnsP_2" + "P-network_4_4_AnsP_3" + "P-network_4_4_AnsP_4" + "P-network_4_4_RI_0" + "P-network_4_4_RI_1" + "P-network_4_4_RI_2" + "P-network_4_4_RI_3" + "P-network_4_4_RI_4" + "P-network_4_4_AI_0" + "P-network_4_4_AI_1" + "P-network_4_4_AI_2" + "P-network_4_4_AI_3" + "P-network_4_4_AI_4" + "P-network_4_4_AnnP_0" + "P-network_4_4_AnnP_1" + "P-network_4_4_AnnP_2" + "P-network_4_4_AnnP_3" + "P-network_4_4_AnnP_4" + "P-network_4_4_RP_0" + "P-network_4_4_RP_1" + "P-network_4_4_RP_2" + "P-network_4_4_RP_3" + "P-network_4_4_RP_4"))) and not((("P-poll__waitingMessage_0" + "P-poll__waitingMessage_1" + "P-poll__waitingMessage_2" + "P-poll__waitingMessage_3" + "P-poll__waitingMessage_4") <= ("P-poll__handlingMessage_0" + "P-poll__handlingMessage_1" + "P-poll__handlingMessage_2" + "P-poll__handlingMessage_3" + "P-poll__handlingMessage_4"))))) )

query: EF not ( not((not((3 <= ("P-network_0_0_AskP_0" + "P-network_0_0_AskP_1" + "P-network_0_0_AskP_2" + "P-network_0_0_AskP_3" + "P-network_0_0_AskP_4" + "P-network_0_0_AnsP_0" + "P-network_0_0_AnsP_1" + "P-network_0_0_AnsP_2" + "P-network_0_0_AnsP_3" + "P-network_0_0_AnsP_4" + "P-network_0_0_RI_0" + "P-network_0_0_RI_1" + "P-network_0_0_RI_2" + "P-network_0_0_RI_3" + "P-network_0_0_RI_4" + "P-network_0_0_AI_0" + "P-network_0_0_AI_1" + "P-network_0_0_AI_2" + "P-network_0_0_AI_3" + "P-network_0_0_AI_4" + "P-network_0_0_AnnP_0" + "P-network_0_0_AnnP_1" + "P-network_0_0_AnnP_2" + "P-network_0_0_AnnP_3" + "P-network_0_0_AnnP_4" + "P-network_0_0_RP_0" + "P-network_0_0_RP_1" + "P-network_0_0_RP_2" + "P-network_0_0_RP_3" + "P-network_0_0_RP_4" + "P-network_0_1_AskP_0" + "P-network_0_1_AskP_1" + "P-network_0_1_AskP_2" + "P-network_0_1_AskP_3" + "P-network_0_1_AskP_4" + "P-network_0_1_AnsP_0" + "P-network_0_1_AnsP_1" + "P-network_0_1_AnsP_2" + "P-network_0_1_AnsP_3" + "P-network_0_1_AnsP_4" + "P-network_0_1_RI_0" + "P-network_0_1_RI_1" + "P-network_0_1_RI_2" + "P-network_0_1_RI_3" + "P-network_0_1_RI_4" + "P-network_0_1_AI_0" + "P-network_0_1_AI_1" + "P-network_0_1_AI_2" + "P-network_0_1_AI_3" + "P-network_0_1_AI_4" + "P-network_0_1_AnnP_0" + "P-network_0_1_AnnP_1" + "P-network_0_1_AnnP_2" + "P-network_0_1_AnnP_3" + "P-network_0_1_AnnP_4" + "P-network_0_1_RP_0" + "P-network_0_1_RP_1" + "P-network_0_1_RP_2" + "P-network_0_1_RP_3" + "P-network_0_1_RP_4" + "P-network_0_2_AskP_0" + "P-network_0_2_AskP_1" + "P-network_0_2_AskP_2" + "P-network_0_2_AskP_3" + "P-network_0_2_AskP_4" + "P-network_0_2_AnsP_0" + "P-network_0_2_AnsP_1" + "P-network_0_2_AnsP_2" + "P-network_0_2_AnsP_3" + "P-network_0_2_AnsP_4" + "P-network_0_2_RI_0" + "P-network_0_2_RI_1" + "P-network_0_2_RI_2" + "P-network_0_2_RI_3" + "P-network_0_2_RI_4" + "P-network_0_2_AI_0" + "P-network_0_2_AI_1" + "P-network_0_2_AI_2" + "P-network_0_2_AI_3" + "P-network_0_2_AI_4" + "P-network_0_2_AnnP_0" + "P-network_0_2_AnnP_1" + "P-network_0_2_AnnP_2" + "P-network_0_2_AnnP_3" + "P-network_0_2_AnnP_4" + "P-network_0_2_RP_0" + "P-network_0_2_RP_1" + "P-network_0_2_RP_2" + "P-network_0_2_RP_3" + "P-network_0_2_RP_4" + "P-network_0_3_AskP_0" + "P-network_0_3_AskP_1" + "P-network_0_3_AskP_2" + "P-network_0_3_AskP_3" + "P-network_0_3_AskP_4" + "P-network_0_3_AnsP_0" + "P-network_0_3_AnsP_1" + "P-network_0_3_AnsP_2" + "P-network_0_3_AnsP_3" + "P-network_0_3_AnsP_4" + "P-network_0_3_RI_0" + "P-network_0_3_RI_1" + "P-network_0_3_RI_2" + "P-network_0_3_RI_3" + "P-network_0_3_RI_4" + "P-network_0_3_AI_0" + "P-network_0_3_AI_1" + "P-network_0_3_AI_2" + "P-network_0_3_AI_3" + "P-network_0_3_AI_4" + "P-network_0_3_AnnP_0" + "P-network_0_3_AnnP_1" + "P-network_0_3_AnnP_2" + "P-network_0_3_AnnP_3" + "P-network_0_3_AnnP_4" + "P-network_0_3_RP_0" + "P-network_0_3_RP_1" + "P-network_0_3_RP_2" + "P-network_0_3_RP_3" + "P-network_0_3_RP_4" + "P-network_0_4_AskP_0" + "P-network_0_4_AskP_1" + "P-network_0_4_AskP_2" + "P-network_0_4_AskP_3" + "P-network_0_4_AskP_4" + "P-network_0_4_AnsP_0" + "P-network_0_4_AnsP_1" + "P-network_0_4_AnsP_2" + "P-network_0_4_AnsP_3" + "P-network_0_4_AnsP_4" + "P-network_0_4_RI_0" + "P-network_0_4_RI_1" + "P-network_0_4_RI_2" + "P-network_0_4_RI_3" + "P-network_0_4_RI_4" + "P-network_0_4_AI_0" + "P-network_0_4_AI_1" + "P-network_0_4_AI_2" + "P-network_0_4_AI_3" + "P-network_0_4_AI_4" + "P-network_0_4_AnnP_0" + "P-network_0_4_AnnP_1" + "P-network_0_4_AnnP_2" + "P-network_0_4_AnnP_3" + "P-network_0_4_AnnP_4" + "P-network_0_4_RP_0" + "P-network_0_4_RP_1" + "P-network_0_4_RP_2" + "P-network_0_4_RP_3" + "P-network_0_4_RP_4" + "P-network_1_0_AskP_0" + "P-network_1_0_AskP_1" + "P-network_1_0_AskP_2" + "P-network_1_0_AskP_3" + "P-network_1_0_AskP_4" + "P-network_1_0_AnsP_0" + "P-network_1_0_AnsP_1" + "P-network_1_0_AnsP_2" + "P-network_1_0_AnsP_3" + "P-network_1_0_AnsP_4" + "P-network_1_0_RI_0" + "P-network_1_0_RI_1" + "P-network_1_0_RI_2" + "P-network_1_0_RI_3" + "P-network_1_0_RI_4" + "P-network_1_0_AI_0" + "P-network_1_0_AI_1" + "P-network_1_0_AI_2" + "P-network_1_0_AI_3" + "P-network_1_0_AI_4" + "P-network_1_0_AnnP_0" + "P-network_1_0_AnnP_1" + "P-network_1_0_AnnP_2" + "P-network_1_0_AnnP_3" + "P-network_1_0_AnnP_4" + "P-network_1_0_RP_0" + "P-network_1_0_RP_1" + "P-network_1_0_RP_2" + "P-network_1_0_RP_3" + "P-network_1_0_RP_4" + "P-network_1_1_AskP_0" + "P-network_1_1_AskP_1" + "P-network_1_1_AskP_2" + "P-network_1_1_AskP_3" + "P-network_1_1_AskP_4" + "P-network_1_1_AnsP_0" + "P-network_1_1_AnsP_1" + "P-network_1_1_AnsP_2" + "P-network_1_1_AnsP_3" + "P-network_1_1_AnsP_4" + "P-network_1_1_RI_0" + "P-network_1_1_RI_1" + "P-network_1_1_RI_2" + "P-network_1_1_RI_3" + "P-network_1_1_RI_4" + "P-network_1_1_AI_0" + "P-network_1_1_AI_1" + "P-network_1_1_AI_2" + "P-network_1_1_AI_3" + "P-network_1_1_AI_4" + "P-network_1_1_AnnP_0" + "P-network_1_1_AnnP_1" + "P-network_1_1_AnnP_2" + "P-network_1_1_AnnP_3" + "P-network_1_1_AnnP_4" + "P-network_1_1_RP_0" + "P-network_1_1_RP_1" + "P-network_1_1_RP_2" + "P-network_1_1_RP_3" + "P-network_1_1_RP_4" + "P-network_1_2_AskP_0" + "P-network_1_2_AskP_1" + "P-network_1_2_AskP_2" + "P-network_1_2_AskP_3" + "P-network_1_2_AskP_4" + "P-network_1_2_AnsP_0" + "P-network_1_2_AnsP_1" + "P-network_1_2_AnsP_2" + "P-network_1_2_AnsP_3" + "P-network_1_2_AnsP_4" + "P-network_1_2_RI_0" + "P-network_1_2_RI_1" + "P-network_1_2_RI_2" + "P-network_1_2_RI_3" + "P-network_1_2_RI_4" + "P-network_1_2_AI_0" + "P-network_1_2_AI_1" + "P-network_1_2_AI_2" + "P-network_1_2_AI_3" + "P-network_1_2_AI_4" + "P-network_1_2_AnnP_0" + "P-network_1_2_AnnP_1" + "P-network_1_2_AnnP_2" + "P-network_1_2_AnnP_3" + "P-network_1_2_AnnP_4" + "P-network_1_2_RP_0" + "P-network_1_2_RP_1" + "P-network_1_2_RP_2" + "P-network_1_2_RP_3" + "P-network_1_2_RP_4" + "P-network_1_3_AskP_0" + "P-network_1_3_AskP_1" + "P-network_1_3_AskP_2" + "P-network_1_3_AskP_3" + "P-network_1_3_AskP_4" + "P-network_1_3_AnsP_0" + "P-network_1_3_AnsP_1" + "P-network_1_3_AnsP_2" + "P-network_1_3_AnsP_3" + "P-network_1_3_AnsP_4" + "P-network_1_3_RI_0" + "P-network_1_3_RI_1" + "P-network_1_3_RI_2" + "P-network_1_3_RI_3" + "P-network_1_3_RI_4" + "P-network_1_3_AI_0" + "P-network_1_3_AI_1" + "P-network_1_3_AI_2" + "P-network_1_3_AI_3" + "P-network_1_3_AI_4" + "P-network_1_3_AnnP_0" + "P-network_1_3_AnnP_1" + "P-network_1_3_AnnP_2" + "P-network_1_3_AnnP_3" + "P-network_1_3_AnnP_4" + "P-network_1_3_RP_0" + "P-network_1_3_RP_1" + "P-network_1_3_RP_2" + "P-network_1_3_RP_3" + "P-network_1_3_RP_4" + "P-network_1_4_AskP_0" + "P-network_1_4_AskP_1" + "P-network_1_4_AskP_2" + "P-network_1_4_AskP_3" + "P-network_1_4_AskP_4" + "P-network_1_4_AnsP_0" + "P-network_1_4_AnsP_1" + "P-network_1_4_AnsP_2" + "P-network_1_4_AnsP_3" + "P-network_1_4_AnsP_4" + "P-network_1_4_RI_0" + "P-network_1_4_RI_1" + "P-network_1_4_RI_2" + "P-network_1_4_RI_3" + "P-network_1_4_RI_4" + "P-network_1_4_AI_0" + "P-network_1_4_AI_1" + "P-network_1_4_AI_2" + "P-network_1_4_AI_3" + "P-network_1_4_AI_4" + "P-network_1_4_AnnP_0" + "P-network_1_4_AnnP_1" + "P-network_1_4_AnnP_2" + "P-network_1_4_AnnP_3" + "P-network_1_4_AnnP_4" + "P-network_1_4_RP_0" + "P-network_1_4_RP_1" + "P-network_1_4_RP_2" + "P-network_1_4_RP_3" + "P-network_1_4_RP_4" + "P-network_2_0_AskP_0" + "P-network_2_0_AskP_1" + "P-network_2_0_AskP_2" + "P-network_2_0_AskP_3" + "P-network_2_0_AskP_4" + "P-network_2_0_AnsP_0" + "P-network_2_0_AnsP_1" + "P-network_2_0_AnsP_2" + "P-network_2_0_AnsP_3" + "P-network_2_0_AnsP_4" + "P-network_2_0_RI_0" + "P-network_2_0_RI_1" + "P-network_2_0_RI_2" + "P-network_2_0_RI_3" + "P-network_2_0_RI_4" + "P-network_2_0_AI_0" + "P-network_2_0_AI_1" + "P-network_2_0_AI_2" + "P-network_2_0_AI_3" + "P-network_2_0_AI_4" + "P-network_2_0_AnnP_0" + "P-network_2_0_AnnP_1" + "P-network_2_0_AnnP_2" + "P-network_2_0_AnnP_3" + "P-network_2_0_AnnP_4" + "P-network_2_0_RP_0" + "P-network_2_0_RP_1" + "P-network_2_0_RP_2" + "P-network_2_0_RP_3" + "P-network_2_0_RP_4" + "P-network_2_1_AskP_0" + "P-network_2_1_AskP_1" + "P-network_2_1_AskP_2" + "P-network_2_1_AskP_3" + "P-network_2_1_AskP_4" + "P-network_2_1_AnsP_0" + "P-network_2_1_AnsP_1" + "P-network_2_1_AnsP_2" + "P-network_2_1_AnsP_3" + "P-network_2_1_AnsP_4" + "P-network_2_1_RI_0" + "P-network_2_1_RI_1" + "P-network_2_1_RI_2" + "P-network_2_1_RI_3" + "P-network_2_1_RI_4" + "P-network_2_1_AI_0" + "P-network_2_1_AI_1" + "P-network_2_1_AI_2" + "P-network_2_1_AI_3" + "P-network_2_1_AI_4" + "P-network_2_1_AnnP_0" + "P-network_2_1_AnnP_1" + "P-network_2_1_AnnP_2" + "P-network_2_1_AnnP_3" + "P-network_2_1_AnnP_4" + "P-network_2_1_RP_0" + "P-network_2_1_RP_1" + "P-network_2_1_RP_2" + "P-network_2_1_RP_3" + "P-network_2_1_RP_4" + "P-network_2_2_AskP_0" + "P-network_2_2_AskP_1" + "P-network_2_2_AskP_2" + "P-network_2_2_AskP_3" + "P-network_2_2_AskP_4" + "P-network_2_2_AnsP_0" + "P-network_2_2_AnsP_1" + "P-network_2_2_AnsP_2" + "P-network_2_2_AnsP_3" + "P-network_2_2_AnsP_4" + "P-network_2_2_RI_0" + "P-network_2_2_RI_1" + "P-network_2_2_RI_2" + "P-network_2_2_RI_3" + "P-network_2_2_RI_4" + "P-network_2_2_AI_0" + "P-network_2_2_AI_1" + "P-network_2_2_AI_2" + "P-network_2_2_AI_3" + "P-network_2_2_AI_4" + "P-network_2_2_AnnP_0" + "P-network_2_2_AnnP_1" + "P-network_2_2_AnnP_2" + "P-network_2_2_AnnP_3" + "P-network_2_2_AnnP_4" + "P-network_2_2_RP_0" + "P-network_2_2_RP_1" + "P-network_2_2_RP_2" + "P-network_2_2_RP_3" + "P-network_2_2_RP_4" + "P-network_2_3_AskP_0" + "P-network_2_3_AskP_1" + "P-network_2_3_AskP_2" + "P-network_2_3_AskP_3" + "P-network_2_3_AskP_4" + "P-network_2_3_AnsP_0" + "P-network_2_3_AnsP_1" + "P-network_2_3_AnsP_2" + "P-network_2_3_AnsP_3" + "P-network_2_3_AnsP_4" + "P-network_2_3_RI_0" + "P-network_2_3_RI_1" + "P-network_2_3_RI_2" + "P-network_2_3_RI_3" + "P-network_2_3_RI_4" + "P-network_2_3_AI_0" + "P-network_2_3_AI_1" + "P-network_2_3_AI_2" + "P-network_2_3_AI_3" + "P-network_2_3_AI_4" + "P-network_2_3_AnnP_0" + "P-network_2_3_AnnP_1" + "P-network_2_3_AnnP_2" + "P-network_2_3_AnnP_3" + "P-network_2_3_AnnP_4" + "P-network_2_3_RP_0" + "P-network_2_3_RP_1" + "P-network_2_3_RP_2" + "P-network_2_3_RP_3" + "P-network_2_3_RP_4" + "P-network_2_4_AskP_0" + "P-network_2_4_AskP_1" + "P-network_2_4_AskP_2" + "P-network_2_4_AskP_3" + "P-network_2_4_AskP_4" + "P-network_2_4_AnsP_0" + "P-network_2_4_AnsP_1" + "P-network_2_4_AnsP_2" + "P-network_2_4_AnsP_3" + "P-network_2_4_AnsP_4" + "P-network_2_4_RI_0" + "P-network_2_4_RI_1" + "P-network_2_4_RI_2" + "P-network_2_4_RI_3" + "P-network_2_4_RI_4" + "P-network_2_4_AI_0" + "P-network_2_4_AI_1" + "P-network_2_4_AI_2" + "P-network_2_4_AI_3" + "P-network_2_4_AI_4" + "P-network_2_4_AnnP_0" + "P-network_2_4_AnnP_1" + "P-network_2_4_AnnP_2" + "P-network_2_4_AnnP_3" + "P-network_2_4_AnnP_4" + "P-network_2_4_RP_0" + "P-network_2_4_RP_1" + "P-network_2_4_RP_2" + "P-network_2_4_RP_3" + "P-network_2_4_RP_4" + "P-network_3_0_AskP_0" + "P-network_3_0_AskP_1" + "P-network_3_0_AskP_2" + "P-network_3_0_AskP_3" + "P-network_3_0_AskP_4" + "P-network_3_0_AnsP_0" + "P-network_3_0_AnsP_1" + "P-network_3_0_AnsP_2" + "P-network_3_0_AnsP_3" + "P-network_3_0_AnsP_4" + "P-network_3_0_RI_0" + "P-network_3_0_RI_1" + "P-network_3_0_RI_2" + "P-network_3_0_RI_3" + "P-network_3_0_RI_4" + "P-network_3_0_AI_0" + "P-network_3_0_AI_1" + "P-network_3_0_AI_2" + "P-network_3_0_AI_3" + "P-network_3_0_AI_4" + "P-network_3_0_AnnP_0" + "P-network_3_0_AnnP_1" + "P-network_3_0_AnnP_2" + "P-network_3_0_AnnP_3" + "P-network_3_0_AnnP_4" + "P-network_3_0_RP_0" + "P-network_3_0_RP_1" + "P-network_3_0_RP_2" + "P-network_3_0_RP_3" + "P-network_3_0_RP_4" + "P-network_3_1_AskP_0" + "P-network_3_1_AskP_1" + "P-network_3_1_AskP_2" + "P-network_3_1_AskP_3" + "P-network_3_1_AskP_4" + "P-network_3_1_AnsP_0" + "P-network_3_1_AnsP_1" + "P-network_3_1_AnsP_2" + "P-network_3_1_AnsP_3" + "P-network_3_1_AnsP_4" + "P-network_3_1_RI_0" + "P-network_3_1_RI_1" + "P-network_3_1_RI_2" + "P-network_3_1_RI_3" + "P-network_3_1_RI_4" + "P-network_3_1_AI_0" + "P-network_3_1_AI_1" + "P-network_3_1_AI_2" + "P-network_3_1_AI_3" + "P-network_3_1_AI_4" + "P-network_3_1_AnnP_0" + "P-network_3_1_AnnP_1" + "P-network_3_1_AnnP_2" + "P-network_3_1_AnnP_3" + "P-network_3_1_AnnP_4" + "P-network_3_1_RP_0" + "P-network_3_1_RP_1" + "P-network_3_1_RP_2" + "P-network_3_1_RP_3" + "P-network_3_1_RP_4" + "P-network_3_2_AskP_0" + "P-network_3_2_AskP_1" + "P-network_3_2_AskP_2" + "P-network_3_2_AskP_3" + "P-network_3_2_AskP_4" + "P-network_3_2_AnsP_0" + "P-network_3_2_AnsP_1" + "P-network_3_2_AnsP_2" + "P-network_3_2_AnsP_3" + "P-network_3_2_AnsP_4" + "P-network_3_2_RI_0" + "P-network_3_2_RI_1" + "P-network_3_2_RI_2" + "P-network_3_2_RI_3" + "P-network_3_2_RI_4" + "P-network_3_2_AI_0" + "P-network_3_2_AI_1" + "P-network_3_2_AI_2" + "P-network_3_2_AI_3" + "P-network_3_2_AI_4" + "P-network_3_2_AnnP_0" + "P-network_3_2_AnnP_1" + "P-network_3_2_AnnP_2" + "P-network_3_2_AnnP_3" + "P-network_3_2_AnnP_4" + "P-network_3_2_RP_0" + "P-network_3_2_RP_1" + "P-network_3_2_RP_2" + "P-network_3_2_RP_3" + "P-network_3_2_RP_4" + "P-network_3_3_AskP_0" + "P-network_3_3_AskP_1" + "P-network_3_3_AskP_2" + "P-network_3_3_AskP_3" + "P-network_3_3_AskP_4" + "P-network_3_3_AnsP_0" + "P-network_3_3_AnsP_1" + "P-network_3_3_AnsP_2" + "P-network_3_3_AnsP_3" + "P-network_3_3_AnsP_4" + "P-network_3_3_RI_0" + "P-network_3_3_RI_1" + "P-network_3_3_RI_2" + "P-network_3_3_RI_3" + "P-network_3_3_RI_4" + "P-network_3_3_AI_0" + "P-network_3_3_AI_1" + "P-network_3_3_AI_2" + "P-network_3_3_AI_3" + "P-network_3_3_AI_4" + "P-network_3_3_AnnP_0" + "P-network_3_3_AnnP_1" + "P-network_3_3_AnnP_2" + "P-network_3_3_AnnP_3" + "P-network_3_3_AnnP_4" + "P-network_3_3_RP_0" + "P-network_3_3_RP_1" + "P-network_3_3_RP_2" + "P-network_3_3_RP_3" + "P-network_3_3_RP_4" + "P-network_3_4_AskP_0" + "P-network_3_4_AskP_1" + "P-network_3_4_AskP_2" + "P-network_3_4_AskP_3" + "P-network_3_4_AskP_4" + "P-network_3_4_AnsP_0" + "P-network_3_4_AnsP_1" + "P-network_3_4_AnsP_2" + "P-network_3_4_AnsP_3" + "P-network_3_4_AnsP_4" + "P-network_3_4_RI_0" + "P-network_3_4_RI_1" + "P-network_3_4_RI_2" + "P-network_3_4_RI_3" + "P-network_3_4_RI_4" + "P-network_3_4_AI_0" + "P-network_3_4_AI_1" + "P-network_3_4_AI_2" + "P-network_3_4_AI_3" + "P-network_3_4_AI_4" + "P-network_3_4_AnnP_0" + "P-network_3_4_AnnP_1" + "P-network_3_4_AnnP_2" + "P-network_3_4_AnnP_3" + "P-network_3_4_AnnP_4" + "P-network_3_4_RP_0" + "P-network_3_4_RP_1" + "P-network_3_4_RP_2" + "P-network_3_4_RP_3" + "P-network_3_4_RP_4" + "P-network_4_0_AskP_0" + "P-network_4_0_AskP_1" + "P-network_4_0_AskP_2" + "P-network_4_0_AskP_3" + "P-network_4_0_AskP_4" + "P-network_4_0_AnsP_0" + "P-network_4_0_AnsP_1" + "P-network_4_0_AnsP_2" + "P-network_4_0_AnsP_3" + "P-network_4_0_AnsP_4" + "P-network_4_0_RI_0" + "P-network_4_0_RI_1" + "P-network_4_0_RI_2" + "P-network_4_0_RI_3" + "P-network_4_0_RI_4" + "P-network_4_0_AI_0" + "P-network_4_0_AI_1" + "P-network_4_0_AI_2" + "P-network_4_0_AI_3" + "P-network_4_0_AI_4" + "P-network_4_0_AnnP_0" + "P-network_4_0_AnnP_1" + "P-network_4_0_AnnP_2" + "P-network_4_0_AnnP_3" + "P-network_4_0_AnnP_4" + "P-network_4_0_RP_0" + "P-network_4_0_RP_1" + "P-network_4_0_RP_2" + "P-network_4_0_RP_3" + "P-network_4_0_RP_4" + "P-network_4_1_AskP_0" + "P-network_4_1_AskP_1" + "P-network_4_1_AskP_2" + "P-network_4_1_AskP_3" + "P-network_4_1_AskP_4" + "P-network_4_1_AnsP_0" + "P-network_4_1_AnsP_1" + "P-network_4_1_AnsP_2" + "P-network_4_1_AnsP_3" + "P-network_4_1_AnsP_4" + "P-network_4_1_RI_0" + "P-network_4_1_RI_1" + "P-network_4_1_RI_2" + "P-network_4_1_RI_3" + "P-network_4_1_RI_4" + "P-network_4_1_AI_0" + "P-network_4_1_AI_1" + "P-network_4_1_AI_2" + "P-network_4_1_AI_3" + "P-network_4_1_AI_4" + "P-network_4_1_AnnP_0" + "P-network_4_1_AnnP_1" + "P-network_4_1_AnnP_2" + "P-network_4_1_AnnP_3" + "P-network_4_1_AnnP_4" + "P-network_4_1_RP_0" + "P-network_4_1_RP_1" + "P-network_4_1_RP_2" + "P-network_4_1_RP_3" + "P-network_4_1_RP_4" + "P-network_4_2_AskP_0" + "P-network_4_2_AskP_1" + "P-network_4_2_AskP_2" + "P-network_4_2_AskP_3" + "P-network_4_2_AskP_4" + "P-network_4_2_AnsP_0" + "P-network_4_2_AnsP_1" + "P-network_4_2_AnsP_2" + "P-network_4_2_AnsP_3" + "P-network_4_2_AnsP_4" + "P-network_4_2_RI_0" + "P-network_4_2_RI_1" + "P-network_4_2_RI_2" + "P-network_4_2_RI_3" + "P-network_4_2_RI_4" + "P-network_4_2_AI_0" + "P-network_4_2_AI_1" + "P-network_4_2_AI_2" + "P-network_4_2_AI_3" + "P-network_4_2_AI_4" + "P-network_4_2_AnnP_0" + "P-network_4_2_AnnP_1" + "P-network_4_2_AnnP_2" + "P-network_4_2_AnnP_3" + "P-network_4_2_AnnP_4" + "P-network_4_2_RP_0" + "P-network_4_2_RP_1" + "P-network_4_2_RP_2" + "P-network_4_2_RP_3" + "P-network_4_2_RP_4" + "P-network_4_3_AskP_0" + "P-network_4_3_AskP_1" + "P-network_4_3_AskP_2" + "P-network_4_3_AskP_3" + "P-network_4_3_AskP_4" + "P-network_4_3_AnsP_0" + "P-network_4_3_AnsP_1" + "P-network_4_3_AnsP_2" + "P-network_4_3_AnsP_3" + "P-network_4_3_AnsP_4" + "P-network_4_3_RI_0" + "P-network_4_3_RI_1" + "P-network_4_3_RI_2" + "P-network_4_3_RI_3" + "P-network_4_3_RI_4" + "P-network_4_3_AI_0" + "P-network_4_3_AI_1" + "P-network_4_3_AI_2" + "P-network_4_3_AI_3" + "P-network_4_3_AI_4" + "P-network_4_3_AnnP_0" + "P-network_4_3_AnnP_1" + "P-network_4_3_AnnP_2" + "P-network_4_3_AnnP_3" + "P-network_4_3_AnnP_4" + "P-network_4_3_RP_0" + "P-network_4_3_RP_1" + "P-network_4_3_RP_2" + "P-network_4_3_RP_3" + "P-network_4_3_RP_4" + "P-network_4_4_AskP_0" + "P-network_4_4_AskP_1" + "P-network_4_4_AskP_2" + "P-network_4_4_AskP_3" + "P-network_4_4_AskP_4" + "P-network_4_4_AnsP_0" + "P-network_4_4_AnsP_1" + "P-network_4_4_AnsP_2" + "P-network_4_4_AnsP_3" + "P-network_4_4_AnsP_4" + "P-network_4_4_RI_0" + "P-network_4_4_RI_1" + "P-network_4_4_RI_2" + "P-network_4_4_RI_3" + "P-network_4_4_RI_4" + "P-network_4_4_AI_0" + "P-network_4_4_AI_1" + "P-network_4_4_AI_2" + "P-network_4_4_AI_3" + "P-network_4_4_AI_4" + "P-network_4_4_AnnP_0" + "P-network_4_4_AnnP_1" + "P-network_4_4_AnnP_2" + "P-network_4_4_AnnP_3" + "P-network_4_4_AnnP_4" + "P-network_4_4_RP_0" + "P-network_4_4_RP_1" + "P-network_4_4_RP_2" + "P-network_4_4_RP_3" + "P-network_4_4_RP_4"))) and not((("P-poll__waitingMessage_0" + "P-poll__waitingMessage_1" + "P-poll__waitingMessage_2" + "P-poll__waitingMessage_3" + "P-poll__waitingMessage_4") <= ("P-poll__handlingMessage_0" + "P-poll__handlingMessage_1" + "P-poll__handlingMessage_2" + "P-poll__handlingMessage_3" + "P-poll__handlingMessage_4"))))) )
NeoElection-COL-4-ReachabilityCardinality-9: EF ( not(((("P-negotiation_0_0_NONE" + "P-negotiation_0_0_CO" + "P-negotiation_0_0_DONE" + "P-negotiation_0_1_NONE" + "P-negotiation_0_1_CO" + "P-negotiation_0_1_DONE" + "P-negotiation_0_2_NONE" + "P-negotiation_0_2_CO" + "P-negotiation_0_2_DONE" + "P-negotiation_0_3_NONE" + "P-negotiation_0_3_CO" + "P-negotiation_0_3_DONE" + "P-negotiation_0_4_NONE" + "P-negotiation_0_4_CO" + "P-negotiation_0_4_DONE" + "P-negotiation_1_0_NONE" + "P-negotiation_1_0_CO" + "P-negotiation_1_0_DONE" + "P-negotiation_1_1_NONE" + "P-negotiation_1_1_CO" + "P-negotiation_1_1_DONE" + "P-negotiation_1_2_NONE" + "P-negotiation_1_2_CO" + "P-negotiation_1_2_DONE" + "P-negotiation_1_3_NONE" + "P-negotiation_1_3_CO" + "P-negotiation_1_3_DONE" + "P-negotiation_1_4_NONE" + "P-negotiation_1_4_CO" + "P-negotiation_1_4_DONE" + "P-negotiation_2_0_NONE" + "P-negotiation_2_0_CO" + "P-negotiation_2_0_DONE" + "P-negotiation_2_1_NONE" + "P-negotiation_2_1_CO" + "P-negotiation_2_1_DONE" + "P-negotiation_2_2_NONE" + "P-negotiation_2_2_CO" + "P-negotiation_2_2_DONE" + "P-negotiation_2_3_NONE" + "P-negotiation_2_3_CO" + "P-negotiation_2_3_DONE" + "P-negotiation_2_4_NONE" + "P-negotiation_2_4_CO" + "P-negotiation_2_4_DONE" + "P-negotiation_3_0_NONE" + "P-negotiation_3_0_CO" + "P-negotiation_3_0_DONE" + "P-negotiation_3_1_NONE" + "P-negotiation_3_1_CO" + "P-negotiation_3_1_DONE" + "P-negotiation_3_2_NONE" + "P-negotiation_3_2_CO" + "P-negotiation_3_2_DONE" + "P-negotiation_3_3_NONE" + "P-negotiation_3_3_CO" + "P-negotiation_3_3_DONE" + "P-negotiation_3_4_NONE" + "P-negotiation_3_4_CO" + "P-negotiation_3_4_DONE" + "P-negotiation_4_0_NONE" + "P-negotiation_4_0_CO" + "P-negotiation_4_0_DONE" + "P-negotiation_4_1_NONE" + "P-negotiation_4_1_CO" + "P-negotiation_4_1_DONE" + "P-negotiation_4_2_NONE" + "P-negotiation_4_2_CO" + "P-negotiation_4_2_DONE" + "P-negotiation_4_3_NONE" + "P-negotiation_4_3_CO" + "P-negotiation_4_3_DONE" + "P-negotiation_4_4_NONE" + "P-negotiation_4_4_CO" + "P-negotiation_4_4_DONE") <= ("P-poll__pollEnd_0" + "P-poll__pollEnd_1" + "P-poll__pollEnd_2" + "P-poll__pollEnd_3" + "P-poll__pollEnd_4")) or ((3 <= ("P-electedSecondary_0" + "P-electedSecondary_1" + "P-electedSecondary_2" + "P-electedSecondary_3" + "P-electedSecondary_4")) or (("P-poll__networl_0_0_AskP_0" + "P-poll__networl_0_0_AskP_1" + "P-poll__networl_0_0_AskP_2" + "P-poll__networl_0_0_AskP_3" + "P-poll__networl_0_0_AskP_4" + "P-poll__networl_0_0_AnsP_0" + "P-poll__networl_0_0_AnsP_1" + "P-poll__networl_0_0_AnsP_2" + "P-poll__networl_0_0_AnsP_3" + "P-poll__networl_0_0_AnsP_4" + "P-poll__networl_0_0_RI_0" + "P-poll__networl_0_0_RI_1" + "P-poll__networl_0_0_RI_2" + "P-poll__networl_0_0_RI_3" + "P-poll__networl_0_0_RI_4" + "P-poll__networl_0_0_AI_0" + "P-poll__networl_0_0_AI_1" + "P-poll__networl_0_0_AI_2" + "P-poll__networl_0_0_AI_3" + "P-poll__networl_0_0_AI_4" + "P-poll__networl_0_0_AnnP_0" + "P-poll__networl_0_0_AnnP_1" + "P-poll__networl_0_0_AnnP_2" + "P-poll__networl_0_0_AnnP_3" + "P-poll__networl_0_0_AnnP_4" + "P-poll__networl_0_0_RP_0" + "P-poll__networl_0_0_RP_1" + "P-poll__networl_0_0_RP_2" + "P-poll__networl_0_0_RP_3" + "P-poll__networl_0_0_RP_4" + "P-poll__networl_0_1_AskP_0" + "P-poll__networl_0_1_AskP_1" + "P-poll__networl_0_1_AskP_2" + "P-poll__networl_0_1_AskP_3" + "P-poll__networl_0_1_AskP_4" + "P-poll__networl_0_1_AnsP_0" + "P-poll__networl_0_1_AnsP_1" + "P-poll__networl_0_1_AnsP_2" + "P-poll__networl_0_1_AnsP_3" + "P-poll__networl_0_1_AnsP_4" + "P-poll__networl_0_1_RI_0" + "P-poll__networl_0_1_RI_1" + "P-poll__networl_0_1_RI_2" + "P-poll__networl_0_1_RI_3" + "P-poll__networl_0_1_RI_4" + "P-poll__networl_0_1_AI_0" + "P-poll__networl_0_1_AI_1" + "P-poll__networl_0_1_AI_2" + "P-poll__networl_0_1_AI_3" + "P-poll__networl_0_1_AI_4" + "P-poll__networl_0_1_AnnP_0" + "P-poll__networl_0_1_AnnP_1" + "P-poll__networl_0_1_AnnP_2" + "P-poll__networl_0_1_AnnP_3" + "P-poll__networl_0_1_AnnP_4" + "P-poll__networl_0_1_RP_0" + "P-poll__networl_0_1_RP_1" + "P-poll__networl_0_1_RP_2" + "P-poll__networl_0_1_RP_3" + "P-poll__networl_0_1_RP_4" + "P-poll__networl_0_2_AskP_0" + "P-poll__networl_0_2_AskP_1" + "P-poll__networl_0_2_AskP_2" + "P-poll__networl_0_2_AskP_3" + "P-poll__networl_0_2_AskP_4" + "P-poll__networl_0_2_AnsP_0" + "P-poll__networl_0_2_AnsP_1" + "P-poll__networl_0_2_AnsP_2" + "P-poll__networl_0_2_AnsP_3" + "P-poll__networl_0_2_AnsP_4" + "P-poll__networl_0_2_RI_0" + "P-poll__networl_0_2_RI_1" + "P-poll__networl_0_2_RI_2" + "P-poll__networl_0_2_RI_3" + "P-poll__networl_0_2_RI_4" + "P-poll__networl_0_2_AI_0" + "P-poll__networl_0_2_AI_1" + "P-poll__networl_0_2_AI_2" + "P-poll__networl_0_2_AI_3" + "P-poll__networl_0_2_AI_4" + "P-poll__networl_0_2_AnnP_0" + "P-poll__networl_0_2_AnnP_1" + "P-poll__networl_0_2_AnnP_2" + "P-poll__networl_0_2_AnnP_3" + "P-poll__networl_0_2_AnnP_4" + "P-poll__networl_0_2_RP_0" + "P-poll__networl_0_2_RP_1" + "P-poll__networl_0_2_RP_2" + "P-poll__networl_0_2_RP_3" + "P-poll__networl_0_2_RP_4" + "P-poll__networl_0_3_AskP_0" + "P-poll__networl_0_3_AskP_1" + "P-poll__networl_0_3_AskP_2" + "P-poll__networl_0_3_AskP_3" + "P-poll__networl_0_3_AskP_4" + "P-poll__networl_0_3_AnsP_0" + "P-poll__networl_0_3_AnsP_1" + "P-poll__networl_0_3_AnsP_2" + "P-poll__networl_0_3_AnsP_3" + "P-poll__networl_0_3_AnsP_4" + "P-poll__networl_0_3_RI_0" + "P-poll__networl_0_3_RI_1" + "P-poll__networl_0_3_RI_2" + "P-poll__networl_0_3_RI_3" + "P-poll__networl_0_3_RI_4" + "P-poll__networl_0_3_AI_0" + "P-poll__networl_0_3_AI_1" + "P-poll__networl_0_3_AI_2" + "P-poll__networl_0_3_AI_3" + "P-poll__networl_0_3_AI_4" + "P-poll__networl_0_3_AnnP_0" + "P-poll__networl_0_3_AnnP_1" + "P-poll__networl_0_3_AnnP_2" + "P-poll__networl_0_3_AnnP_3" + "P-poll__networl_0_3_AnnP_4" + "P-poll__networl_0_3_RP_0" + "P-poll__networl_0_3_RP_1" + "P-poll__networl_0_3_RP_2" + "P-poll__networl_0_3_RP_3" + "P-poll__networl_0_3_RP_4" + "P-poll__networl_0_4_AskP_0" + "P-poll__networl_0_4_AskP_1" + "P-poll__networl_0_4_AskP_2" + "P-poll__networl_0_4_AskP_3" + "P-poll__networl_0_4_AskP_4" + "P-poll__networl_0_4_AnsP_0" + "P-poll__networl_0_4_AnsP_1" + "P-poll__networl_0_4_AnsP_2" + "P-poll__networl_0_4_AnsP_3" + "P-poll__networl_0_4_AnsP_4" + "P-poll__networl_0_4_RI_0" + "P-poll__networl_0_4_RI_1" + "P-poll__networl_0_4_RI_2" + "P-poll__networl_0_4_RI_3" + "P-poll__networl_0_4_RI_4" + "P-poll__networl_0_4_AI_0" + "P-poll__networl_0_4_AI_1" + "P-poll__networl_0_4_AI_2" + "P-poll__networl_0_4_AI_3" + "P-poll__networl_0_4_AI_4" + "P-poll__networl_0_4_AnnP_0" + "P-poll__networl_0_4_AnnP_1" + "P-poll__networl_0_4_AnnP_2" + "P-poll__networl_0_4_AnnP_3" + "P-poll__networl_0_4_AnnP_4" + "P-poll__networl_0_4_RP_0" + "P-poll__networl_0_4_RP_1" + "P-poll__networl_0_4_RP_2" + "P-poll__networl_0_4_RP_3" + "P-poll__networl_0_4_RP_4" + "P-poll__networl_1_0_AskP_0" + "P-poll__networl_1_0_AskP_1" + "P-poll__networl_1_0_AskP_2" + "P-poll__networl_1_0_AskP_3" + "P-poll__networl_1_0_AskP_4" + "P-poll__networl_1_0_AnsP_0" + "P-poll__networl_1_0_AnsP_1" + "P-poll__networl_1_0_AnsP_2" + "P-poll__networl_1_0_AnsP_3" + "P-poll__networl_1_0_AnsP_4" + "P-poll__networl_1_0_RI_0" + "P-poll__networl_1_0_RI_1" + "P-poll__networl_1_0_RI_2" + "P-poll__networl_1_0_RI_3" + "P-poll__networl_1_0_RI_4" + "P-poll__networl_1_0_AI_0" + "P-poll__networl_1_0_AI_1" + "P-poll__networl_1_0_AI_2" + "P-poll__networl_1_0_AI_3" + "P-poll__networl_1_0_AI_4" + "P-poll__networl_1_0_AnnP_0" + "P-poll__networl_1_0_AnnP_1" + "P-poll__networl_1_0_AnnP_2" + "P-poll__networl_1_0_AnnP_3" + "P-poll__networl_1_0_AnnP_4" + "P-poll__networl_1_0_RP_0" + "P-poll__networl_1_0_RP_1" + "P-poll__networl_1_0_RP_2" + "P-poll__networl_1_0_RP_3" + "P-poll__networl_1_0_RP_4" + "P-poll__networl_1_1_AskP_0" + "P-poll__networl_1_1_AskP_1" + "P-poll__networl_1_1_AskP_2" + "P-poll__networl_1_1_AskP_3" + "P-poll__networl_1_1_AskP_4" + "P-poll__networl_1_1_AnsP_0" + "P-poll__networl_1_1_AnsP_1" + "P-poll__networl_1_1_AnsP_2" + "P-poll__networl_1_1_AnsP_3" + "P-poll__networl_1_1_AnsP_4" + "P-poll__networl_1_1_RI_0" + "P-poll__networl_1_1_RI_1" + "P-poll__networl_1_1_RI_2" + "P-poll__networl_1_1_RI_3" + "P-poll__networl_1_1_RI_4" + "P-poll__networl_1_1_AI_0" + "P-poll__networl_1_1_AI_1" + "P-poll__networl_1_1_AI_2" + "P-poll__networl_1_1_AI_3" + "P-poll__networl_1_1_AI_4" + "P-poll__networl_1_1_AnnP_0" + "P-poll__networl_1_1_AnnP_1" + "P-poll__networl_1_1_AnnP_2" + "P-poll__networl_1_1_AnnP_3" + "P-poll__networl_1_1_AnnP_4" + "P-poll__networl_1_1_RP_0" + "P-poll__networl_1_1_RP_1" + "P-poll__networl_1_1_RP_2" + "P-poll__networl_1_1_RP_3" + "P-poll__networl_1_1_RP_4" + "P-poll__networl_1_2_AskP_0" + "P-poll__networl_1_2_AskP_1" + "P-poll__networl_1_2_AskP_2" + "P-poll__networl_1_2_AskP_3" + "P-poll__networl_1_2_AskP_4" + "P-poll__networl_1_2_AnsP_0" + "P-poll__networl_1_2_AnsP_1" + "P-poll__networl_1_2_AnsP_2" + "P-poll__networl_1_2_AnsP_3" + "P-poll__networl_1_2_AnsP_4" + "P-poll__networl_1_2_RI_0" + "P-poll__networl_1_2_RI_1" + "P-poll__networl_1_2_RI_2" + "P-poll__networl_1_2_RI_3" + "P-poll__networl_1_2_RI_4" + "P-poll__networl_1_2_AI_0" + "P-poll__networl_1_2_AI_1" + "P-poll__networl_1_2_AI_2" + "P-poll__networl_1_2_AI_3" + "P-poll__networl_1_2_AI_4" + "P-poll__networl_1_2_AnnP_0" + "P-poll__networl_1_2_AnnP_1" + "P-poll__networl_1_2_AnnP_2" + "P-poll__networl_1_2_AnnP_3" + "P-poll__networl_1_2_AnnP_4" + "P-poll__networl_1_2_RP_0" + "P-poll__networl_1_2_RP_1" + "P-poll__networl_1_2_RP_2" + "P-poll__networl_1_2_RP_3" + "P-poll__networl_1_2_RP_4" + "P-poll__networl_1_3_AskP_0" + "P-poll__networl_1_3_AskP_1" + "P-poll__networl_1_3_AskP_2" + "P-poll__networl_1_3_AskP_3" + "P-poll__networl_1_3_AskP_4" + "P-poll__networl_1_3_AnsP_0" + "P-poll__networl_1_3_AnsP_1" + "P-poll__networl_1_3_AnsP_2" + "P-poll__networl_1_3_AnsP_3" + "P-poll__networl_1_3_AnsP_4" + "P-poll__networl_1_3_RI_0" + "P-poll__networl_1_3_RI_1" + "P-poll__networl_1_3_RI_2" + "P-poll__networl_1_3_RI_3" + "P-poll__networl_1_3_RI_4" + "P-poll__networl_1_3_AI_0" + "P-poll__networl_1_3_AI_1" + "P-poll__networl_1_3_AI_2" + "P-poll__networl_1_3_AI_3" + "P-poll__networl_1_3_AI_4" + "P-poll__networl_1_3_AnnP_0" + "P-poll__networl_1_3_AnnP_1" + "P-poll__networl_1_3_AnnP_2" + "P-poll__networl_1_3_AnnP_3" + "P-poll__networl_1_3_AnnP_4" + "P-poll__networl_1_3_RP_0" + "P-poll__networl_1_3_RP_1" + "P-poll__networl_1_3_RP_2" + "P-poll__networl_1_3_RP_3" + "P-poll__networl_1_3_RP_4" + "P-poll__networl_1_4_AskP_0" + "P-poll__networl_1_4_AskP_1" + "P-poll__networl_1_4_AskP_2" + "P-poll__networl_1_4_AskP_3" + "P-poll__networl_1_4_AskP_4" + "P-poll__networl_1_4_AnsP_0" + "P-poll__networl_1_4_AnsP_1" + "P-poll__networl_1_4_AnsP_2" + "P-poll__networl_1_4_AnsP_3" + "P-poll__networl_1_4_AnsP_4" + "P-poll__networl_1_4_RI_0" + "P-poll__networl_1_4_RI_1" + "P-poll__networl_1_4_RI_2" + "P-poll__networl_1_4_RI_3" + "P-poll__networl_1_4_RI_4" + "P-poll__networl_1_4_AI_0" + "P-poll__networl_1_4_AI_1" + "P-poll__networl_1_4_AI_2" + "P-poll__networl_1_4_AI_3" + "P-poll__networl_1_4_AI_4" + "P-poll__networl_1_4_AnnP_0" + "P-poll__networl_1_4_AnnP_1" + "P-poll__networl_1_4_AnnP_2" + "P-poll__networl_1_4_AnnP_3" + "P-poll__networl_1_4_AnnP_4" + "P-poll__networl_1_4_RP_0" + "P-poll__networl_1_4_RP_1" + "P-poll__networl_1_4_RP_2" + "P-poll__networl_1_4_RP_3" + "P-poll__networl_1_4_RP_4" + "P-poll__networl_2_0_AskP_0" + "P-poll__networl_2_0_AskP_1" + "P-poll__networl_2_0_AskP_2" + "P-poll__networl_2_0_AskP_3" + "P-poll__networl_2_0_AskP_4" + "P-poll__networl_2_0_AnsP_0" + "P-poll__networl_2_0_AnsP_1" + "P-poll__networl_2_0_AnsP_2" + "P-poll__networl_2_0_AnsP_3" + "P-poll__networl_2_0_AnsP_4" + "P-poll__networl_2_0_RI_0" + "P-poll__networl_2_0_RI_1" + "P-poll__networl_2_0_RI_2" + "P-poll__networl_2_0_RI_3" + "P-poll__networl_2_0_RI_4" + "P-poll__networl_2_0_AI_0" + "P-poll__networl_2_0_AI_1" + "P-poll__networl_2_0_AI_2" + "P-poll__networl_2_0_AI_3" + "P-poll__networl_2_0_AI_4" + "P-poll__networl_2_0_AnnP_0" + "P-poll__networl_2_0_AnnP_1" + "P-poll__networl_2_0_AnnP_2" + "P-poll__networl_2_0_AnnP_3" + "P-poll__networl_2_0_AnnP_4" + "P-poll__networl_2_0_RP_0" + "P-poll__networl_2_0_RP_1" + "P-poll__networl_2_0_RP_2" + "P-poll__networl_2_0_RP_3" + "P-poll__networl_2_0_RP_4" + "P-poll__networl_2_1_AskP_0" + "P-poll__networl_2_1_AskP_1" + "P-poll__networl_2_1_AskP_2" + "P-poll__networl_2_1_AskP_3" + "P-poll__networl_2_1_AskP_4" + "P-poll__networl_2_1_AnsP_0" + "P-poll__networl_2_1_AnsP_1" + "P-poll__networl_2_1_AnsP_2" + "P-poll__networl_2_1_AnsP_3" + "P-poll__networl_2_1_AnsP_4" + "P-poll__networl_2_1_RI_0" + "P-poll__networl_2_1_RI_1" + "P-poll__networl_2_1_RI_2" + "P-poll__networl_2_1_RI_3" + "P-poll__networl_2_1_RI_4" + "P-poll__networl_2_1_AI_0" + "P-poll__networl_2_1_AI_1" + "P-poll__networl_2_1_AI_2" + "P-poll__networl_2_1_AI_3" + "P-poll__networl_2_1_AI_4" + "P-poll__networl_2_1_AnnP_0" + "P-poll__networl_2_1_AnnP_1" + "P-poll__networl_2_1_AnnP_2" + "P-poll__networl_2_1_AnnP_3" + "P-poll__networl_2_1_AnnP_4" + "P-poll__networl_2_1_RP_0" + "P-poll__networl_2_1_RP_1" + "P-poll__networl_2_1_RP_2" + "P-poll__networl_2_1_RP_3" + "P-poll__networl_2_1_RP_4" + "P-poll__networl_2_2_AskP_0" + "P-poll__networl_2_2_AskP_1" + "P-poll__networl_2_2_AskP_2" + "P-poll__networl_2_2_AskP_3" + "P-poll__networl_2_2_AskP_4" + "P-poll__networl_2_2_AnsP_0" + "P-poll__networl_2_2_AnsP_1" + "P-poll__networl_2_2_AnsP_2" + "P-poll__networl_2_2_AnsP_3" + "P-poll__networl_2_2_AnsP_4" + "P-poll__networl_2_2_RI_0" + "P-poll__networl_2_2_RI_1" + "P-poll__networl_2_2_RI_2" + "P-poll__networl_2_2_RI_3" + "P-poll__networl_2_2_RI_4" + "P-poll__networl_2_2_AI_0" + "P-poll__networl_2_2_AI_1" + "P-poll__networl_2_2_AI_2" + "P-poll__networl_2_2_AI_3" + "P-poll__networl_2_2_AI_4" + "P-poll__networl_2_2_AnnP_0" + "P-poll__networl_2_2_AnnP_1" + "P-poll__networl_2_2_AnnP_2" + "P-poll__networl_2_2_AnnP_3" + "P-poll__networl_2_2_AnnP_4" + "P-poll__networl_2_2_RP_0" + "P-poll__networl_2_2_RP_1" + "P-poll__networl_2_2_RP_2" + "P-poll__networl_2_2_RP_3" + "P-poll__networl_2_2_RP_4" + "P-poll__networl_2_3_AskP_0" + "P-poll__networl_2_3_AskP_1" + "P-poll__networl_2_3_AskP_2" + "P-poll__networl_2_3_AskP_3" + "P-poll__networl_2_3_AskP_4" + "P-poll__networl_2_3_AnsP_0" + "P-poll__networl_2_3_AnsP_1" + "P-poll__networl_2_3_AnsP_2" + "P-poll__networl_2_3_AnsP_3" + "P-poll__networl_2_3_AnsP_4" + "P-poll__networl_2_3_RI_0" + "P-poll__networl_2_3_RI_1" + "P-poll__networl_2_3_RI_2" + "P-poll__networl_2_3_RI_3" + "P-poll__networl_2_3_RI_4" + "P-poll__networl_2_3_AI_0" + "P-poll__networl_2_3_AI_1" + "P-poll__networl_2_3_AI_2" + "P-poll__networl_2_3_AI_3" + "P-poll__networl_2_3_AI_4" + "P-poll__networl_2_3_AnnP_0" + "P-poll__networl_2_3_AnnP_1" + "P-poll__networl_2_3_AnnP_2" + "P-poll__networl_2_3_AnnP_3" + "P-poll__networl_2_3_AnnP_4" + "P-poll__networl_2_3_RP_0" + "P-poll__networl_2_3_RP_1" + "P-poll__networl_2_3_RP_2" + "P-poll__networl_2_3_RP_3" + "P-poll__networl_2_3_RP_4" + "P-poll__networl_2_4_AskP_0" + "P-poll__networl_2_4_AskP_1" + "P-poll__networl_2_4_AskP_2" + "P-poll__networl_2_4_AskP_3" + "P-poll__networl_2_4_AskP_4" + "P-poll__networl_2_4_AnsP_0" + "P-poll__networl_2_4_AnsP_1" + "P-poll__networl_2_4_AnsP_2" + "P-poll__networl_2_4_AnsP_3" + "P-poll__networl_2_4_AnsP_4" + "P-poll__networl_2_4_RI_0" + "P-poll__networl_2_4_RI_1" + "P-poll__networl_2_4_RI_2" + "P-poll__networl_2_4_RI_3" + "P-poll__networl_2_4_RI_4" + "P-poll__networl_2_4_AI_0" + "P-poll__networl_2_4_AI_1" + "P-poll__networl_2_4_AI_2" + "P-poll__networl_2_4_AI_3" + "P-poll__networl_2_4_AI_4" + "P-poll__networl_2_4_AnnP_0" + "P-poll__networl_2_4_AnnP_1" + "P-poll__networl_2_4_AnnP_2" + "P-poll__networl_2_4_AnnP_3" + "P-poll__networl_2_4_AnnP_4" + "P-poll__networl_2_4_RP_0" + "P-poll__networl_2_4_RP_1" + "P-poll__networl_2_4_RP_2" + "P-poll__networl_2_4_RP_3" + "P-poll__networl_2_4_RP_4" + "P-poll__networl_3_0_AskP_0" + "P-poll__networl_3_0_AskP_1" + "P-poll__networl_3_0_AskP_2" + "P-poll__networl_3_0_AskP_3" + "P-poll__networl_3_0_AskP_4" + "P-poll__networl_3_0_AnsP_0" + "P-poll__networl_3_0_AnsP_1" + "P-poll__networl_3_0_AnsP_2" + "P-poll__networl_3_0_AnsP_3" + "P-poll__networl_3_0_AnsP_4" + "P-poll__networl_3_0_RI_0" + "P-poll__networl_3_0_RI_1" + "P-poll__networl_3_0_RI_2" + "P-poll__networl_3_0_RI_3" + "P-poll__networl_3_0_RI_4" + "P-poll__networl_3_0_AI_0" + "P-poll__networl_3_0_AI_1" + "P-poll__networl_3_0_AI_2" + "P-poll__networl_3_0_AI_3" + "P-poll__networl_3_0_AI_4" + "P-poll__networl_3_0_AnnP_0" + "P-poll__networl_3_0_AnnP_1" + "P-poll__networl_3_0_AnnP_2" + "P-poll__networl_3_0_AnnP_3" + "P-poll__networl_3_0_AnnP_4" + "P-poll__networl_3_0_RP_0" + "P-poll__networl_3_0_RP_1" + "P-poll__networl_3_0_RP_2" + "P-poll__networl_3_0_RP_3" + "P-poll__networl_3_0_RP_4" + "P-poll__networl_3_1_AskP_0" + "P-poll__networl_3_1_AskP_1" + "P-poll__networl_3_1_AskP_2" + "P-poll__networl_3_1_AskP_3" + "P-poll__networl_3_1_AskP_4" + "P-poll__networl_3_1_AnsP_0" + "P-poll__networl_3_1_AnsP_1" + "P-poll__networl_3_1_AnsP_2" + "P-poll__networl_3_1_AnsP_3" + "P-poll__networl_3_1_AnsP_4" + "P-poll__networl_3_1_RI_0" + "P-poll__networl_3_1_RI_1" + "P-poll__networl_3_1_RI_2" + "P-poll__networl_3_1_RI_3" + "P-poll__networl_3_1_RI_4" + "P-poll__networl_3_1_AI_0" + "P-poll__networl_3_1_AI_1" + "P-poll__networl_3_1_AI_2" + "P-poll__networl_3_1_AI_3" + "P-poll__networl_3_1_AI_4" + "P-poll__networl_3_1_AnnP_0" + "P-poll__networl_3_1_AnnP_1" + "P-poll__networl_3_1_AnnP_2" + "P-poll__networl_3_1_AnnP_3" + "P-poll__networl_3_1_AnnP_4" + "P-poll__networl_3_1_RP_0" + "P-poll__networl_3_1_RP_1" + "P-poll__networl_3_1_RP_2" + "P-poll__networl_3_1_RP_3" + "P-poll__networl_3_1_RP_4" + "P-poll__networl_3_2_AskP_0" + "P-poll__networl_3_2_AskP_1" + "P-poll__networl_3_2_AskP_2" + "P-poll__networl_3_2_AskP_3" + "P-poll__networl_3_2_AskP_4" + "P-poll__networl_3_2_AnsP_0" + "P-poll__networl_3_2_AnsP_1" + "P-poll__networl_3_2_AnsP_2" + "P-poll__networl_3_2_AnsP_3" + "P-poll__networl_3_2_AnsP_4" + "P-poll__networl_3_2_RI_0" + "P-poll__networl_3_2_RI_1" + "P-poll__networl_3_2_RI_2" + "P-poll__networl_3_2_RI_3" + "P-poll__networl_3_2_RI_4" + "P-poll__networl_3_2_AI_0" + "P-poll__networl_3_2_AI_1" + "P-poll__networl_3_2_AI_2" + "P-poll__networl_3_2_AI_3" + "P-poll__networl_3_2_AI_4" + "P-poll__networl_3_2_AnnP_0" + "P-poll__networl_3_2_AnnP_1" + "P-poll__networl_3_2_AnnP_2" + "P-poll__networl_3_2_AnnP_3" + "P-poll__networl_3_2_AnnP_4" + "P-poll__networl_3_2_RP_0" + "P-poll__networl_3_2_RP_1" + "P-poll__networl_3_2_RP_2" + "P-poll__networl_3_2_RP_3" + "P-poll__networl_3_2_RP_4" + "P-poll__networl_3_3_AskP_0" + "P-poll__networl_3_3_AskP_1" + "P-poll__networl_3_3_AskP_2" + "P-poll__networl_3_3_AskP_3" + "P-poll__networl_3_3_AskP_4" + "P-poll__networl_3_3_AnsP_0" + "P-poll__networl_3_3_AnsP_1" + "P-poll__networl_3_3_AnsP_2" + "P-poll__networl_3_3_AnsP_3" + "P-poll__networl_3_3_AnsP_4" + "P-poll__networl_3_3_RI_0" + "P-poll__networl_3_3_RI_1" + "P-poll__networl_3_3_RI_2" + "P-poll__networl_3_3_RI_3" + "P-poll__networl_3_3_RI_4" + "P-poll__networl_3_3_AI_0" + "P-poll__networl_3_3_AI_1" + "P-poll__networl_3_3_AI_2" + "P-poll__networl_3_3_AI_3" + "P-poll__networl_3_3_AI_4" + "P-poll__networl_3_3_AnnP_0" + "P-poll__networl_3_3_AnnP_1" + "P-poll__networl_3_3_AnnP_2" + "P-poll__networl_3_3_AnnP_3" + "P-poll__networl_3_3_AnnP_4" + "P-poll__networl_3_3_RP_0" + "P-poll__networl_3_3_RP_1" + "P-poll__networl_3_3_RP_2" + "P-poll__networl_3_3_RP_3" + "P-poll__networl_3_3_RP_4" + "P-poll__networl_3_4_AskP_0" + "P-poll__networl_3_4_AskP_1" + "P-poll__networl_3_4_AskP_2" + "P-poll__networl_3_4_AskP_3" + "P-poll__networl_3_4_AskP_4" + "P-poll__networl_3_4_AnsP_0" + "P-poll__networl_3_4_AnsP_1" + "P-poll__networl_3_4_AnsP_2" + "P-poll__networl_3_4_AnsP_3" + "P-poll__networl_3_4_AnsP_4" + "P-poll__networl_3_4_RI_0" + "P-poll__networl_3_4_RI_1" + "P-poll__networl_3_4_RI_2" + "P-poll__networl_3_4_RI_3" + "P-poll__networl_3_4_RI_4" + "P-poll__networl_3_4_AI_0" + "P-poll__networl_3_4_AI_1" + "P-poll__networl_3_4_AI_2" + "P-poll__networl_3_4_AI_3" + "P-poll__networl_3_4_AI_4" + "P-poll__networl_3_4_AnnP_0" + "P-poll__networl_3_4_AnnP_1" + "P-poll__networl_3_4_AnnP_2" + "P-poll__networl_3_4_AnnP_3" + "P-poll__networl_3_4_AnnP_4" + "P-poll__networl_3_4_RP_0" + "P-poll__networl_3_4_RP_1" + "P-poll__networl_3_4_RP_2" + "P-poll__networl_3_4_RP_3" + "P-poll__networl_3_4_RP_4" + "P-poll__networl_4_0_AskP_0" + "P-poll__networl_4_0_AskP_1" + "P-poll__networl_4_0_AskP_2" + "P-poll__networl_4_0_AskP_3" + "P-poll__networl_4_0_AskP_4" + "P-poll__networl_4_0_AnsP_0" + "P-poll__networl_4_0_AnsP_1" + "P-poll__networl_4_0_AnsP_2" + "P-poll__networl_4_0_AnsP_3" + "P-poll__networl_4_0_AnsP_4" + "P-poll__networl_4_0_RI_0" + "P-poll__networl_4_0_RI_1" + "P-poll__networl_4_0_RI_2" + "P-poll__networl_4_0_RI_3" + "P-poll__networl_4_0_RI_4" + "P-poll__networl_4_0_AI_0" + "P-poll__networl_4_0_AI_1" + "P-poll__networl_4_0_AI_2" + "P-poll__networl_4_0_AI_3" + "P-poll__networl_4_0_AI_4" + "P-poll__networl_4_0_AnnP_0" + "P-poll__networl_4_0_AnnP_1" + "P-poll__networl_4_0_AnnP_2" + "P-poll__networl_4_0_AnnP_3" + "P-poll__networl_4_0_AnnP_4" + "P-poll__networl_4_0_RP_0" + "P-poll__networl_4_0_RP_1" + "P-poll__networl_4_0_RP_2" + "P-poll__networl_4_0_RP_3" + "P-poll__networl_4_0_RP_4" + "P-poll__networl_4_1_AskP_0" + "P-poll__networl_4_1_AskP_1" + "P-poll__networl_4_1_AskP_2" + "P-poll__networl_4_1_AskP_3" + "P-poll__networl_4_1_AskP_4" + "P-poll__networl_4_1_AnsP_0" + "P-poll__networl_4_1_AnsP_1" + "P-poll__networl_4_1_AnsP_2" + "P-poll__networl_4_1_AnsP_3" + "P-poll__networl_4_1_AnsP_4" + "P-poll__networl_4_1_RI_0" + "P-poll__networl_4_1_RI_1" + "P-poll__networl_4_1_RI_2" + "P-poll__networl_4_1_RI_3" + "P-poll__networl_4_1_RI_4" + "P-poll__networl_4_1_AI_0" + "P-poll__networl_4_1_AI_1" + "P-poll__networl_4_1_AI_2" + "P-poll__networl_4_1_AI_3" + "P-poll__networl_4_1_AI_4" + "P-poll__networl_4_1_AnnP_0" + "P-poll__networl_4_1_AnnP_1" + "P-poll__networl_4_1_AnnP_2" + "P-poll__networl_4_1_AnnP_3" + "P-poll__networl_4_1_AnnP_4" + "P-poll__networl_4_1_RP_0" + "P-poll__networl_4_1_RP_1" + "P-poll__networl_4_1_RP_2" + "P-poll__networl_4_1_RP_3" + "P-poll__networl_4_1_RP_4" + "P-poll__networl_4_2_AskP_0" + "P-poll__networl_4_2_AskP_1" + "P-poll__networl_4_2_AskP_2" + "P-poll__networl_4_2_AskP_3" + "P-poll__networl_4_2_AskP_4" + "P-poll__networl_4_2_AnsP_0" + "P-poll__networl_4_2_AnsP_1" + "P-poll__networl_4_2_AnsP_2" + "P-poll__networl_4_2_AnsP_3" + "P-poll__networl_4_2_AnsP_4" + "P-poll__networl_4_2_RI_0" + "P-poll__networl_4_2_RI_1" + "P-poll__networl_4_2_RI_2" + "P-poll__networl_4_2_RI_3" + "P-poll__networl_4_2_RI_4" + "P-poll__networl_4_2_AI_0" + "P-poll__networl_4_2_AI_1" + "P-poll__networl_4_2_AI_2" + "P-poll__networl_4_2_AI_3" + "P-poll__networl_4_2_AI_4" + "P-poll__networl_4_2_AnnP_0" + "P-poll__networl_4_2_AnnP_1" + "P-poll__networl_4_2_AnnP_2" + "P-poll__networl_4_2_AnnP_3" + "P-poll__networl_4_2_AnnP_4" + "P-poll__networl_4_2_RP_0" + "P-poll__networl_4_2_RP_1" + "P-poll__networl_4_2_RP_2" + "P-poll__networl_4_2_RP_3" + "P-poll__networl_4_2_RP_4" + "P-poll__networl_4_3_AskP_0" + "P-poll__networl_4_3_AskP_1" + "P-poll__networl_4_3_AskP_2" + "P-poll__networl_4_3_AskP_3" + "P-poll__networl_4_3_AskP_4" + "P-poll__networl_4_3_AnsP_0" + "P-poll__networl_4_3_AnsP_1" + "P-poll__networl_4_3_AnsP_2" + "P-poll__networl_4_3_AnsP_3" + "P-poll__networl_4_3_AnsP_4" + "P-poll__networl_4_3_RI_0" + "P-poll__networl_4_3_RI_1" + "P-poll__networl_4_3_RI_2" + "P-poll__networl_4_3_RI_3" + "P-poll__networl_4_3_RI_4" + "P-poll__networl_4_3_AI_0" + "P-poll__networl_4_3_AI_1" + "P-poll__networl_4_3_AI_2" + "P-poll__networl_4_3_AI_3" + "P-poll__networl_4_3_AI_4" + "P-poll__networl_4_3_AnnP_0" + "P-poll__networl_4_3_AnnP_1" + "P-poll__networl_4_3_AnnP_2" + "P-poll__networl_4_3_AnnP_3" + "P-poll__networl_4_3_AnnP_4" + "P-poll__networl_4_3_RP_0" + "P-poll__networl_4_3_RP_1" + "P-poll__networl_4_3_RP_2" + "P-poll__networl_4_3_RP_3" + "P-poll__networl_4_3_RP_4" + "P-poll__networl_4_4_AskP_0" + "P-poll__networl_4_4_AskP_1" + "P-poll__networl_4_4_AskP_2" + "P-poll__networl_4_4_AskP_3" + "P-poll__networl_4_4_AskP_4" + "P-poll__networl_4_4_AnsP_0" + "P-poll__networl_4_4_AnsP_1" + "P-poll__networl_4_4_AnsP_2" + "P-poll__networl_4_4_AnsP_3" + "P-poll__networl_4_4_AnsP_4" + "P-poll__networl_4_4_RI_0" + "P-poll__networl_4_4_RI_1" + "P-poll__networl_4_4_RI_2" + "P-poll__networl_4_4_RI_3" + "P-poll__networl_4_4_RI_4" + "P-poll__networl_4_4_AI_0" + "P-poll__networl_4_4_AI_1" + "P-poll__networl_4_4_AI_2" + "P-poll__networl_4_4_AI_3" + "P-poll__networl_4_4_AI_4" + "P-poll__networl_4_4_AnnP_0" + "P-poll__networl_4_4_AnnP_1" + "P-poll__networl_4_4_AnnP_2" + "P-poll__networl_4_4_AnnP_3" + "P-poll__networl_4_4_AnnP_4" + "P-poll__networl_4_4_RP_0" + "P-poll__networl_4_4_RP_1" + "P-poll__networl_4_4_RP_2" + "P-poll__networl_4_4_RP_3" + "P-poll__networl_4_4_RP_4") <= ("P-electionInit_0" + "P-electionInit_1" + "P-electionInit_2" + "P-electionInit_3" + "P-electionInit_4"))))) )

query: EF ( not(((("P-negotiation_0_0_NONE" + "P-negotiation_0_0_CO" + "P-negotiation_0_0_DONE" + "P-negotiation_0_1_NONE" + "P-negotiation_0_1_CO" + "P-negotiation_0_1_DONE" + "P-negotiation_0_2_NONE" + "P-negotiation_0_2_CO" + "P-negotiation_0_2_DONE" + "P-negotiation_0_3_NONE" + "P-negotiation_0_3_CO" + "P-negotiation_0_3_DONE" + "P-negotiation_0_4_NONE" + "P-negotiation_0_4_CO" + "P-negotiation_0_4_DONE" + "P-negotiation_1_0_NONE" + "P-negotiation_1_0_CO" + "P-negotiation_1_0_DONE" + "P-negotiation_1_1_NONE" + "P-negotiation_1_1_CO" + "P-negotiation_1_1_DONE" + "P-negotiation_1_2_NONE" + "P-negotiation_1_2_CO" + "P-negotiation_1_2_DONE" + "P-negotiation_1_3_NONE" + "P-negotiation_1_3_CO" + "P-negotiation_1_3_DONE" + "P-negotiation_1_4_NONE" + "P-negotiation_1_4_CO" + "P-negotiation_1_4_DONE" + "P-negotiation_2_0_NONE" + "P-negotiation_2_0_CO" + "P-negotiation_2_0_DONE" + "P-negotiation_2_1_NONE" + "P-negotiation_2_1_CO" + "P-negotiation_2_1_DONE" + "P-negotiation_2_2_NONE" + "P-negotiation_2_2_CO" + "P-negotiation_2_2_DONE" + "P-negotiation_2_3_NONE" + "P-negotiation_2_3_CO" + "P-negotiation_2_3_DONE" + "P-negotiation_2_4_NONE" + "P-negotiation_2_4_CO" + "P-negotiation_2_4_DONE" + "P-negotiation_3_0_NONE" + "P-negotiation_3_0_CO" + "P-negotiation_3_0_DONE" + "P-negotiation_3_1_NONE" + "P-negotiation_3_1_CO" + "P-negotiation_3_1_DONE" + "P-negotiation_3_2_NONE" + "P-negotiation_3_2_CO" + "P-negotiation_3_2_DONE" + "P-negotiation_3_3_NONE" + "P-negotiation_3_3_CO" + "P-negotiation_3_3_DONE" + "P-negotiation_3_4_NONE" + "P-negotiation_3_4_CO" + "P-negotiation_3_4_DONE" + "P-negotiation_4_0_NONE" + "P-negotiation_4_0_CO" + "P-negotiation_4_0_DONE" + "P-negotiation_4_1_NONE" + "P-negotiation_4_1_CO" + "P-negotiation_4_1_DONE" + "P-negotiation_4_2_NONE" + "P-negotiation_4_2_CO" + "P-negotiation_4_2_DONE" + "P-negotiation_4_3_NONE" + "P-negotiation_4_3_CO" + "P-negotiation_4_3_DONE" + "P-negotiation_4_4_NONE" + "P-negotiation_4_4_CO" + "P-negotiation_4_4_DONE") <= ("P-poll__pollEnd_0" + "P-poll__pollEnd_1" + "P-poll__pollEnd_2" + "P-poll__pollEnd_3" + "P-poll__pollEnd_4")) or ((3 <= ("P-electedSecondary_0" + "P-electedSecondary_1" + "P-electedSecondary_2" + "P-electedSecondary_3" + "P-electedSecondary_4")) or (("P-poll__networl_0_0_AskP_0" + "P-poll__networl_0_0_AskP_1" + "P-poll__networl_0_0_AskP_2" + "P-poll__networl_0_0_AskP_3" + "P-poll__networl_0_0_AskP_4" + "P-poll__networl_0_0_AnsP_0" + "P-poll__networl_0_0_AnsP_1" + "P-poll__networl_0_0_AnsP_2" + "P-poll__networl_0_0_AnsP_3" + "P-poll__networl_0_0_AnsP_4" + "P-poll__networl_0_0_RI_0" + "P-poll__networl_0_0_RI_1" + "P-poll__networl_0_0_RI_2" + "P-poll__networl_0_0_RI_3" + "P-poll__networl_0_0_RI_4" + "P-poll__networl_0_0_AI_0" + "P-poll__networl_0_0_AI_1" + "P-poll__networl_0_0_AI_2" + "P-poll__networl_0_0_AI_3" + "P-poll__networl_0_0_AI_4" + "P-poll__networl_0_0_AnnP_0" + "P-poll__networl_0_0_AnnP_1" + "P-poll__networl_0_0_AnnP_2" + "P-poll__networl_0_0_AnnP_3" + "P-poll__networl_0_0_AnnP_4" + "P-poll__networl_0_0_RP_0" + "P-poll__networl_0_0_RP_1" + "P-poll__networl_0_0_RP_2" + "P-poll__networl_0_0_RP_3" + "P-poll__networl_0_0_RP_4" + "P-poll__networl_0_1_AskP_0" + "P-poll__networl_0_1_AskP_1" + "P-poll__networl_0_1_AskP_2" + "P-poll__networl_0_1_AskP_3" + "P-poll__networl_0_1_AskP_4" + "P-poll__networl_0_1_AnsP_0" + "P-poll__networl_0_1_AnsP_1" + "P-poll__networl_0_1_AnsP_2" + "P-poll__networl_0_1_AnsP_3" + "P-poll__networl_0_1_AnsP_4" + "P-poll__networl_0_1_RI_0" + "P-poll__networl_0_1_RI_1" + "P-poll__networl_0_1_RI_2" + "P-poll__networl_0_1_RI_3" + "P-poll__networl_0_1_RI_4" + "P-poll__networl_0_1_AI_0" + "P-poll__networl_0_1_AI_1" + "P-poll__networl_0_1_AI_2" + "P-poll__networl_0_1_AI_3" + "P-poll__networl_0_1_AI_4" + "P-poll__networl_0_1_AnnP_0" + "P-poll__networl_0_1_AnnP_1" + "P-poll__networl_0_1_AnnP_2" + "P-poll__networl_0_1_AnnP_3" + "P-poll__networl_0_1_AnnP_4" + "P-poll__networl_0_1_RP_0" + "P-poll__networl_0_1_RP_1" + "P-poll__networl_0_1_RP_2" + "P-poll__networl_0_1_RP_3" + "P-poll__networl_0_1_RP_4" + "P-poll__networl_0_2_AskP_0" + "P-poll__networl_0_2_AskP_1" + "P-poll__networl_0_2_AskP_2" + "P-poll__networl_0_2_AskP_3" + "P-poll__networl_0_2_AskP_4" + "P-poll__networl_0_2_AnsP_0" + "P-poll__networl_0_2_AnsP_1" + "P-poll__networl_0_2_AnsP_2" + "P-poll__networl_0_2_AnsP_3" + "P-poll__networl_0_2_AnsP_4" + "P-poll__networl_0_2_RI_0" + "P-poll__networl_0_2_RI_1" + "P-poll__networl_0_2_RI_2" + "P-poll__networl_0_2_RI_3" + "P-poll__networl_0_2_RI_4" + "P-poll__networl_0_2_AI_0" + "P-poll__networl_0_2_AI_1" + "P-poll__networl_0_2_AI_2" + "P-poll__networl_0_2_AI_3" + "P-poll__networl_0_2_AI_4" + "P-poll__networl_0_2_AnnP_0" + "P-poll__networl_0_2_AnnP_1" + "P-poll__networl_0_2_AnnP_2" + "P-poll__networl_0_2_AnnP_3" + "P-poll__networl_0_2_AnnP_4" + "P-poll__networl_0_2_RP_0" + "P-poll__networl_0_2_RP_1" + "P-poll__networl_0_2_RP_2" + "P-poll__networl_0_2_RP_3" + "P-poll__networl_0_2_RP_4" + "P-poll__networl_0_3_AskP_0" + "P-poll__networl_0_3_AskP_1" + "P-poll__networl_0_3_AskP_2" + "P-poll__networl_0_3_AskP_3" + "P-poll__networl_0_3_AskP_4" + "P-poll__networl_0_3_AnsP_0" + "P-poll__networl_0_3_AnsP_1" + "P-poll__networl_0_3_AnsP_2" + "P-poll__networl_0_3_AnsP_3" + "P-poll__networl_0_3_AnsP_4" + "P-poll__networl_0_3_RI_0" + "P-poll__networl_0_3_RI_1" + "P-poll__networl_0_3_RI_2" + "P-poll__networl_0_3_RI_3" + "P-poll__networl_0_3_RI_4" + "P-poll__networl_0_3_AI_0" + "P-poll__networl_0_3_AI_1" + "P-poll__networl_0_3_AI_2" + "P-poll__networl_0_3_AI_3" + "P-poll__networl_0_3_AI_4" + "P-poll__networl_0_3_AnnP_0" + "P-poll__networl_0_3_AnnP_1" + "P-poll__networl_0_3_AnnP_2" + "P-poll__networl_0_3_AnnP_3" + "P-poll__networl_0_3_AnnP_4" + "P-poll__networl_0_3_RP_0" + "P-poll__networl_0_3_RP_1" + "P-poll__networl_0_3_RP_2" + "P-poll__networl_0_3_RP_3" + "P-poll__networl_0_3_RP_4" + "P-poll__networl_0_4_AskP_0" + "P-poll__networl_0_4_AskP_1" + "P-poll__networl_0_4_AskP_2" + "P-poll__networl_0_4_AskP_3" + "P-poll__networl_0_4_AskP_4" + "P-poll__networl_0_4_AnsP_0" + "P-poll__networl_0_4_AnsP_1" + "P-poll__networl_0_4_AnsP_2" + "P-poll__networl_0_4_AnsP_3" + "P-poll__networl_0_4_AnsP_4" + "P-poll__networl_0_4_RI_0" + "P-poll__networl_0_4_RI_1" + "P-poll__networl_0_4_RI_2" + "P-poll__networl_0_4_RI_3" + "P-poll__networl_0_4_RI_4" + "P-poll__networl_0_4_AI_0" + "P-poll__networl_0_4_AI_1" + "P-poll__networl_0_4_AI_2" + "P-poll__networl_0_4_AI_3" + "P-poll__networl_0_4_AI_4" + "P-poll__networl_0_4_AnnP_0" + "P-poll__networl_0_4_AnnP_1" + "P-poll__networl_0_4_AnnP_2" + "P-poll__networl_0_4_AnnP_3" + "P-poll__networl_0_4_AnnP_4" + "P-poll__networl_0_4_RP_0" + "P-poll__networl_0_4_RP_1" + "P-poll__networl_0_4_RP_2" + "P-poll__networl_0_4_RP_3" + "P-poll__networl_0_4_RP_4" + "P-poll__networl_1_0_AskP_0" + "P-poll__networl_1_0_AskP_1" + "P-poll__networl_1_0_AskP_2" + "P-poll__networl_1_0_AskP_3" + "P-poll__networl_1_0_AskP_4" + "P-poll__networl_1_0_AnsP_0" + "P-poll__networl_1_0_AnsP_1" + "P-poll__networl_1_0_AnsP_2" + "P-poll__networl_1_0_AnsP_3" + "P-poll__networl_1_0_AnsP_4" + "P-poll__networl_1_0_RI_0" + "P-poll__networl_1_0_RI_1" + "P-poll__networl_1_0_RI_2" + "P-poll__networl_1_0_RI_3" + "P-poll__networl_1_0_RI_4" + "P-poll__networl_1_0_AI_0" + "P-poll__networl_1_0_AI_1" + "P-poll__networl_1_0_AI_2" + "P-poll__networl_1_0_AI_3" + "P-poll__networl_1_0_AI_4" + "P-poll__networl_1_0_AnnP_0" + "P-poll__networl_1_0_AnnP_1" + "P-poll__networl_1_0_AnnP_2" + "P-poll__networl_1_0_AnnP_3" + "P-poll__networl_1_0_AnnP_4" + "P-poll__networl_1_0_RP_0" + "P-poll__networl_1_0_RP_1" + "P-poll__networl_1_0_RP_2" + "P-poll__networl_1_0_RP_3" + "P-poll__networl_1_0_RP_4" + "P-poll__networl_1_1_AskP_0" + "P-poll__networl_1_1_AskP_1" + "P-poll__networl_1_1_AskP_2" + "P-poll__networl_1_1_AskP_3" + "P-poll__networl_1_1_AskP_4" + "P-poll__networl_1_1_AnsP_0" + "P-poll__networl_1_1_AnsP_1" + "P-poll__networl_1_1_AnsP_2" + "P-poll__networl_1_1_AnsP_3" + "P-poll__networl_1_1_AnsP_4" + "P-poll__networl_1_1_RI_0" + "P-poll__networl_1_1_RI_1" + "P-poll__networl_1_1_RI_2" + "P-poll__networl_1_1_RI_3" + "P-poll__networl_1_1_RI_4" + "P-poll__networl_1_1_AI_0" + "P-poll__networl_1_1_AI_1" + "P-poll__networl_1_1_AI_2" + "P-poll__networl_1_1_AI_3" + "P-poll__networl_1_1_AI_4" + "P-poll__networl_1_1_AnnP_0" + "P-poll__networl_1_1_AnnP_1" + "P-poll__networl_1_1_AnnP_2" + "P-poll__networl_1_1_AnnP_3" + "P-poll__networl_1_1_AnnP_4" + "P-poll__networl_1_1_RP_0" + "P-poll__networl_1_1_RP_1" + "P-poll__networl_1_1_RP_2" + "P-poll__networl_1_1_RP_3" + "P-poll__networl_1_1_RP_4" + "P-poll__networl_1_2_AskP_0" + "P-poll__networl_1_2_AskP_1" + "P-poll__networl_1_2_AskP_2" + "P-poll__networl_1_2_AskP_3" + "P-poll__networl_1_2_AskP_4" + "P-poll__networl_1_2_AnsP_0" + "P-poll__networl_1_2_AnsP_1" + "P-poll__networl_1_2_AnsP_2" + "P-poll__networl_1_2_AnsP_3" + "P-poll__networl_1_2_AnsP_4" + "P-poll__networl_1_2_RI_0" + "P-poll__networl_1_2_RI_1" + "P-poll__networl_1_2_RI_2" + "P-poll__networl_1_2_RI_3" + "P-poll__networl_1_2_RI_4" + "P-poll__networl_1_2_AI_0" + "P-poll__networl_1_2_AI_1" + "P-poll__networl_1_2_AI_2" + "P-poll__networl_1_2_AI_3" + "P-poll__networl_1_2_AI_4" + "P-poll__networl_1_2_AnnP_0" + "P-poll__networl_1_2_AnnP_1" + "P-poll__networl_1_2_AnnP_2" + "P-poll__networl_1_2_AnnP_3" + "P-poll__networl_1_2_AnnP_4" + "P-poll__networl_1_2_RP_0" + "P-poll__networl_1_2_RP_1" + "P-poll__networl_1_2_RP_2" + "P-poll__networl_1_2_RP_3" + "P-poll__networl_1_2_RP_4" + "P-poll__networl_1_3_AskP_0" + "P-poll__networl_1_3_AskP_1" + "P-poll__networl_1_3_AskP_2" + "P-poll__networl_1_3_AskP_3" + "P-poll__networl_1_3_AskP_4" + "P-poll__networl_1_3_AnsP_0" + "P-poll__networl_1_3_AnsP_1" + "P-poll__networl_1_3_AnsP_2" + "P-poll__networl_1_3_AnsP_3" + "P-poll__networl_1_3_AnsP_4" + "P-poll__networl_1_3_RI_0" + "P-poll__networl_1_3_RI_1" + "P-poll__networl_1_3_RI_2" + "P-poll__networl_1_3_RI_3" + "P-poll__networl_1_3_RI_4" + "P-poll__networl_1_3_AI_0" + "P-poll__networl_1_3_AI_1" + "P-poll__networl_1_3_AI_2" + "P-poll__networl_1_3_AI_3" + "P-poll__networl_1_3_AI_4" + "P-poll__networl_1_3_AnnP_0" + "P-poll__networl_1_3_AnnP_1" + "P-poll__networl_1_3_AnnP_2" + "P-poll__networl_1_3_AnnP_3" + "P-poll__networl_1_3_AnnP_4" + "P-poll__networl_1_3_RP_0" + "P-poll__networl_1_3_RP_1" + "P-poll__networl_1_3_RP_2" + "P-poll__networl_1_3_RP_3" + "P-poll__networl_1_3_RP_4" + "P-poll__networl_1_4_AskP_0" + "P-poll__networl_1_4_AskP_1" + "P-poll__networl_1_4_AskP_2" + "P-poll__networl_1_4_AskP_3" + "P-poll__networl_1_4_AskP_4" + "P-poll__networl_1_4_AnsP_0" + "P-poll__networl_1_4_AnsP_1" + "P-poll__networl_1_4_AnsP_2" + "P-poll__networl_1_4_AnsP_3" + "P-poll__networl_1_4_AnsP_4" + "P-poll__networl_1_4_RI_0" + "P-poll__networl_1_4_RI_1" + "P-poll__networl_1_4_RI_2" + "P-poll__networl_1_4_RI_3" + "P-poll__networl_1_4_RI_4" + "P-poll__networl_1_4_AI_0" + "P-poll__networl_1_4_AI_1" + "P-poll__networl_1_4_AI_2" + "P-poll__networl_1_4_AI_3" + "P-poll__networl_1_4_AI_4" + "P-poll__networl_1_4_AnnP_0" + "P-poll__networl_1_4_AnnP_1" + "P-poll__networl_1_4_AnnP_2" + "P-poll__networl_1_4_AnnP_3" + "P-poll__networl_1_4_AnnP_4" + "P-poll__networl_1_4_RP_0" + "P-poll__networl_1_4_RP_1" + "P-poll__networl_1_4_RP_2" + "P-poll__networl_1_4_RP_3" + "P-poll__networl_1_4_RP_4" + "P-poll__networl_2_0_AskP_0" + "P-poll__networl_2_0_AskP_1" + "P-poll__networl_2_0_AskP_2" + "P-poll__networl_2_0_AskP_3" + "P-poll__networl_2_0_AskP_4" + "P-poll__networl_2_0_AnsP_0" + "P-poll__networl_2_0_AnsP_1" + "P-poll__networl_2_0_AnsP_2" + "P-poll__networl_2_0_AnsP_3" + "P-poll__networl_2_0_AnsP_4" + "P-poll__networl_2_0_RI_0" + "P-poll__networl_2_0_RI_1" + "P-poll__networl_2_0_RI_2" + "P-poll__networl_2_0_RI_3" + "P-poll__networl_2_0_RI_4" + "P-poll__networl_2_0_AI_0" + "P-poll__networl_2_0_AI_1" + "P-poll__networl_2_0_AI_2" + "P-poll__networl_2_0_AI_3" + "P-poll__networl_2_0_AI_4" + "P-poll__networl_2_0_AnnP_0" + "P-poll__networl_2_0_AnnP_1" + "P-poll__networl_2_0_AnnP_2" + "P-poll__networl_2_0_AnnP_3" + "P-poll__networl_2_0_AnnP_4" + "P-poll__networl_2_0_RP_0" + "P-poll__networl_2_0_RP_1" + "P-poll__networl_2_0_RP_2" + "P-poll__networl_2_0_RP_3" + "P-poll__networl_2_0_RP_4" + "P-poll__networl_2_1_AskP_0" + "P-poll__networl_2_1_AskP_1" + "P-poll__networl_2_1_AskP_2" + "P-poll__networl_2_1_AskP_3" + "P-poll__networl_2_1_AskP_4" + "P-poll__networl_2_1_AnsP_0" + "P-poll__networl_2_1_AnsP_1" + "P-poll__networl_2_1_AnsP_2" + "P-poll__networl_2_1_AnsP_3" + "P-poll__networl_2_1_AnsP_4" + "P-poll__networl_2_1_RI_0" + "P-poll__networl_2_1_RI_1" + "P-poll__networl_2_1_RI_2" + "P-poll__networl_2_1_RI_3" + "P-poll__networl_2_1_RI_4" + "P-poll__networl_2_1_AI_0" + "P-poll__networl_2_1_AI_1" + "P-poll__networl_2_1_AI_2" + "P-poll__networl_2_1_AI_3" + "P-poll__networl_2_1_AI_4" + "P-poll__networl_2_1_AnnP_0" + "P-poll__networl_2_1_AnnP_1" + "P-poll__networl_2_1_AnnP_2" + "P-poll__networl_2_1_AnnP_3" + "P-poll__networl_2_1_AnnP_4" + "P-poll__networl_2_1_RP_0" + "P-poll__networl_2_1_RP_1" + "P-poll__networl_2_1_RP_2" + "P-poll__networl_2_1_RP_3" + "P-poll__networl_2_1_RP_4" + "P-poll__networl_2_2_AskP_0" + "P-poll__networl_2_2_AskP_1" + "P-poll__networl_2_2_AskP_2" + "P-poll__networl_2_2_AskP_3" + "P-poll__networl_2_2_AskP_4" + "P-poll__networl_2_2_AnsP_0" + "P-poll__networl_2_2_AnsP_1" + "P-poll__networl_2_2_AnsP_2" + "P-poll__networl_2_2_AnsP_3" + "P-poll__networl_2_2_AnsP_4" + "P-poll__networl_2_2_RI_0" + "P-poll__networl_2_2_RI_1" + "P-poll__networl_2_2_RI_2" + "P-poll__networl_2_2_RI_3" + "P-poll__networl_2_2_RI_4" + "P-poll__networl_2_2_AI_0" + "P-poll__networl_2_2_AI_1" + "P-poll__networl_2_2_AI_2" + "P-poll__networl_2_2_AI_3" + "P-poll__networl_2_2_AI_4" + "P-poll__networl_2_2_AnnP_0" + "P-poll__networl_2_2_AnnP_1" + "P-poll__networl_2_2_AnnP_2" + "P-poll__networl_2_2_AnnP_3" + "P-poll__networl_2_2_AnnP_4" + "P-poll__networl_2_2_RP_0" + "P-poll__networl_2_2_RP_1" + "P-poll__networl_2_2_RP_2" + "P-poll__networl_2_2_RP_3" + "P-poll__networl_2_2_RP_4" + "P-poll__networl_2_3_AskP_0" + "P-poll__networl_2_3_AskP_1" + "P-poll__networl_2_3_AskP_2" + "P-poll__networl_2_3_AskP_3" + "P-poll__networl_2_3_AskP_4" + "P-poll__networl_2_3_AnsP_0" + "P-poll__networl_2_3_AnsP_1" + "P-poll__networl_2_3_AnsP_2" + "P-poll__networl_2_3_AnsP_3" + "P-poll__networl_2_3_AnsP_4" + "P-poll__networl_2_3_RI_0" + "P-poll__networl_2_3_RI_1" + "P-poll__networl_2_3_RI_2" + "P-poll__networl_2_3_RI_3" + "P-poll__networl_2_3_RI_4" + "P-poll__networl_2_3_AI_0" + "P-poll__networl_2_3_AI_1" + "P-poll__networl_2_3_AI_2" + "P-poll__networl_2_3_AI_3" + "P-poll__networl_2_3_AI_4" + "P-poll__networl_2_3_AnnP_0" + "P-poll__networl_2_3_AnnP_1" + "P-poll__networl_2_3_AnnP_2" + "P-poll__networl_2_3_AnnP_3" + "P-poll__networl_2_3_AnnP_4" + "P-poll__networl_2_3_RP_0" + "P-poll__networl_2_3_RP_1" + "P-poll__networl_2_3_RP_2" + "P-poll__networl_2_3_RP_3" + "P-poll__networl_2_3_RP_4" + "P-poll__networl_2_4_AskP_0" + "P-poll__networl_2_4_AskP_1" + "P-poll__networl_2_4_AskP_2" + "P-poll__networl_2_4_AskP_3" + "P-poll__networl_2_4_AskP_4" + "P-poll__networl_2_4_AnsP_0" + "P-poll__networl_2_4_AnsP_1" + "P-poll__networl_2_4_AnsP_2" + "P-poll__networl_2_4_AnsP_3" + "P-poll__networl_2_4_AnsP_4" + "P-poll__networl_2_4_RI_0" + "P-poll__networl_2_4_RI_1" + "P-poll__networl_2_4_RI_2" + "P-poll__networl_2_4_RI_3" + "P-poll__networl_2_4_RI_4" + "P-poll__networl_2_4_AI_0" + "P-poll__networl_2_4_AI_1" + "P-poll__networl_2_4_AI_2" + "P-poll__networl_2_4_AI_3" + "P-poll__networl_2_4_AI_4" + "P-poll__networl_2_4_AnnP_0" + "P-poll__networl_2_4_AnnP_1" + "P-poll__networl_2_4_AnnP_2" + "P-poll__networl_2_4_AnnP_3" + "P-poll__networl_2_4_AnnP_4" + "P-poll__networl_2_4_RP_0" + "P-poll__networl_2_4_RP_1" + "P-poll__networl_2_4_RP_2" + "P-poll__networl_2_4_RP_3" + "P-poll__networl_2_4_RP_4" + "P-poll__networl_3_0_AskP_0" + "P-poll__networl_3_0_AskP_1" + "P-poll__networl_3_0_AskP_2" + "P-poll__networl_3_0_AskP_3" + "P-poll__networl_3_0_AskP_4" + "P-poll__networl_3_0_AnsP_0" + "P-poll__networl_3_0_AnsP_1" + "P-poll__networl_3_0_AnsP_2" + "P-poll__networl_3_0_AnsP_3" + "P-poll__networl_3_0_AnsP_4" + "P-poll__networl_3_0_RI_0" + "P-poll__networl_3_0_RI_1" + "P-poll__networl_3_0_RI_2" + "P-poll__networl_3_0_RI_3" + "P-poll__networl_3_0_RI_4" + "P-poll__networl_3_0_AI_0" + "P-poll__networl_3_0_AI_1" + "P-poll__networl_3_0_AI_2" + "P-poll__networl_3_0_AI_3" + "P-poll__networl_3_0_AI_4" + "P-poll__networl_3_0_AnnP_0" + "P-poll__networl_3_0_AnnP_1" + "P-poll__networl_3_0_AnnP_2" + "P-poll__networl_3_0_AnnP_3" + "P-poll__networl_3_0_AnnP_4" + "P-poll__networl_3_0_RP_0" + "P-poll__networl_3_0_RP_1" + "P-poll__networl_3_0_RP_2" + "P-poll__networl_3_0_RP_3" + "P-poll__networl_3_0_RP_4" + "P-poll__networl_3_1_AskP_0" + "P-poll__networl_3_1_AskP_1" + "P-poll__networl_3_1_AskP_2" + "P-poll__networl_3_1_AskP_3" + "P-poll__networl_3_1_AskP_4" + "P-poll__networl_3_1_AnsP_0" + "P-poll__networl_3_1_AnsP_1" + "P-poll__networl_3_1_AnsP_2" + "P-poll__networl_3_1_AnsP_3" + "P-poll__networl_3_1_AnsP_4" + "P-poll__networl_3_1_RI_0" + "P-poll__networl_3_1_RI_1" + "P-poll__networl_3_1_RI_2" + "P-poll__networl_3_1_RI_3" + "P-poll__networl_3_1_RI_4" + "P-poll__networl_3_1_AI_0" + "P-poll__networl_3_1_AI_1" + "P-poll__networl_3_1_AI_2" + "P-poll__networl_3_1_AI_3" + "P-poll__networl_3_1_AI_4" + "P-poll__networl_3_1_AnnP_0" + "P-poll__networl_3_1_AnnP_1" + "P-poll__networl_3_1_AnnP_2" + "P-poll__networl_3_1_AnnP_3" + "P-poll__networl_3_1_AnnP_4" + "P-poll__networl_3_1_RP_0" + "P-poll__networl_3_1_RP_1" + "P-poll__networl_3_1_RP_2" + "P-poll__networl_3_1_RP_3" + "P-poll__networl_3_1_RP_4" + "P-poll__networl_3_2_AskP_0" + "P-poll__networl_3_2_AskP_1" + "P-poll__networl_3_2_AskP_2" + "P-poll__networl_3_2_AskP_3" + "P-poll__networl_3_2_AskP_4" + "P-poll__networl_3_2_AnsP_0" + "P-poll__networl_3_2_AnsP_1" + "P-poll__networl_3_2_AnsP_2" + "P-poll__networl_3_2_AnsP_3" + "P-poll__networl_3_2_AnsP_4" + "P-poll__networl_3_2_RI_0" + "P-poll__networl_3_2_RI_1" + "P-poll__networl_3_2_RI_2" + "P-poll__networl_3_2_RI_3" + "P-poll__networl_3_2_RI_4" + "P-poll__networl_3_2_AI_0" + "P-poll__networl_3_2_AI_1" + "P-poll__networl_3_2_AI_2" + "P-poll__networl_3_2_AI_3" + "P-poll__networl_3_2_AI_4" + "P-poll__networl_3_2_AnnP_0" + "P-poll__networl_3_2_AnnP_1" + "P-poll__networl_3_2_AnnP_2" + "P-poll__networl_3_2_AnnP_3" + "P-poll__networl_3_2_AnnP_4" + "P-poll__networl_3_2_RP_0" + "P-poll__networl_3_2_RP_1" + "P-poll__networl_3_2_RP_2" + "P-poll__networl_3_2_RP_3" + "P-poll__networl_3_2_RP_4" + "P-poll__networl_3_3_AskP_0" + "P-poll__networl_3_3_AskP_1" + "P-poll__networl_3_3_AskP_2" + "P-poll__networl_3_3_AskP_3" + "P-poll__networl_3_3_AskP_4" + "P-poll__networl_3_3_AnsP_0" + "P-poll__networl_3_3_AnsP_1" + "P-poll__networl_3_3_AnsP_2" + "P-poll__networl_3_3_AnsP_3" + "P-poll__networl_3_3_AnsP_4" + "P-poll__networl_3_3_RI_0" + "P-poll__networl_3_3_RI_1" + "P-poll__networl_3_3_RI_2" + "P-poll__networl_3_3_RI_3" + "P-poll__networl_3_3_RI_4" + "P-poll__networl_3_3_AI_0" + "P-poll__networl_3_3_AI_1" + "P-poll__networl_3_3_AI_2" + "P-poll__networl_3_3_AI_3" + "P-poll__networl_3_3_AI_4" + "P-poll__networl_3_3_AnnP_0" + "P-poll__networl_3_3_AnnP_1" + "P-poll__networl_3_3_AnnP_2" + "P-poll__networl_3_3_AnnP_3" + "P-poll__networl_3_3_AnnP_4" + "P-poll__networl_3_3_RP_0" + "P-poll__networl_3_3_RP_1" + "P-poll__networl_3_3_RP_2" + "P-poll__networl_3_3_RP_3" + "P-poll__networl_3_3_RP_4" + "P-poll__networl_3_4_AskP_0" + "P-poll__networl_3_4_AskP_1" + "P-poll__networl_3_4_AskP_2" + "P-poll__networl_3_4_AskP_3" + "P-poll__networl_3_4_AskP_4" + "P-poll__networl_3_4_AnsP_0" + "P-poll__networl_3_4_AnsP_1" + "P-poll__networl_3_4_AnsP_2" + "P-poll__networl_3_4_AnsP_3" + "P-poll__networl_3_4_AnsP_4" + "P-poll__networl_3_4_RI_0" + "P-poll__networl_3_4_RI_1" + "P-poll__networl_3_4_RI_2" + "P-poll__networl_3_4_RI_3" + "P-poll__networl_3_4_RI_4" + "P-poll__networl_3_4_AI_0" + "P-poll__networl_3_4_AI_1" + "P-poll__networl_3_4_AI_2" + "P-poll__networl_3_4_AI_3" + "P-poll__networl_3_4_AI_4" + "P-poll__networl_3_4_AnnP_0" + "P-poll__networl_3_4_AnnP_1" + "P-poll__networl_3_4_AnnP_2" + "P-poll__networl_3_4_AnnP_3" + "P-poll__networl_3_4_AnnP_4" + "P-poll__networl_3_4_RP_0" + "P-poll__networl_3_4_RP_1" + "P-poll__networl_3_4_RP_2" + "P-poll__networl_3_4_RP_3" + "P-poll__networl_3_4_RP_4" + "P-poll__networl_4_0_AskP_0" + "P-poll__networl_4_0_AskP_1" + "P-poll__networl_4_0_AskP_2" + "P-poll__networl_4_0_AskP_3" + "P-poll__networl_4_0_AskP_4" + "P-poll__networl_4_0_AnsP_0" + "P-poll__networl_4_0_AnsP_1" + "P-poll__networl_4_0_AnsP_2" + "P-poll__networl_4_0_AnsP_3" + "P-poll__networl_4_0_AnsP_4" + "P-poll__networl_4_0_RI_0" + "P-poll__networl_4_0_RI_1" + "P-poll__networl_4_0_RI_2" + "P-poll__networl_4_0_RI_3" + "P-poll__networl_4_0_RI_4" + "P-poll__networl_4_0_AI_0" + "P-poll__networl_4_0_AI_1" + "P-poll__networl_4_0_AI_2" + "P-poll__networl_4_0_AI_3" + "P-poll__networl_4_0_AI_4" + "P-poll__networl_4_0_AnnP_0" + "P-poll__networl_4_0_AnnP_1" + "P-poll__networl_4_0_AnnP_2" + "P-poll__networl_4_0_AnnP_3" + "P-poll__networl_4_0_AnnP_4" + "P-poll__networl_4_0_RP_0" + "P-poll__networl_4_0_RP_1" + "P-poll__networl_4_0_RP_2" + "P-poll__networl_4_0_RP_3" + "P-poll__networl_4_0_RP_4" + "P-poll__networl_4_1_AskP_0" + "P-poll__networl_4_1_AskP_1" + "P-poll__networl_4_1_AskP_2" + "P-poll__networl_4_1_AskP_3" + "P-poll__networl_4_1_AskP_4" + "P-poll__networl_4_1_AnsP_0" + "P-poll__networl_4_1_AnsP_1" + "P-poll__networl_4_1_AnsP_2" + "P-poll__networl_4_1_AnsP_3" + "P-poll__networl_4_1_AnsP_4" + "P-poll__networl_4_1_RI_0" + "P-poll__networl_4_1_RI_1" + "P-poll__networl_4_1_RI_2" + "P-poll__networl_4_1_RI_3" + "P-poll__networl_4_1_RI_4" + "P-poll__networl_4_1_AI_0" + "P-poll__networl_4_1_AI_1" + "P-poll__networl_4_1_AI_2" + "P-poll__networl_4_1_AI_3" + "P-poll__networl_4_1_AI_4" + "P-poll__networl_4_1_AnnP_0" + "P-poll__networl_4_1_AnnP_1" + "P-poll__networl_4_1_AnnP_2" + "P-poll__networl_4_1_AnnP_3" + "P-poll__networl_4_1_AnnP_4" + "P-poll__networl_4_1_RP_0" + "P-poll__networl_4_1_RP_1" + "P-poll__networl_4_1_RP_2" + "P-poll__networl_4_1_RP_3" + "P-poll__networl_4_1_RP_4" + "P-poll__networl_4_2_AskP_0" + "P-poll__networl_4_2_AskP_1" + "P-poll__networl_4_2_AskP_2" + "P-poll__networl_4_2_AskP_3" + "P-poll__networl_4_2_AskP_4" + "P-poll__networl_4_2_AnsP_0" + "P-poll__networl_4_2_AnsP_1" + "P-poll__networl_4_2_AnsP_2" + "P-poll__networl_4_2_AnsP_3" + "P-poll__networl_4_2_AnsP_4" + "P-poll__networl_4_2_RI_0" + "P-poll__networl_4_2_RI_1" + "P-poll__networl_4_2_RI_2" + "P-poll__networl_4_2_RI_3" + "P-poll__networl_4_2_RI_4" + "P-poll__networl_4_2_AI_0" + "P-poll__networl_4_2_AI_1" + "P-poll__networl_4_2_AI_2" + "P-poll__networl_4_2_AI_3" + "P-poll__networl_4_2_AI_4" + "P-poll__networl_4_2_AnnP_0" + "P-poll__networl_4_2_AnnP_1" + "P-poll__networl_4_2_AnnP_2" + "P-poll__networl_4_2_AnnP_3" + "P-poll__networl_4_2_AnnP_4" + "P-poll__networl_4_2_RP_0" + "P-poll__networl_4_2_RP_1" + "P-poll__networl_4_2_RP_2" + "P-poll__networl_4_2_RP_3" + "P-poll__networl_4_2_RP_4" + "P-poll__networl_4_3_AskP_0" + "P-poll__networl_4_3_AskP_1" + "P-poll__networl_4_3_AskP_2" + "P-poll__networl_4_3_AskP_3" + "P-poll__networl_4_3_AskP_4" + "P-poll__networl_4_3_AnsP_0" + "P-poll__networl_4_3_AnsP_1" + "P-poll__networl_4_3_AnsP_2" + "P-poll__networl_4_3_AnsP_3" + "P-poll__networl_4_3_AnsP_4" + "P-poll__networl_4_3_RI_0" + "P-poll__networl_4_3_RI_1" + "P-poll__networl_4_3_RI_2" + "P-poll__networl_4_3_RI_3" + "P-poll__networl_4_3_RI_4" + "P-poll__networl_4_3_AI_0" + "P-poll__networl_4_3_AI_1" + "P-poll__networl_4_3_AI_2" + "P-poll__networl_4_3_AI_3" + "P-poll__networl_4_3_AI_4" + "P-poll__networl_4_3_AnnP_0" + "P-poll__networl_4_3_AnnP_1" + "P-poll__networl_4_3_AnnP_2" + "P-poll__networl_4_3_AnnP_3" + "P-poll__networl_4_3_AnnP_4" + "P-poll__networl_4_3_RP_0" + "P-poll__networl_4_3_RP_1" + "P-poll__networl_4_3_RP_2" + "P-poll__networl_4_3_RP_3" + "P-poll__networl_4_3_RP_4" + "P-poll__networl_4_4_AskP_0" + "P-poll__networl_4_4_AskP_1" + "P-poll__networl_4_4_AskP_2" + "P-poll__networl_4_4_AskP_3" + "P-poll__networl_4_4_AskP_4" + "P-poll__networl_4_4_AnsP_0" + "P-poll__networl_4_4_AnsP_1" + "P-poll__networl_4_4_AnsP_2" + "P-poll__networl_4_4_AnsP_3" + "P-poll__networl_4_4_AnsP_4" + "P-poll__networl_4_4_RI_0" + "P-poll__networl_4_4_RI_1" + "P-poll__networl_4_4_RI_2" + "P-poll__networl_4_4_RI_3" + "P-poll__networl_4_4_RI_4" + "P-poll__networl_4_4_AI_0" + "P-poll__networl_4_4_AI_1" + "P-poll__networl_4_4_AI_2" + "P-poll__networl_4_4_AI_3" + "P-poll__networl_4_4_AI_4" + "P-poll__networl_4_4_AnnP_0" + "P-poll__networl_4_4_AnnP_1" + "P-poll__networl_4_4_AnnP_2" + "P-poll__networl_4_4_AnnP_3" + "P-poll__networl_4_4_AnnP_4" + "P-poll__networl_4_4_RP_0" + "P-poll__networl_4_4_RP_1" + "P-poll__networl_4_4_RP_2" + "P-poll__networl_4_4_RP_3" + "P-poll__networl_4_4_RP_4") <= ("P-electionInit_0" + "P-electionInit_1" + "P-electionInit_2" + "P-electionInit_3" + "P-electionInit_4"))))) )
NeoElection-COL-4-ReachabilityCardinality-10: EF ( not((("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4") <= ("P-poll__networl_0_0_AskP_0" + "P-poll__networl_0_0_AskP_1" + "P-poll__networl_0_0_AskP_2" + "P-poll__networl_0_0_AskP_3" + "P-poll__networl_0_0_AskP_4" + "P-poll__networl_0_0_AnsP_0" + "P-poll__networl_0_0_AnsP_1" + "P-poll__networl_0_0_AnsP_2" + "P-poll__networl_0_0_AnsP_3" + "P-poll__networl_0_0_AnsP_4" + "P-poll__networl_0_0_RI_0" + "P-poll__networl_0_0_RI_1" + "P-poll__networl_0_0_RI_2" + "P-poll__networl_0_0_RI_3" + "P-poll__networl_0_0_RI_4" + "P-poll__networl_0_0_AI_0" + "P-poll__networl_0_0_AI_1" + "P-poll__networl_0_0_AI_2" + "P-poll__networl_0_0_AI_3" + "P-poll__networl_0_0_AI_4" + "P-poll__networl_0_0_AnnP_0" + "P-poll__networl_0_0_AnnP_1" + "P-poll__networl_0_0_AnnP_2" + "P-poll__networl_0_0_AnnP_3" + "P-poll__networl_0_0_AnnP_4" + "P-poll__networl_0_0_RP_0" + "P-poll__networl_0_0_RP_1" + "P-poll__networl_0_0_RP_2" + "P-poll__networl_0_0_RP_3" + "P-poll__networl_0_0_RP_4" + "P-poll__networl_0_1_AskP_0" + "P-poll__networl_0_1_AskP_1" + "P-poll__networl_0_1_AskP_2" + "P-poll__networl_0_1_AskP_3" + "P-poll__networl_0_1_AskP_4" + "P-poll__networl_0_1_AnsP_0" + "P-poll__networl_0_1_AnsP_1" + "P-poll__networl_0_1_AnsP_2" + "P-poll__networl_0_1_AnsP_3" + "P-poll__networl_0_1_AnsP_4" + "P-poll__networl_0_1_RI_0" + "P-poll__networl_0_1_RI_1" + "P-poll__networl_0_1_RI_2" + "P-poll__networl_0_1_RI_3" + "P-poll__networl_0_1_RI_4" + "P-poll__networl_0_1_AI_0" + "P-poll__networl_0_1_AI_1" + "P-poll__networl_0_1_AI_2" + "P-poll__networl_0_1_AI_3" + "P-poll__networl_0_1_AI_4" + "P-poll__networl_0_1_AnnP_0" + "P-poll__networl_0_1_AnnP_1" + "P-poll__networl_0_1_AnnP_2" + "P-poll__networl_0_1_AnnP_3" + "P-poll__networl_0_1_AnnP_4" + "P-poll__networl_0_1_RP_0" + "P-poll__networl_0_1_RP_1" + "P-poll__networl_0_1_RP_2" + "P-poll__networl_0_1_RP_3" + "P-poll__networl_0_1_RP_4" + "P-poll__networl_0_2_AskP_0" + "P-poll__networl_0_2_AskP_1" + "P-poll__networl_0_2_AskP_2" + "P-poll__networl_0_2_AskP_3" + "P-poll__networl_0_2_AskP_4" + "P-poll__networl_0_2_AnsP_0" + "P-poll__networl_0_2_AnsP_1" + "P-poll__networl_0_2_AnsP_2" + "P-poll__networl_0_2_AnsP_3" + "P-poll__networl_0_2_AnsP_4" + "P-poll__networl_0_2_RI_0" + "P-poll__networl_0_2_RI_1" + "P-poll__networl_0_2_RI_2" + "P-poll__networl_0_2_RI_3" + "P-poll__networl_0_2_RI_4" + "P-poll__networl_0_2_AI_0" + "P-poll__networl_0_2_AI_1" + "P-poll__networl_0_2_AI_2" + "P-poll__networl_0_2_AI_3" + "P-poll__networl_0_2_AI_4" + "P-poll__networl_0_2_AnnP_0" + "P-poll__networl_0_2_AnnP_1" + "P-poll__networl_0_2_AnnP_2" + "P-poll__networl_0_2_AnnP_3" + "P-poll__networl_0_2_AnnP_4" + "P-poll__networl_0_2_RP_0" + "P-poll__networl_0_2_RP_1" + "P-poll__networl_0_2_RP_2" + "P-poll__networl_0_2_RP_3" + "P-poll__networl_0_2_RP_4" + "P-poll__networl_0_3_AskP_0" + "P-poll__networl_0_3_AskP_1" + "P-poll__networl_0_3_AskP_2" + "P-poll__networl_0_3_AskP_3" + "P-poll__networl_0_3_AskP_4" + "P-poll__networl_0_3_AnsP_0" + "P-poll__networl_0_3_AnsP_1" + "P-poll__networl_0_3_AnsP_2" + "P-poll__networl_0_3_AnsP_3" + "P-poll__networl_0_3_AnsP_4" + "P-poll__networl_0_3_RI_0" + "P-poll__networl_0_3_RI_1" + "P-poll__networl_0_3_RI_2" + "P-poll__networl_0_3_RI_3" + "P-poll__networl_0_3_RI_4" + "P-poll__networl_0_3_AI_0" + "P-poll__networl_0_3_AI_1" + "P-poll__networl_0_3_AI_2" + "P-poll__networl_0_3_AI_3" + "P-poll__networl_0_3_AI_4" + "P-poll__networl_0_3_AnnP_0" + "P-poll__networl_0_3_AnnP_1" + "P-poll__networl_0_3_AnnP_2" + "P-poll__networl_0_3_AnnP_3" + "P-poll__networl_0_3_AnnP_4" + "P-poll__networl_0_3_RP_0" + "P-poll__networl_0_3_RP_1" + "P-poll__networl_0_3_RP_2" + "P-poll__networl_0_3_RP_3" + "P-poll__networl_0_3_RP_4" + "P-poll__networl_0_4_AskP_0" + "P-poll__networl_0_4_AskP_1" + "P-poll__networl_0_4_AskP_2" + "P-poll__networl_0_4_AskP_3" + "P-poll__networl_0_4_AskP_4" + "P-poll__networl_0_4_AnsP_0" + "P-poll__networl_0_4_AnsP_1" + "P-poll__networl_0_4_AnsP_2" + "P-poll__networl_0_4_AnsP_3" + "P-poll__networl_0_4_AnsP_4" + "P-poll__networl_0_4_RI_0" + "P-poll__networl_0_4_RI_1" + "P-poll__networl_0_4_RI_2" + "P-poll__networl_0_4_RI_3" + "P-poll__networl_0_4_RI_4" + "P-poll__networl_0_4_AI_0" + "P-poll__networl_0_4_AI_1" + "P-poll__networl_0_4_AI_2" + "P-poll__networl_0_4_AI_3" + "P-poll__networl_0_4_AI_4" + "P-poll__networl_0_4_AnnP_0" + "P-poll__networl_0_4_AnnP_1" + "P-poll__networl_0_4_AnnP_2" + "P-poll__networl_0_4_AnnP_3" + "P-poll__networl_0_4_AnnP_4" + "P-poll__networl_0_4_RP_0" + "P-poll__networl_0_4_RP_1" + "P-poll__networl_0_4_RP_2" + "P-poll__networl_0_4_RP_3" + "P-poll__networl_0_4_RP_4" + "P-poll__networl_1_0_AskP_0" + "P-poll__networl_1_0_AskP_1" + "P-poll__networl_1_0_AskP_2" + "P-poll__networl_1_0_AskP_3" + "P-poll__networl_1_0_AskP_4" + "P-poll__networl_1_0_AnsP_0" + "P-poll__networl_1_0_AnsP_1" + "P-poll__networl_1_0_AnsP_2" + "P-poll__networl_1_0_AnsP_3" + "P-poll__networl_1_0_AnsP_4" + "P-poll__networl_1_0_RI_0" + "P-poll__networl_1_0_RI_1" + "P-poll__networl_1_0_RI_2" + "P-poll__networl_1_0_RI_3" + "P-poll__networl_1_0_RI_4" + "P-poll__networl_1_0_AI_0" + "P-poll__networl_1_0_AI_1" + "P-poll__networl_1_0_AI_2" + "P-poll__networl_1_0_AI_3" + "P-poll__networl_1_0_AI_4" + "P-poll__networl_1_0_AnnP_0" + "P-poll__networl_1_0_AnnP_1" + "P-poll__networl_1_0_AnnP_2" + "P-poll__networl_1_0_AnnP_3" + "P-poll__networl_1_0_AnnP_4" + "P-poll__networl_1_0_RP_0" + "P-poll__networl_1_0_RP_1" + "P-poll__networl_1_0_RP_2" + "P-poll__networl_1_0_RP_3" + "P-poll__networl_1_0_RP_4" + "P-poll__networl_1_1_AskP_0" + "P-poll__networl_1_1_AskP_1" + "P-poll__networl_1_1_AskP_2" + "P-poll__networl_1_1_AskP_3" + "P-poll__networl_1_1_AskP_4" + "P-poll__networl_1_1_AnsP_0" + "P-poll__networl_1_1_AnsP_1" + "P-poll__networl_1_1_AnsP_2" + "P-poll__networl_1_1_AnsP_3" + "P-poll__networl_1_1_AnsP_4" + "P-poll__networl_1_1_RI_0" + "P-poll__networl_1_1_RI_1" + "P-poll__networl_1_1_RI_2" + "P-poll__networl_1_1_RI_3" + "P-poll__networl_1_1_RI_4" + "P-poll__networl_1_1_AI_0" + "P-poll__networl_1_1_AI_1" + "P-poll__networl_1_1_AI_2" + "P-poll__networl_1_1_AI_3" + "P-poll__networl_1_1_AI_4" + "P-poll__networl_1_1_AnnP_0" + "P-poll__networl_1_1_AnnP_1" + "P-poll__networl_1_1_AnnP_2" + "P-poll__networl_1_1_AnnP_3" + "P-poll__networl_1_1_AnnP_4" + "P-poll__networl_1_1_RP_0" + "P-poll__networl_1_1_RP_1" + "P-poll__networl_1_1_RP_2" + "P-poll__networl_1_1_RP_3" + "P-poll__networl_1_1_RP_4" + "P-poll__networl_1_2_AskP_0" + "P-poll__networl_1_2_AskP_1" + "P-poll__networl_1_2_AskP_2" + "P-poll__networl_1_2_AskP_3" + "P-poll__networl_1_2_AskP_4" + "P-poll__networl_1_2_AnsP_0" + "P-poll__networl_1_2_AnsP_1" + "P-poll__networl_1_2_AnsP_2" + "P-poll__networl_1_2_AnsP_3" + "P-poll__networl_1_2_AnsP_4" + "P-poll__networl_1_2_RI_0" + "P-poll__networl_1_2_RI_1" + "P-poll__networl_1_2_RI_2" + "P-poll__networl_1_2_RI_3" + "P-poll__networl_1_2_RI_4" + "P-poll__networl_1_2_AI_0" + "P-poll__networl_1_2_AI_1" + "P-poll__networl_1_2_AI_2" + "P-poll__networl_1_2_AI_3" + "P-poll__networl_1_2_AI_4" + "P-poll__networl_1_2_AnnP_0" + "P-poll__networl_1_2_AnnP_1" + "P-poll__networl_1_2_AnnP_2" + "P-poll__networl_1_2_AnnP_3" + "P-poll__networl_1_2_AnnP_4" + "P-poll__networl_1_2_RP_0" + "P-poll__networl_1_2_RP_1" + "P-poll__networl_1_2_RP_2" + "P-poll__networl_1_2_RP_3" + "P-poll__networl_1_2_RP_4" + "P-poll__networl_1_3_AskP_0" + "P-poll__networl_1_3_AskP_1" + "P-poll__networl_1_3_AskP_2" + "P-poll__networl_1_3_AskP_3" + "P-poll__networl_1_3_AskP_4" + "P-poll__networl_1_3_AnsP_0" + "P-poll__networl_1_3_AnsP_1" + "P-poll__networl_1_3_AnsP_2" + "P-poll__networl_1_3_AnsP_3" + "P-poll__networl_1_3_AnsP_4" + "P-poll__networl_1_3_RI_0" + "P-poll__networl_1_3_RI_1" + "P-poll__networl_1_3_RI_2" + "P-poll__networl_1_3_RI_3" + "P-poll__networl_1_3_RI_4" + "P-poll__networl_1_3_AI_0" + "P-poll__networl_1_3_AI_1" + "P-poll__networl_1_3_AI_2" + "P-poll__networl_1_3_AI_3" + "P-poll__networl_1_3_AI_4" + "P-poll__networl_1_3_AnnP_0" + "P-poll__networl_1_3_AnnP_1" + "P-poll__networl_1_3_AnnP_2" + "P-poll__networl_1_3_AnnP_3" + "P-poll__networl_1_3_AnnP_4" + "P-poll__networl_1_3_RP_0" + "P-poll__networl_1_3_RP_1" + "P-poll__networl_1_3_RP_2" + "P-poll__networl_1_3_RP_3" + "P-poll__networl_1_3_RP_4" + "P-poll__networl_1_4_AskP_0" + "P-poll__networl_1_4_AskP_1" + "P-poll__networl_1_4_AskP_2" + "P-poll__networl_1_4_AskP_3" + "P-poll__networl_1_4_AskP_4" + "P-poll__networl_1_4_AnsP_0" + "P-poll__networl_1_4_AnsP_1" + "P-poll__networl_1_4_AnsP_2" + "P-poll__networl_1_4_AnsP_3" + "P-poll__networl_1_4_AnsP_4" + "P-poll__networl_1_4_RI_0" + "P-poll__networl_1_4_RI_1" + "P-poll__networl_1_4_RI_2" + "P-poll__networl_1_4_RI_3" + "P-poll__networl_1_4_RI_4" + "P-poll__networl_1_4_AI_0" + "P-poll__networl_1_4_AI_1" + "P-poll__networl_1_4_AI_2" + "P-poll__networl_1_4_AI_3" + "P-poll__networl_1_4_AI_4" + "P-poll__networl_1_4_AnnP_0" + "P-poll__networl_1_4_AnnP_1" + "P-poll__networl_1_4_AnnP_2" + "P-poll__networl_1_4_AnnP_3" + "P-poll__networl_1_4_AnnP_4" + "P-poll__networl_1_4_RP_0" + "P-poll__networl_1_4_RP_1" + "P-poll__networl_1_4_RP_2" + "P-poll__networl_1_4_RP_3" + "P-poll__networl_1_4_RP_4" + "P-poll__networl_2_0_AskP_0" + "P-poll__networl_2_0_AskP_1" + "P-poll__networl_2_0_AskP_2" + "P-poll__networl_2_0_AskP_3" + "P-poll__networl_2_0_AskP_4" + "P-poll__networl_2_0_AnsP_0" + "P-poll__networl_2_0_AnsP_1" + "P-poll__networl_2_0_AnsP_2" + "P-poll__networl_2_0_AnsP_3" + "P-poll__networl_2_0_AnsP_4" + "P-poll__networl_2_0_RI_0" + "P-poll__networl_2_0_RI_1" + "P-poll__networl_2_0_RI_2" + "P-poll__networl_2_0_RI_3" + "P-poll__networl_2_0_RI_4" + "P-poll__networl_2_0_AI_0" + "P-poll__networl_2_0_AI_1" + "P-poll__networl_2_0_AI_2" + "P-poll__networl_2_0_AI_3" + "P-poll__networl_2_0_AI_4" + "P-poll__networl_2_0_AnnP_0" + "P-poll__networl_2_0_AnnP_1" + "P-poll__networl_2_0_AnnP_2" + "P-poll__networl_2_0_AnnP_3" + "P-poll__networl_2_0_AnnP_4" + "P-poll__networl_2_0_RP_0" + "P-poll__networl_2_0_RP_1" + "P-poll__networl_2_0_RP_2" + "P-poll__networl_2_0_RP_3" + "P-poll__networl_2_0_RP_4" + "P-poll__networl_2_1_AskP_0" + "P-poll__networl_2_1_AskP_1" + "P-poll__networl_2_1_AskP_2" + "P-poll__networl_2_1_AskP_3" + "P-poll__networl_2_1_AskP_4" + "P-poll__networl_2_1_AnsP_0" + "P-poll__networl_2_1_AnsP_1" + "P-poll__networl_2_1_AnsP_2" + "P-poll__networl_2_1_AnsP_3" + "P-poll__networl_2_1_AnsP_4" + "P-poll__networl_2_1_RI_0" + "P-poll__networl_2_1_RI_1" + "P-poll__networl_2_1_RI_2" + "P-poll__networl_2_1_RI_3" + "P-poll__networl_2_1_RI_4" + "P-poll__networl_2_1_AI_0" + "P-poll__networl_2_1_AI_1" + "P-poll__networl_2_1_AI_2" + "P-poll__networl_2_1_AI_3" + "P-poll__networl_2_1_AI_4" + "P-poll__networl_2_1_AnnP_0" + "P-poll__networl_2_1_AnnP_1" + "P-poll__networl_2_1_AnnP_2" + "P-poll__networl_2_1_AnnP_3" + "P-poll__networl_2_1_AnnP_4" + "P-poll__networl_2_1_RP_0" + "P-poll__networl_2_1_RP_1" + "P-poll__networl_2_1_RP_2" + "P-poll__networl_2_1_RP_3" + "P-poll__networl_2_1_RP_4" + "P-poll__networl_2_2_AskP_0" + "P-poll__networl_2_2_AskP_1" + "P-poll__networl_2_2_AskP_2" + "P-poll__networl_2_2_AskP_3" + "P-poll__networl_2_2_AskP_4" + "P-poll__networl_2_2_AnsP_0" + "P-poll__networl_2_2_AnsP_1" + "P-poll__networl_2_2_AnsP_2" + "P-poll__networl_2_2_AnsP_3" + "P-poll__networl_2_2_AnsP_4" + "P-poll__networl_2_2_RI_0" + "P-poll__networl_2_2_RI_1" + "P-poll__networl_2_2_RI_2" + "P-poll__networl_2_2_RI_3" + "P-poll__networl_2_2_RI_4" + "P-poll__networl_2_2_AI_0" + "P-poll__networl_2_2_AI_1" + "P-poll__networl_2_2_AI_2" + "P-poll__networl_2_2_AI_3" + "P-poll__networl_2_2_AI_4" + "P-poll__networl_2_2_AnnP_0" + "P-poll__networl_2_2_AnnP_1" + "P-poll__networl_2_2_AnnP_2" + "P-poll__networl_2_2_AnnP_3" + "P-poll__networl_2_2_AnnP_4" + "P-poll__networl_2_2_RP_0" + "P-poll__networl_2_2_RP_1" + "P-poll__networl_2_2_RP_2" + "P-poll__networl_2_2_RP_3" + "P-poll__networl_2_2_RP_4" + "P-poll__networl_2_3_AskP_0" + "P-poll__networl_2_3_AskP_1" + "P-poll__networl_2_3_AskP_2" + "P-poll__networl_2_3_AskP_3" + "P-poll__networl_2_3_AskP_4" + "P-poll__networl_2_3_AnsP_0" + "P-poll__networl_2_3_AnsP_1" + "P-poll__networl_2_3_AnsP_2" + "P-poll__networl_2_3_AnsP_3" + "P-poll__networl_2_3_AnsP_4" + "P-poll__networl_2_3_RI_0" + "P-poll__networl_2_3_RI_1" + "P-poll__networl_2_3_RI_2" + "P-poll__networl_2_3_RI_3" + "P-poll__networl_2_3_RI_4" + "P-poll__networl_2_3_AI_0" + "P-poll__networl_2_3_AI_1" + "P-poll__networl_2_3_AI_2" + "P-poll__networl_2_3_AI_3" + "P-poll__networl_2_3_AI_4" + "P-poll__networl_2_3_AnnP_0" + "P-poll__networl_2_3_AnnP_1" + "P-poll__networl_2_3_AnnP_2" + "P-poll__networl_2_3_AnnP_3" + "P-poll__networl_2_3_AnnP_4" + "P-poll__networl_2_3_RP_0" + "P-poll__networl_2_3_RP_1" + "P-poll__networl_2_3_RP_2" + "P-poll__networl_2_3_RP_3" + "P-poll__networl_2_3_RP_4" + "P-poll__networl_2_4_AskP_0" + "P-poll__networl_2_4_AskP_1" + "P-poll__networl_2_4_AskP_2" + "P-poll__networl_2_4_AskP_3" + "P-poll__networl_2_4_AskP_4" + "P-poll__networl_2_4_AnsP_0" + "P-poll__networl_2_4_AnsP_1" + "P-poll__networl_2_4_AnsP_2" + "P-poll__networl_2_4_AnsP_3" + "P-poll__networl_2_4_AnsP_4" + "P-poll__networl_2_4_RI_0" + "P-poll__networl_2_4_RI_1" + "P-poll__networl_2_4_RI_2" + "P-poll__networl_2_4_RI_3" + "P-poll__networl_2_4_RI_4" + "P-poll__networl_2_4_AI_0" + "P-poll__networl_2_4_AI_1" + "P-poll__networl_2_4_AI_2" + "P-poll__networl_2_4_AI_3" + "P-poll__networl_2_4_AI_4" + "P-poll__networl_2_4_AnnP_0" + "P-poll__networl_2_4_AnnP_1" + "P-poll__networl_2_4_AnnP_2" + "P-poll__networl_2_4_AnnP_3" + "P-poll__networl_2_4_AnnP_4" + "P-poll__networl_2_4_RP_0" + "P-poll__networl_2_4_RP_1" + "P-poll__networl_2_4_RP_2" + "P-poll__networl_2_4_RP_3" + "P-poll__networl_2_4_RP_4" + "P-poll__networl_3_0_AskP_0" + "P-poll__networl_3_0_AskP_1" + "P-poll__networl_3_0_AskP_2" + "P-poll__networl_3_0_AskP_3" + "P-poll__networl_3_0_AskP_4" + "P-poll__networl_3_0_AnsP_0" + "P-poll__networl_3_0_AnsP_1" + "P-poll__networl_3_0_AnsP_2" + "P-poll__networl_3_0_AnsP_3" + "P-poll__networl_3_0_AnsP_4" + "P-poll__networl_3_0_RI_0" + "P-poll__networl_3_0_RI_1" + "P-poll__networl_3_0_RI_2" + "P-poll__networl_3_0_RI_3" + "P-poll__networl_3_0_RI_4" + "P-poll__networl_3_0_AI_0" + "P-poll__networl_3_0_AI_1" + "P-poll__networl_3_0_AI_2" + "P-poll__networl_3_0_AI_3" + "P-poll__networl_3_0_AI_4" + "P-poll__networl_3_0_AnnP_0" + "P-poll__networl_3_0_AnnP_1" + "P-poll__networl_3_0_AnnP_2" + "P-poll__networl_3_0_AnnP_3" + "P-poll__networl_3_0_AnnP_4" + "P-poll__networl_3_0_RP_0" + "P-poll__networl_3_0_RP_1" + "P-poll__networl_3_0_RP_2" + "P-poll__networl_3_0_RP_3" + "P-poll__networl_3_0_RP_4" + "P-poll__networl_3_1_AskP_0" + "P-poll__networl_3_1_AskP_1" + "P-poll__networl_3_1_AskP_2" + "P-poll__networl_3_1_AskP_3" + "P-poll__networl_3_1_AskP_4" + "P-poll__networl_3_1_AnsP_0" + "P-poll__networl_3_1_AnsP_1" + "P-poll__networl_3_1_AnsP_2" + "P-poll__networl_3_1_AnsP_3" + "P-poll__networl_3_1_AnsP_4" + "P-poll__networl_3_1_RI_0" + "P-poll__networl_3_1_RI_1" + "P-poll__networl_3_1_RI_2" + "P-poll__networl_3_1_RI_3" + "P-poll__networl_3_1_RI_4" + "P-poll__networl_3_1_AI_0" + "P-poll__networl_3_1_AI_1" + "P-poll__networl_3_1_AI_2" + "P-poll__networl_3_1_AI_3" + "P-poll__networl_3_1_AI_4" + "P-poll__networl_3_1_AnnP_0" + "P-poll__networl_3_1_AnnP_1" + "P-poll__networl_3_1_AnnP_2" + "P-poll__networl_3_1_AnnP_3" + "P-poll__networl_3_1_AnnP_4" + "P-poll__networl_3_1_RP_0" + "P-poll__networl_3_1_RP_1" + "P-poll__networl_3_1_RP_2" + "P-poll__networl_3_1_RP_3" + "P-poll__networl_3_1_RP_4" + "P-poll__networl_3_2_AskP_0" + "P-poll__networl_3_2_AskP_1" + "P-poll__networl_3_2_AskP_2" + "P-poll__networl_3_2_AskP_3" + "P-poll__networl_3_2_AskP_4" + "P-poll__networl_3_2_AnsP_0" + "P-poll__networl_3_2_AnsP_1" + "P-poll__networl_3_2_AnsP_2" + "P-poll__networl_3_2_AnsP_3" + "P-poll__networl_3_2_AnsP_4" + "P-poll__networl_3_2_RI_0" + "P-poll__networl_3_2_RI_1" + "P-poll__networl_3_2_RI_2" + "P-poll__networl_3_2_RI_3" + "P-poll__networl_3_2_RI_4" + "P-poll__networl_3_2_AI_0" + "P-poll__networl_3_2_AI_1" + "P-poll__networl_3_2_AI_2" + "P-poll__networl_3_2_AI_3" + "P-poll__networl_3_2_AI_4" + "P-poll__networl_3_2_AnnP_0" + "P-poll__networl_3_2_AnnP_1" + "P-poll__networl_3_2_AnnP_2" + "P-poll__networl_3_2_AnnP_3" + "P-poll__networl_3_2_AnnP_4" + "P-poll__networl_3_2_RP_0" + "P-poll__networl_3_2_RP_1" + "P-poll__networl_3_2_RP_2" + "P-poll__networl_3_2_RP_3" + "P-poll__networl_3_2_RP_4" + "P-poll__networl_3_3_AskP_0" + "P-poll__networl_3_3_AskP_1" + "P-poll__networl_3_3_AskP_2" + "P-poll__networl_3_3_AskP_3" + "P-poll__networl_3_3_AskP_4" + "P-poll__networl_3_3_AnsP_0" + "P-poll__networl_3_3_AnsP_1" + "P-poll__networl_3_3_AnsP_2" + "P-poll__networl_3_3_AnsP_3" + "P-poll__networl_3_3_AnsP_4" + "P-poll__networl_3_3_RI_0" + "P-poll__networl_3_3_RI_1" + "P-poll__networl_3_3_RI_2" + "P-poll__networl_3_3_RI_3" + "P-poll__networl_3_3_RI_4" + "P-poll__networl_3_3_AI_0" + "P-poll__networl_3_3_AI_1" + "P-poll__networl_3_3_AI_2" + "P-poll__networl_3_3_AI_3" + "P-poll__networl_3_3_AI_4" + "P-poll__networl_3_3_AnnP_0" + "P-poll__networl_3_3_AnnP_1" + "P-poll__networl_3_3_AnnP_2" + "P-poll__networl_3_3_AnnP_3" + "P-poll__networl_3_3_AnnP_4" + "P-poll__networl_3_3_RP_0" + "P-poll__networl_3_3_RP_1" + "P-poll__networl_3_3_RP_2" + "P-poll__networl_3_3_RP_3" + "P-poll__networl_3_3_RP_4" + "P-poll__networl_3_4_AskP_0" + "P-poll__networl_3_4_AskP_1" + "P-poll__networl_3_4_AskP_2" + "P-poll__networl_3_4_AskP_3" + "P-poll__networl_3_4_AskP_4" + "P-poll__networl_3_4_AnsP_0" + "P-poll__networl_3_4_AnsP_1" + "P-poll__networl_3_4_AnsP_2" + "P-poll__networl_3_4_AnsP_3" + "P-poll__networl_3_4_AnsP_4" + "P-poll__networl_3_4_RI_0" + "P-poll__networl_3_4_RI_1" + "P-poll__networl_3_4_RI_2" + "P-poll__networl_3_4_RI_3" + "P-poll__networl_3_4_RI_4" + "P-poll__networl_3_4_AI_0" + "P-poll__networl_3_4_AI_1" + "P-poll__networl_3_4_AI_2" + "P-poll__networl_3_4_AI_3" + "P-poll__networl_3_4_AI_4" + "P-poll__networl_3_4_AnnP_0" + "P-poll__networl_3_4_AnnP_1" + "P-poll__networl_3_4_AnnP_2" + "P-poll__networl_3_4_AnnP_3" + "P-poll__networl_3_4_AnnP_4" + "P-poll__networl_3_4_RP_0" + "P-poll__networl_3_4_RP_1" + "P-poll__networl_3_4_RP_2" + "P-poll__networl_3_4_RP_3" + "P-poll__networl_3_4_RP_4" + "P-poll__networl_4_0_AskP_0" + "P-poll__networl_4_0_AskP_1" + "P-poll__networl_4_0_AskP_2" + "P-poll__networl_4_0_AskP_3" + "P-poll__networl_4_0_AskP_4" + "P-poll__networl_4_0_AnsP_0" + "P-poll__networl_4_0_AnsP_1" + "P-poll__networl_4_0_AnsP_2" + "P-poll__networl_4_0_AnsP_3" + "P-poll__networl_4_0_AnsP_4" + "P-poll__networl_4_0_RI_0" + "P-poll__networl_4_0_RI_1" + "P-poll__networl_4_0_RI_2" + "P-poll__networl_4_0_RI_3" + "P-poll__networl_4_0_RI_4" + "P-poll__networl_4_0_AI_0" + "P-poll__networl_4_0_AI_1" + "P-poll__networl_4_0_AI_2" + "P-poll__networl_4_0_AI_3" + "P-poll__networl_4_0_AI_4" + "P-poll__networl_4_0_AnnP_0" + "P-poll__networl_4_0_AnnP_1" + "P-poll__networl_4_0_AnnP_2" + "P-poll__networl_4_0_AnnP_3" + "P-poll__networl_4_0_AnnP_4" + "P-poll__networl_4_0_RP_0" + "P-poll__networl_4_0_RP_1" + "P-poll__networl_4_0_RP_2" + "P-poll__networl_4_0_RP_3" + "P-poll__networl_4_0_RP_4" + "P-poll__networl_4_1_AskP_0" + "P-poll__networl_4_1_AskP_1" + "P-poll__networl_4_1_AskP_2" + "P-poll__networl_4_1_AskP_3" + "P-poll__networl_4_1_AskP_4" + "P-poll__networl_4_1_AnsP_0" + "P-poll__networl_4_1_AnsP_1" + "P-poll__networl_4_1_AnsP_2" + "P-poll__networl_4_1_AnsP_3" + "P-poll__networl_4_1_AnsP_4" + "P-poll__networl_4_1_RI_0" + "P-poll__networl_4_1_RI_1" + "P-poll__networl_4_1_RI_2" + "P-poll__networl_4_1_RI_3" + "P-poll__networl_4_1_RI_4" + "P-poll__networl_4_1_AI_0" + "P-poll__networl_4_1_AI_1" + "P-poll__networl_4_1_AI_2" + "P-poll__networl_4_1_AI_3" + "P-poll__networl_4_1_AI_4" + "P-poll__networl_4_1_AnnP_0" + "P-poll__networl_4_1_AnnP_1" + "P-poll__networl_4_1_AnnP_2" + "P-poll__networl_4_1_AnnP_3" + "P-poll__networl_4_1_AnnP_4" + "P-poll__networl_4_1_RP_0" + "P-poll__networl_4_1_RP_1" + "P-poll__networl_4_1_RP_2" + "P-poll__networl_4_1_RP_3" + "P-poll__networl_4_1_RP_4" + "P-poll__networl_4_2_AskP_0" + "P-poll__networl_4_2_AskP_1" + "P-poll__networl_4_2_AskP_2" + "P-poll__networl_4_2_AskP_3" + "P-poll__networl_4_2_AskP_4" + "P-poll__networl_4_2_AnsP_0" + "P-poll__networl_4_2_AnsP_1" + "P-poll__networl_4_2_AnsP_2" + "P-poll__networl_4_2_AnsP_3" + "P-poll__networl_4_2_AnsP_4" + "P-poll__networl_4_2_RI_0" + "P-poll__networl_4_2_RI_1" + "P-poll__networl_4_2_RI_2" + "P-poll__networl_4_2_RI_3" + "P-poll__networl_4_2_RI_4" + "P-poll__networl_4_2_AI_0" + "P-poll__networl_4_2_AI_1" + "P-poll__networl_4_2_AI_2" + "P-poll__networl_4_2_AI_3" + "P-poll__networl_4_2_AI_4" + "P-poll__networl_4_2_AnnP_0" + "P-poll__networl_4_2_AnnP_1" + "P-poll__networl_4_2_AnnP_2" + "P-poll__networl_4_2_AnnP_3" + "P-poll__networl_4_2_AnnP_4" + "P-poll__networl_4_2_RP_0" + "P-poll__networl_4_2_RP_1" + "P-poll__networl_4_2_RP_2" + "P-poll__networl_4_2_RP_3" + "P-poll__networl_4_2_RP_4" + "P-poll__networl_4_3_AskP_0" + "P-poll__networl_4_3_AskP_1" + "P-poll__networl_4_3_AskP_2" + "P-poll__networl_4_3_AskP_3" + "P-poll__networl_4_3_AskP_4" + "P-poll__networl_4_3_AnsP_0" + "P-poll__networl_4_3_AnsP_1" + "P-poll__networl_4_3_AnsP_2" + "P-poll__networl_4_3_AnsP_3" + "P-poll__networl_4_3_AnsP_4" + "P-poll__networl_4_3_RI_0" + "P-poll__networl_4_3_RI_1" + "P-poll__networl_4_3_RI_2" + "P-poll__networl_4_3_RI_3" + "P-poll__networl_4_3_RI_4" + "P-poll__networl_4_3_AI_0" + "P-poll__networl_4_3_AI_1" + "P-poll__networl_4_3_AI_2" + "P-poll__networl_4_3_AI_3" + "P-poll__networl_4_3_AI_4" + "P-poll__networl_4_3_AnnP_0" + "P-poll__networl_4_3_AnnP_1" + "P-poll__networl_4_3_AnnP_2" + "P-poll__networl_4_3_AnnP_3" + "P-poll__networl_4_3_AnnP_4" + "P-poll__networl_4_3_RP_0" + "P-poll__networl_4_3_RP_1" + "P-poll__networl_4_3_RP_2" + "P-poll__networl_4_3_RP_3" + "P-poll__networl_4_3_RP_4" + "P-poll__networl_4_4_AskP_0" + "P-poll__networl_4_4_AskP_1" + "P-poll__networl_4_4_AskP_2" + "P-poll__networl_4_4_AskP_3" + "P-poll__networl_4_4_AskP_4" + "P-poll__networl_4_4_AnsP_0" + "P-poll__networl_4_4_AnsP_1" + "P-poll__networl_4_4_AnsP_2" + "P-poll__networl_4_4_AnsP_3" + "P-poll__networl_4_4_AnsP_4" + "P-poll__networl_4_4_RI_0" + "P-poll__networl_4_4_RI_1" + "P-poll__networl_4_4_RI_2" + "P-poll__networl_4_4_RI_3" + "P-poll__networl_4_4_RI_4" + "P-poll__networl_4_4_AI_0" + "P-poll__networl_4_4_AI_1" + "P-poll__networl_4_4_AI_2" + "P-poll__networl_4_4_AI_3" + "P-poll__networl_4_4_AI_4" + "P-poll__networl_4_4_AnnP_0" + "P-poll__networl_4_4_AnnP_1" + "P-poll__networl_4_4_AnnP_2" + "P-poll__networl_4_4_AnnP_3" + "P-poll__networl_4_4_AnnP_4" + "P-poll__networl_4_4_RP_0" + "P-poll__networl_4_4_RP_1" + "P-poll__networl_4_4_RP_2" + "P-poll__networl_4_4_RP_3" + "P-poll__networl_4_4_RP_4"))) )

query: EF ( not((("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4") <= ("P-poll__networl_0_0_AskP_0" + "P-poll__networl_0_0_AskP_1" + "P-poll__networl_0_0_AskP_2" + "P-poll__networl_0_0_AskP_3" + "P-poll__networl_0_0_AskP_4" + "P-poll__networl_0_0_AnsP_0" + "P-poll__networl_0_0_AnsP_1" + "P-poll__networl_0_0_AnsP_2" + "P-poll__networl_0_0_AnsP_3" + "P-poll__networl_0_0_AnsP_4" + "P-poll__networl_0_0_RI_0" + "P-poll__networl_0_0_RI_1" + "P-poll__networl_0_0_RI_2" + "P-poll__networl_0_0_RI_3" + "P-poll__networl_0_0_RI_4" + "P-poll__networl_0_0_AI_0" + "P-poll__networl_0_0_AI_1" + "P-poll__networl_0_0_AI_2" + "P-poll__networl_0_0_AI_3" + "P-poll__networl_0_0_AI_4" + "P-poll__networl_0_0_AnnP_0" + "P-poll__networl_0_0_AnnP_1" + "P-poll__networl_0_0_AnnP_2" + "P-poll__networl_0_0_AnnP_3" + "P-poll__networl_0_0_AnnP_4" + "P-poll__networl_0_0_RP_0" + "P-poll__networl_0_0_RP_1" + "P-poll__networl_0_0_RP_2" + "P-poll__networl_0_0_RP_3" + "P-poll__networl_0_0_RP_4" + "P-poll__networl_0_1_AskP_0" + "P-poll__networl_0_1_AskP_1" + "P-poll__networl_0_1_AskP_2" + "P-poll__networl_0_1_AskP_3" + "P-poll__networl_0_1_AskP_4" + "P-poll__networl_0_1_AnsP_0" + "P-poll__networl_0_1_AnsP_1" + "P-poll__networl_0_1_AnsP_2" + "P-poll__networl_0_1_AnsP_3" + "P-poll__networl_0_1_AnsP_4" + "P-poll__networl_0_1_RI_0" + "P-poll__networl_0_1_RI_1" + "P-poll__networl_0_1_RI_2" + "P-poll__networl_0_1_RI_3" + "P-poll__networl_0_1_RI_4" + "P-poll__networl_0_1_AI_0" + "P-poll__networl_0_1_AI_1" + "P-poll__networl_0_1_AI_2" + "P-poll__networl_0_1_AI_3" + "P-poll__networl_0_1_AI_4" + "P-poll__networl_0_1_AnnP_0" + "P-poll__networl_0_1_AnnP_1" + "P-poll__networl_0_1_AnnP_2" + "P-poll__networl_0_1_AnnP_3" + "P-poll__networl_0_1_AnnP_4" + "P-poll__networl_0_1_RP_0" + "P-poll__networl_0_1_RP_1" + "P-poll__networl_0_1_RP_2" + "P-poll__networl_0_1_RP_3" + "P-poll__networl_0_1_RP_4" + "P-poll__networl_0_2_AskP_0" + "P-poll__networl_0_2_AskP_1" + "P-poll__networl_0_2_AskP_2" + "P-poll__networl_0_2_AskP_3" + "P-poll__networl_0_2_AskP_4" + "P-poll__networl_0_2_AnsP_0" + "P-poll__networl_0_2_AnsP_1" + "P-poll__networl_0_2_AnsP_2" + "P-poll__networl_0_2_AnsP_3" + "P-poll__networl_0_2_AnsP_4" + "P-poll__networl_0_2_RI_0" + "P-poll__networl_0_2_RI_1" + "P-poll__networl_0_2_RI_2" + "P-poll__networl_0_2_RI_3" + "P-poll__networl_0_2_RI_4" + "P-poll__networl_0_2_AI_0" + "P-poll__networl_0_2_AI_1" + "P-poll__networl_0_2_AI_2" + "P-poll__networl_0_2_AI_3" + "P-poll__networl_0_2_AI_4" + "P-poll__networl_0_2_AnnP_0" + "P-poll__networl_0_2_AnnP_1" + "P-poll__networl_0_2_AnnP_2" + "P-poll__networl_0_2_AnnP_3" + "P-poll__networl_0_2_AnnP_4" + "P-poll__networl_0_2_RP_0" + "P-poll__networl_0_2_RP_1" + "P-poll__networl_0_2_RP_2" + "P-poll__networl_0_2_RP_3" + "P-poll__networl_0_2_RP_4" + "P-poll__networl_0_3_AskP_0" + "P-poll__networl_0_3_AskP_1" + "P-poll__networl_0_3_AskP_2" + "P-poll__networl_0_3_AskP_3" + "P-poll__networl_0_3_AskP_4" + "P-poll__networl_0_3_AnsP_0" + "P-poll__networl_0_3_AnsP_1" + "P-poll__networl_0_3_AnsP_2" + "P-poll__networl_0_3_AnsP_3" + "P-poll__networl_0_3_AnsP_4" + "P-poll__networl_0_3_RI_0" + "P-poll__networl_0_3_RI_1" + "P-poll__networl_0_3_RI_2" + "P-poll__networl_0_3_RI_3" + "P-poll__networl_0_3_RI_4" + "P-poll__networl_0_3_AI_0" + "P-poll__networl_0_3_AI_1" + "P-poll__networl_0_3_AI_2" + "P-poll__networl_0_3_AI_3" + "P-poll__networl_0_3_AI_4" + "P-poll__networl_0_3_AnnP_0" + "P-poll__networl_0_3_AnnP_1" + "P-poll__networl_0_3_AnnP_2" + "P-poll__networl_0_3_AnnP_3" + "P-poll__networl_0_3_AnnP_4" + "P-poll__networl_0_3_RP_0" + "P-poll__networl_0_3_RP_1" + "P-poll__networl_0_3_RP_2" + "P-poll__networl_0_3_RP_3" + "P-poll__networl_0_3_RP_4" + "P-poll__networl_0_4_AskP_0" + "P-poll__networl_0_4_AskP_1" + "P-poll__networl_0_4_AskP_2" + "P-poll__networl_0_4_AskP_3" + "P-poll__networl_0_4_AskP_4" + "P-poll__networl_0_4_AnsP_0" + "P-poll__networl_0_4_AnsP_1" + "P-poll__networl_0_4_AnsP_2" + "P-poll__networl_0_4_AnsP_3" + "P-poll__networl_0_4_AnsP_4" + "P-poll__networl_0_4_RI_0" + "P-poll__networl_0_4_RI_1" + "P-poll__networl_0_4_RI_2" + "P-poll__networl_0_4_RI_3" + "P-poll__networl_0_4_RI_4" + "P-poll__networl_0_4_AI_0" + "P-poll__networl_0_4_AI_1" + "P-poll__networl_0_4_AI_2" + "P-poll__networl_0_4_AI_3" + "P-poll__networl_0_4_AI_4" + "P-poll__networl_0_4_AnnP_0" + "P-poll__networl_0_4_AnnP_1" + "P-poll__networl_0_4_AnnP_2" + "P-poll__networl_0_4_AnnP_3" + "P-poll__networl_0_4_AnnP_4" + "P-poll__networl_0_4_RP_0" + "P-poll__networl_0_4_RP_1" + "P-poll__networl_0_4_RP_2" + "P-poll__networl_0_4_RP_3" + "P-poll__networl_0_4_RP_4" + "P-poll__networl_1_0_AskP_0" + "P-poll__networl_1_0_AskP_1" + "P-poll__networl_1_0_AskP_2" + "P-poll__networl_1_0_AskP_3" + "P-poll__networl_1_0_AskP_4" + "P-poll__networl_1_0_AnsP_0" + "P-poll__networl_1_0_AnsP_1" + "P-poll__networl_1_0_AnsP_2" + "P-poll__networl_1_0_AnsP_3" + "P-poll__networl_1_0_AnsP_4" + "P-poll__networl_1_0_RI_0" + "P-poll__networl_1_0_RI_1" + "P-poll__networl_1_0_RI_2" + "P-poll__networl_1_0_RI_3" + "P-poll__networl_1_0_RI_4" + "P-poll__networl_1_0_AI_0" + "P-poll__networl_1_0_AI_1" + "P-poll__networl_1_0_AI_2" + "P-poll__networl_1_0_AI_3" + "P-poll__networl_1_0_AI_4" + "P-poll__networl_1_0_AnnP_0" + "P-poll__networl_1_0_AnnP_1" + "P-poll__networl_1_0_AnnP_2" + "P-poll__networl_1_0_AnnP_3" + "P-poll__networl_1_0_AnnP_4" + "P-poll__networl_1_0_RP_0" + "P-poll__networl_1_0_RP_1" + "P-poll__networl_1_0_RP_2" + "P-poll__networl_1_0_RP_3" + "P-poll__networl_1_0_RP_4" + "P-poll__networl_1_1_AskP_0" + "P-poll__networl_1_1_AskP_1" + "P-poll__networl_1_1_AskP_2" + "P-poll__networl_1_1_AskP_3" + "P-poll__networl_1_1_AskP_4" + "P-poll__networl_1_1_AnsP_0" + "P-poll__networl_1_1_AnsP_1" + "P-poll__networl_1_1_AnsP_2" + "P-poll__networl_1_1_AnsP_3" + "P-poll__networl_1_1_AnsP_4" + "P-poll__networl_1_1_RI_0" + "P-poll__networl_1_1_RI_1" + "P-poll__networl_1_1_RI_2" + "P-poll__networl_1_1_RI_3" + "P-poll__networl_1_1_RI_4" + "P-poll__networl_1_1_AI_0" + "P-poll__networl_1_1_AI_1" + "P-poll__networl_1_1_AI_2" + "P-poll__networl_1_1_AI_3" + "P-poll__networl_1_1_AI_4" + "P-poll__networl_1_1_AnnP_0" + "P-poll__networl_1_1_AnnP_1" + "P-poll__networl_1_1_AnnP_2" + "P-poll__networl_1_1_AnnP_3" + "P-poll__networl_1_1_AnnP_4" + "P-poll__networl_1_1_RP_0" + "P-poll__networl_1_1_RP_1" + "P-poll__networl_1_1_RP_2" + "P-poll__networl_1_1_RP_3" + "P-poll__networl_1_1_RP_4" + "P-poll__networl_1_2_AskP_0" + "P-poll__networl_1_2_AskP_1" + "P-poll__networl_1_2_AskP_2" + "P-poll__networl_1_2_AskP_3" + "P-poll__networl_1_2_AskP_4" + "P-poll__networl_1_2_AnsP_0" + "P-poll__networl_1_2_AnsP_1" + "P-poll__networl_1_2_AnsP_2" + "P-poll__networl_1_2_AnsP_3" + "P-poll__networl_1_2_AnsP_4" + "P-poll__networl_1_2_RI_0" + "P-poll__networl_1_2_RI_1" + "P-poll__networl_1_2_RI_2" + "P-poll__networl_1_2_RI_3" + "P-poll__networl_1_2_RI_4" + "P-poll__networl_1_2_AI_0" + "P-poll__networl_1_2_AI_1" + "P-poll__networl_1_2_AI_2" + "P-poll__networl_1_2_AI_3" + "P-poll__networl_1_2_AI_4" + "P-poll__networl_1_2_AnnP_0" + "P-poll__networl_1_2_AnnP_1" + "P-poll__networl_1_2_AnnP_2" + "P-poll__networl_1_2_AnnP_3" + "P-poll__networl_1_2_AnnP_4" + "P-poll__networl_1_2_RP_0" + "P-poll__networl_1_2_RP_1" + "P-poll__networl_1_2_RP_2" + "P-poll__networl_1_2_RP_3" + "P-poll__networl_1_2_RP_4" + "P-poll__networl_1_3_AskP_0" + "P-poll__networl_1_3_AskP_1" + "P-poll__networl_1_3_AskP_2" + "P-poll__networl_1_3_AskP_3" + "P-poll__networl_1_3_AskP_4" + "P-poll__networl_1_3_AnsP_0" + "P-poll__networl_1_3_AnsP_1" + "P-poll__networl_1_3_AnsP_2" + "P-poll__networl_1_3_AnsP_3" + "P-poll__networl_1_3_AnsP_4" + "P-poll__networl_1_3_RI_0" + "P-poll__networl_1_3_RI_1" + "P-poll__networl_1_3_RI_2" + "P-poll__networl_1_3_RI_3" + "P-poll__networl_1_3_RI_4" + "P-poll__networl_1_3_AI_0" + "P-poll__networl_1_3_AI_1" + "P-poll__networl_1_3_AI_2" + "P-poll__networl_1_3_AI_3" + "P-poll__networl_1_3_AI_4" + "P-poll__networl_1_3_AnnP_0" + "P-poll__networl_1_3_AnnP_1" + "P-poll__networl_1_3_AnnP_2" + "P-poll__networl_1_3_AnnP_3" + "P-poll__networl_1_3_AnnP_4" + "P-poll__networl_1_3_RP_0" + "P-poll__networl_1_3_RP_1" + "P-poll__networl_1_3_RP_2" + "P-poll__networl_1_3_RP_3" + "P-poll__networl_1_3_RP_4" + "P-poll__networl_1_4_AskP_0" + "P-poll__networl_1_4_AskP_1" + "P-poll__networl_1_4_AskP_2" + "P-poll__networl_1_4_AskP_3" + "P-poll__networl_1_4_AskP_4" + "P-poll__networl_1_4_AnsP_0" + "P-poll__networl_1_4_AnsP_1" + "P-poll__networl_1_4_AnsP_2" + "P-poll__networl_1_4_AnsP_3" + "P-poll__networl_1_4_AnsP_4" + "P-poll__networl_1_4_RI_0" + "P-poll__networl_1_4_RI_1" + "P-poll__networl_1_4_RI_2" + "P-poll__networl_1_4_RI_3" + "P-poll__networl_1_4_RI_4" + "P-poll__networl_1_4_AI_0" + "P-poll__networl_1_4_AI_1" + "P-poll__networl_1_4_AI_2" + "P-poll__networl_1_4_AI_3" + "P-poll__networl_1_4_AI_4" + "P-poll__networl_1_4_AnnP_0" + "P-poll__networl_1_4_AnnP_1" + "P-poll__networl_1_4_AnnP_2" + "P-poll__networl_1_4_AnnP_3" + "P-poll__networl_1_4_AnnP_4" + "P-poll__networl_1_4_RP_0" + "P-poll__networl_1_4_RP_1" + "P-poll__networl_1_4_RP_2" + "P-poll__networl_1_4_RP_3" + "P-poll__networl_1_4_RP_4" + "P-poll__networl_2_0_AskP_0" + "P-poll__networl_2_0_AskP_1" + "P-poll__networl_2_0_AskP_2" + "P-poll__networl_2_0_AskP_3" + "P-poll__networl_2_0_AskP_4" + "P-poll__networl_2_0_AnsP_0" + "P-poll__networl_2_0_AnsP_1" + "P-poll__networl_2_0_AnsP_2" + "P-poll__networl_2_0_AnsP_3" + "P-poll__networl_2_0_AnsP_4" + "P-poll__networl_2_0_RI_0" + "P-poll__networl_2_0_RI_1" + "P-poll__networl_2_0_RI_2" + "P-poll__networl_2_0_RI_3" + "P-poll__networl_2_0_RI_4" + "P-poll__networl_2_0_AI_0" + "P-poll__networl_2_0_AI_1" + "P-poll__networl_2_0_AI_2" + "P-poll__networl_2_0_AI_3" + "P-poll__networl_2_0_AI_4" + "P-poll__networl_2_0_AnnP_0" + "P-poll__networl_2_0_AnnP_1" + "P-poll__networl_2_0_AnnP_2" + "P-poll__networl_2_0_AnnP_3" + "P-poll__networl_2_0_AnnP_4" + "P-poll__networl_2_0_RP_0" + "P-poll__networl_2_0_RP_1" + "P-poll__networl_2_0_RP_2" + "P-poll__networl_2_0_RP_3" + "P-poll__networl_2_0_RP_4" + "P-poll__networl_2_1_AskP_0" + "P-poll__networl_2_1_AskP_1" + "P-poll__networl_2_1_AskP_2" + "P-poll__networl_2_1_AskP_3" + "P-poll__networl_2_1_AskP_4" + "P-poll__networl_2_1_AnsP_0" + "P-poll__networl_2_1_AnsP_1" + "P-poll__networl_2_1_AnsP_2" + "P-poll__networl_2_1_AnsP_3" + "P-poll__networl_2_1_AnsP_4" + "P-poll__networl_2_1_RI_0" + "P-poll__networl_2_1_RI_1" + "P-poll__networl_2_1_RI_2" + "P-poll__networl_2_1_RI_3" + "P-poll__networl_2_1_RI_4" + "P-poll__networl_2_1_AI_0" + "P-poll__networl_2_1_AI_1" + "P-poll__networl_2_1_AI_2" + "P-poll__networl_2_1_AI_3" + "P-poll__networl_2_1_AI_4" + "P-poll__networl_2_1_AnnP_0" + "P-poll__networl_2_1_AnnP_1" + "P-poll__networl_2_1_AnnP_2" + "P-poll__networl_2_1_AnnP_3" + "P-poll__networl_2_1_AnnP_4" + "P-poll__networl_2_1_RP_0" + "P-poll__networl_2_1_RP_1" + "P-poll__networl_2_1_RP_2" + "P-poll__networl_2_1_RP_3" + "P-poll__networl_2_1_RP_4" + "P-poll__networl_2_2_AskP_0" + "P-poll__networl_2_2_AskP_1" + "P-poll__networl_2_2_AskP_2" + "P-poll__networl_2_2_AskP_3" + "P-poll__networl_2_2_AskP_4" + "P-poll__networl_2_2_AnsP_0" + "P-poll__networl_2_2_AnsP_1" + "P-poll__networl_2_2_AnsP_2" + "P-poll__networl_2_2_AnsP_3" + "P-poll__networl_2_2_AnsP_4" + "P-poll__networl_2_2_RI_0" + "P-poll__networl_2_2_RI_1" + "P-poll__networl_2_2_RI_2" + "P-poll__networl_2_2_RI_3" + "P-poll__networl_2_2_RI_4" + "P-poll__networl_2_2_AI_0" + "P-poll__networl_2_2_AI_1" + "P-poll__networl_2_2_AI_2" + "P-poll__networl_2_2_AI_3" + "P-poll__networl_2_2_AI_4" + "P-poll__networl_2_2_AnnP_0" + "P-poll__networl_2_2_AnnP_1" + "P-poll__networl_2_2_AnnP_2" + "P-poll__networl_2_2_AnnP_3" + "P-poll__networl_2_2_AnnP_4" + "P-poll__networl_2_2_RP_0" + "P-poll__networl_2_2_RP_1" + "P-poll__networl_2_2_RP_2" + "P-poll__networl_2_2_RP_3" + "P-poll__networl_2_2_RP_4" + "P-poll__networl_2_3_AskP_0" + "P-poll__networl_2_3_AskP_1" + "P-poll__networl_2_3_AskP_2" + "P-poll__networl_2_3_AskP_3" + "P-poll__networl_2_3_AskP_4" + "P-poll__networl_2_3_AnsP_0" + "P-poll__networl_2_3_AnsP_1" + "P-poll__networl_2_3_AnsP_2" + "P-poll__networl_2_3_AnsP_3" + "P-poll__networl_2_3_AnsP_4" + "P-poll__networl_2_3_RI_0" + "P-poll__networl_2_3_RI_1" + "P-poll__networl_2_3_RI_2" + "P-poll__networl_2_3_RI_3" + "P-poll__networl_2_3_RI_4" + "P-poll__networl_2_3_AI_0" + "P-poll__networl_2_3_AI_1" + "P-poll__networl_2_3_AI_2" + "P-poll__networl_2_3_AI_3" + "P-poll__networl_2_3_AI_4" + "P-poll__networl_2_3_AnnP_0" + "P-poll__networl_2_3_AnnP_1" + "P-poll__networl_2_3_AnnP_2" + "P-poll__networl_2_3_AnnP_3" + "P-poll__networl_2_3_AnnP_4" + "P-poll__networl_2_3_RP_0" + "P-poll__networl_2_3_RP_1" + "P-poll__networl_2_3_RP_2" + "P-poll__networl_2_3_RP_3" + "P-poll__networl_2_3_RP_4" + "P-poll__networl_2_4_AskP_0" + "P-poll__networl_2_4_AskP_1" + "P-poll__networl_2_4_AskP_2" + "P-poll__networl_2_4_AskP_3" + "P-poll__networl_2_4_AskP_4" + "P-poll__networl_2_4_AnsP_0" + "P-poll__networl_2_4_AnsP_1" + "P-poll__networl_2_4_AnsP_2" + "P-poll__networl_2_4_AnsP_3" + "P-poll__networl_2_4_AnsP_4" + "P-poll__networl_2_4_RI_0" + "P-poll__networl_2_4_RI_1" + "P-poll__networl_2_4_RI_2" + "P-poll__networl_2_4_RI_3" + "P-poll__networl_2_4_RI_4" + "P-poll__networl_2_4_AI_0" + "P-poll__networl_2_4_AI_1" + "P-poll__networl_2_4_AI_2" + "P-poll__networl_2_4_AI_3" + "P-poll__networl_2_4_AI_4" + "P-poll__networl_2_4_AnnP_0" + "P-poll__networl_2_4_AnnP_1" + "P-poll__networl_2_4_AnnP_2" + "P-poll__networl_2_4_AnnP_3" + "P-poll__networl_2_4_AnnP_4" + "P-poll__networl_2_4_RP_0" + "P-poll__networl_2_4_RP_1" + "P-poll__networl_2_4_RP_2" + "P-poll__networl_2_4_RP_3" + "P-poll__networl_2_4_RP_4" + "P-poll__networl_3_0_AskP_0" + "P-poll__networl_3_0_AskP_1" + "P-poll__networl_3_0_AskP_2" + "P-poll__networl_3_0_AskP_3" + "P-poll__networl_3_0_AskP_4" + "P-poll__networl_3_0_AnsP_0" + "P-poll__networl_3_0_AnsP_1" + "P-poll__networl_3_0_AnsP_2" + "P-poll__networl_3_0_AnsP_3" + "P-poll__networl_3_0_AnsP_4" + "P-poll__networl_3_0_RI_0" + "P-poll__networl_3_0_RI_1" + "P-poll__networl_3_0_RI_2" + "P-poll__networl_3_0_RI_3" + "P-poll__networl_3_0_RI_4" + "P-poll__networl_3_0_AI_0" + "P-poll__networl_3_0_AI_1" + "P-poll__networl_3_0_AI_2" + "P-poll__networl_3_0_AI_3" + "P-poll__networl_3_0_AI_4" + "P-poll__networl_3_0_AnnP_0" + "P-poll__networl_3_0_AnnP_1" + "P-poll__networl_3_0_AnnP_2" + "P-poll__networl_3_0_AnnP_3" + "P-poll__networl_3_0_AnnP_4" + "P-poll__networl_3_0_RP_0" + "P-poll__networl_3_0_RP_1" + "P-poll__networl_3_0_RP_2" + "P-poll__networl_3_0_RP_3" + "P-poll__networl_3_0_RP_4" + "P-poll__networl_3_1_AskP_0" + "P-poll__networl_3_1_AskP_1" + "P-poll__networl_3_1_AskP_2" + "P-poll__networl_3_1_AskP_3" + "P-poll__networl_3_1_AskP_4" + "P-poll__networl_3_1_AnsP_0" + "P-poll__networl_3_1_AnsP_1" + "P-poll__networl_3_1_AnsP_2" + "P-poll__networl_3_1_AnsP_3" + "P-poll__networl_3_1_AnsP_4" + "P-poll__networl_3_1_RI_0" + "P-poll__networl_3_1_RI_1" + "P-poll__networl_3_1_RI_2" + "P-poll__networl_3_1_RI_3" + "P-poll__networl_3_1_RI_4" + "P-poll__networl_3_1_AI_0" + "P-poll__networl_3_1_AI_1" + "P-poll__networl_3_1_AI_2" + "P-poll__networl_3_1_AI_3" + "P-poll__networl_3_1_AI_4" + "P-poll__networl_3_1_AnnP_0" + "P-poll__networl_3_1_AnnP_1" + "P-poll__networl_3_1_AnnP_2" + "P-poll__networl_3_1_AnnP_3" + "P-poll__networl_3_1_AnnP_4" + "P-poll__networl_3_1_RP_0" + "P-poll__networl_3_1_RP_1" + "P-poll__networl_3_1_RP_2" + "P-poll__networl_3_1_RP_3" + "P-poll__networl_3_1_RP_4" + "P-poll__networl_3_2_AskP_0" + "P-poll__networl_3_2_AskP_1" + "P-poll__networl_3_2_AskP_2" + "P-poll__networl_3_2_AskP_3" + "P-poll__networl_3_2_AskP_4" + "P-poll__networl_3_2_AnsP_0" + "P-poll__networl_3_2_AnsP_1" + "P-poll__networl_3_2_AnsP_2" + "P-poll__networl_3_2_AnsP_3" + "P-poll__networl_3_2_AnsP_4" + "P-poll__networl_3_2_RI_0" + "P-poll__networl_3_2_RI_1" + "P-poll__networl_3_2_RI_2" + "P-poll__networl_3_2_RI_3" + "P-poll__networl_3_2_RI_4" + "P-poll__networl_3_2_AI_0" + "P-poll__networl_3_2_AI_1" + "P-poll__networl_3_2_AI_2" + "P-poll__networl_3_2_AI_3" + "P-poll__networl_3_2_AI_4" + "P-poll__networl_3_2_AnnP_0" + "P-poll__networl_3_2_AnnP_1" + "P-poll__networl_3_2_AnnP_2" + "P-poll__networl_3_2_AnnP_3" + "P-poll__networl_3_2_AnnP_4" + "P-poll__networl_3_2_RP_0" + "P-poll__networl_3_2_RP_1" + "P-poll__networl_3_2_RP_2" + "P-poll__networl_3_2_RP_3" + "P-poll__networl_3_2_RP_4" + "P-poll__networl_3_3_AskP_0" + "P-poll__networl_3_3_AskP_1" + "P-poll__networl_3_3_AskP_2" + "P-poll__networl_3_3_AskP_3" + "P-poll__networl_3_3_AskP_4" + "P-poll__networl_3_3_AnsP_0" + "P-poll__networl_3_3_AnsP_1" + "P-poll__networl_3_3_AnsP_2" + "P-poll__networl_3_3_AnsP_3" + "P-poll__networl_3_3_AnsP_4" + "P-poll__networl_3_3_RI_0" + "P-poll__networl_3_3_RI_1" + "P-poll__networl_3_3_RI_2" + "P-poll__networl_3_3_RI_3" + "P-poll__networl_3_3_RI_4" + "P-poll__networl_3_3_AI_0" + "P-poll__networl_3_3_AI_1" + "P-poll__networl_3_3_AI_2" + "P-poll__networl_3_3_AI_3" + "P-poll__networl_3_3_AI_4" + "P-poll__networl_3_3_AnnP_0" + "P-poll__networl_3_3_AnnP_1" + "P-poll__networl_3_3_AnnP_2" + "P-poll__networl_3_3_AnnP_3" + "P-poll__networl_3_3_AnnP_4" + "P-poll__networl_3_3_RP_0" + "P-poll__networl_3_3_RP_1" + "P-poll__networl_3_3_RP_2" + "P-poll__networl_3_3_RP_3" + "P-poll__networl_3_3_RP_4" + "P-poll__networl_3_4_AskP_0" + "P-poll__networl_3_4_AskP_1" + "P-poll__networl_3_4_AskP_2" + "P-poll__networl_3_4_AskP_3" + "P-poll__networl_3_4_AskP_4" + "P-poll__networl_3_4_AnsP_0" + "P-poll__networl_3_4_AnsP_1" + "P-poll__networl_3_4_AnsP_2" + "P-poll__networl_3_4_AnsP_3" + "P-poll__networl_3_4_AnsP_4" + "P-poll__networl_3_4_RI_0" + "P-poll__networl_3_4_RI_1" + "P-poll__networl_3_4_RI_2" + "P-poll__networl_3_4_RI_3" + "P-poll__networl_3_4_RI_4" + "P-poll__networl_3_4_AI_0" + "P-poll__networl_3_4_AI_1" + "P-poll__networl_3_4_AI_2" + "P-poll__networl_3_4_AI_3" + "P-poll__networl_3_4_AI_4" + "P-poll__networl_3_4_AnnP_0" + "P-poll__networl_3_4_AnnP_1" + "P-poll__networl_3_4_AnnP_2" + "P-poll__networl_3_4_AnnP_3" + "P-poll__networl_3_4_AnnP_4" + "P-poll__networl_3_4_RP_0" + "P-poll__networl_3_4_RP_1" + "P-poll__networl_3_4_RP_2" + "P-poll__networl_3_4_RP_3" + "P-poll__networl_3_4_RP_4" + "P-poll__networl_4_0_AskP_0" + "P-poll__networl_4_0_AskP_1" + "P-poll__networl_4_0_AskP_2" + "P-poll__networl_4_0_AskP_3" + "P-poll__networl_4_0_AskP_4" + "P-poll__networl_4_0_AnsP_0" + "P-poll__networl_4_0_AnsP_1" + "P-poll__networl_4_0_AnsP_2" + "P-poll__networl_4_0_AnsP_3" + "P-poll__networl_4_0_AnsP_4" + "P-poll__networl_4_0_RI_0" + "P-poll__networl_4_0_RI_1" + "P-poll__networl_4_0_RI_2" + "P-poll__networl_4_0_RI_3" + "P-poll__networl_4_0_RI_4" + "P-poll__networl_4_0_AI_0" + "P-poll__networl_4_0_AI_1" + "P-poll__networl_4_0_AI_2" + "P-poll__networl_4_0_AI_3" + "P-poll__networl_4_0_AI_4" + "P-poll__networl_4_0_AnnP_0" + "P-poll__networl_4_0_AnnP_1" + "P-poll__networl_4_0_AnnP_2" + "P-poll__networl_4_0_AnnP_3" + "P-poll__networl_4_0_AnnP_4" + "P-poll__networl_4_0_RP_0" + "P-poll__networl_4_0_RP_1" + "P-poll__networl_4_0_RP_2" + "P-poll__networl_4_0_RP_3" + "P-poll__networl_4_0_RP_4" + "P-poll__networl_4_1_AskP_0" + "P-poll__networl_4_1_AskP_1" + "P-poll__networl_4_1_AskP_2" + "P-poll__networl_4_1_AskP_3" + "P-poll__networl_4_1_AskP_4" + "P-poll__networl_4_1_AnsP_0" + "P-poll__networl_4_1_AnsP_1" + "P-poll__networl_4_1_AnsP_2" + "P-poll__networl_4_1_AnsP_3" + "P-poll__networl_4_1_AnsP_4" + "P-poll__networl_4_1_RI_0" + "P-poll__networl_4_1_RI_1" + "P-poll__networl_4_1_RI_2" + "P-poll__networl_4_1_RI_3" + "P-poll__networl_4_1_RI_4" + "P-poll__networl_4_1_AI_0" + "P-poll__networl_4_1_AI_1" + "P-poll__networl_4_1_AI_2" + "P-poll__networl_4_1_AI_3" + "P-poll__networl_4_1_AI_4" + "P-poll__networl_4_1_AnnP_0" + "P-poll__networl_4_1_AnnP_1" + "P-poll__networl_4_1_AnnP_2" + "P-poll__networl_4_1_AnnP_3" + "P-poll__networl_4_1_AnnP_4" + "P-poll__networl_4_1_RP_0" + "P-poll__networl_4_1_RP_1" + "P-poll__networl_4_1_RP_2" + "P-poll__networl_4_1_RP_3" + "P-poll__networl_4_1_RP_4" + "P-poll__networl_4_2_AskP_0" + "P-poll__networl_4_2_AskP_1" + "P-poll__networl_4_2_AskP_2" + "P-poll__networl_4_2_AskP_3" + "P-poll__networl_4_2_AskP_4" + "P-poll__networl_4_2_AnsP_0" + "P-poll__networl_4_2_AnsP_1" + "P-poll__networl_4_2_AnsP_2" + "P-poll__networl_4_2_AnsP_3" + "P-poll__networl_4_2_AnsP_4" + "P-poll__networl_4_2_RI_0" + "P-poll__networl_4_2_RI_1" + "P-poll__networl_4_2_RI_2" + "P-poll__networl_4_2_RI_3" + "P-poll__networl_4_2_RI_4" + "P-poll__networl_4_2_AI_0" + "P-poll__networl_4_2_AI_1" + "P-poll__networl_4_2_AI_2" + "P-poll__networl_4_2_AI_3" + "P-poll__networl_4_2_AI_4" + "P-poll__networl_4_2_AnnP_0" + "P-poll__networl_4_2_AnnP_1" + "P-poll__networl_4_2_AnnP_2" + "P-poll__networl_4_2_AnnP_3" + "P-poll__networl_4_2_AnnP_4" + "P-poll__networl_4_2_RP_0" + "P-poll__networl_4_2_RP_1" + "P-poll__networl_4_2_RP_2" + "P-poll__networl_4_2_RP_3" + "P-poll__networl_4_2_RP_4" + "P-poll__networl_4_3_AskP_0" + "P-poll__networl_4_3_AskP_1" + "P-poll__networl_4_3_AskP_2" + "P-poll__networl_4_3_AskP_3" + "P-poll__networl_4_3_AskP_4" + "P-poll__networl_4_3_AnsP_0" + "P-poll__networl_4_3_AnsP_1" + "P-poll__networl_4_3_AnsP_2" + "P-poll__networl_4_3_AnsP_3" + "P-poll__networl_4_3_AnsP_4" + "P-poll__networl_4_3_RI_0" + "P-poll__networl_4_3_RI_1" + "P-poll__networl_4_3_RI_2" + "P-poll__networl_4_3_RI_3" + "P-poll__networl_4_3_RI_4" + "P-poll__networl_4_3_AI_0" + "P-poll__networl_4_3_AI_1" + "P-poll__networl_4_3_AI_2" + "P-poll__networl_4_3_AI_3" + "P-poll__networl_4_3_AI_4" + "P-poll__networl_4_3_AnnP_0" + "P-poll__networl_4_3_AnnP_1" + "P-poll__networl_4_3_AnnP_2" + "P-poll__networl_4_3_AnnP_3" + "P-poll__networl_4_3_AnnP_4" + "P-poll__networl_4_3_RP_0" + "P-poll__networl_4_3_RP_1" + "P-poll__networl_4_3_RP_2" + "P-poll__networl_4_3_RP_3" + "P-poll__networl_4_3_RP_4" + "P-poll__networl_4_4_AskP_0" + "P-poll__networl_4_4_AskP_1" + "P-poll__networl_4_4_AskP_2" + "P-poll__networl_4_4_AskP_3" + "P-poll__networl_4_4_AskP_4" + "P-poll__networl_4_4_AnsP_0" + "P-poll__networl_4_4_AnsP_1" + "P-poll__networl_4_4_AnsP_2" + "P-poll__networl_4_4_AnsP_3" + "P-poll__networl_4_4_AnsP_4" + "P-poll__networl_4_4_RI_0" + "P-poll__networl_4_4_RI_1" + "P-poll__networl_4_4_RI_2" + "P-poll__networl_4_4_RI_3" + "P-poll__networl_4_4_RI_4" + "P-poll__networl_4_4_AI_0" + "P-poll__networl_4_4_AI_1" + "P-poll__networl_4_4_AI_2" + "P-poll__networl_4_4_AI_3" + "P-poll__networl_4_4_AI_4" + "P-poll__networl_4_4_AnnP_0" + "P-poll__networl_4_4_AnnP_1" + "P-poll__networl_4_4_AnnP_2" + "P-poll__networl_4_4_AnnP_3" + "P-poll__networl_4_4_AnnP_4" + "P-poll__networl_4_4_RP_0" + "P-poll__networl_4_4_RP_1" + "P-poll__networl_4_4_RP_2" + "P-poll__networl_4_4_RP_3" + "P-poll__networl_4_4_RP_4"))) )
NeoElection-COL-4-ReachabilityCardinality-11: not EF not ( (not(not((2 <= ("P-stage_0_NEG" + "P-stage_0_PRIM" + "P-stage_0_SEC" + "P-stage_1_NEG" + "P-stage_1_PRIM" + "P-stage_1_SEC" + "P-stage_2_NEG" + "P-stage_2_PRIM" + "P-stage_2_SEC" + "P-stage_3_NEG" + "P-stage_3_PRIM" + "P-stage_3_SEC" + "P-stage_4_NEG" + "P-stage_4_PRIM" + "P-stage_4_SEC")))) and (((("P-polling_0" + "P-polling_1" + "P-polling_2" + "P-polling_3" + "P-polling_4") <= ("P-stage_0_NEG" + "P-stage_0_PRIM" + "P-stage_0_SEC" + "P-stage_1_NEG" + "P-stage_1_PRIM" + "P-stage_1_SEC" + "P-stage_2_NEG" + "P-stage_2_PRIM" + "P-stage_2_SEC" + "P-stage_3_NEG" + "P-stage_3_PRIM" + "P-stage_3_SEC" + "P-stage_4_NEG" + "P-stage_4_PRIM" + "P-stage_4_SEC")) or (("P-poll__pollEnd_0" + "P-poll__pollEnd_1" + "P-poll__pollEnd_2" + "P-poll__pollEnd_3" + "P-poll__pollEnd_4") <= ("P-sendAnnPs__broadcasting_0_1" + "P-sendAnnPs__broadcasting_0_2" + "P-sendAnnPs__broadcasting_0_3" + "P-sendAnnPs__broadcasting_0_4" + "P-sendAnnPs__broadcasting_1_1" + "P-sendAnnPs__broadcasting_1_2" + "P-sendAnnPs__broadcasting_1_3" + "P-sendAnnPs__broadcasting_1_4" + "P-sendAnnPs__broadcasting_2_1" + "P-sendAnnPs__broadcasting_2_2" + "P-sendAnnPs__broadcasting_2_3" + "P-sendAnnPs__broadcasting_2_4" + "P-sendAnnPs__broadcasting_3_1" + "P-sendAnnPs__broadcasting_3_2" + "P-sendAnnPs__broadcasting_3_3" + "P-sendAnnPs__broadcasting_3_4" + "P-sendAnnPs__broadcasting_4_1" + "P-sendAnnPs__broadcasting_4_2" + "P-sendAnnPs__broadcasting_4_3" + "P-sendAnnPs__broadcasting_4_4"))) and ((3 <= ("P-masterState_0_F_0" + "P-masterState_0_F_1" + "P-masterState_0_F_2" + "P-masterState_0_F_3" + "P-masterState_0_F_4" + "P-masterState_0_T_0" + "P-masterState_0_T_1" + "P-masterState_0_T_2" + "P-masterState_0_T_3" + "P-masterState_0_T_4" + "P-masterState_1_F_0" + "P-masterState_1_F_1" + "P-masterState_1_F_2" + "P-masterState_1_F_3" + "P-masterState_1_F_4" + "P-masterState_1_T_0" + "P-masterState_1_T_1" + "P-masterState_1_T_2" + "P-masterState_1_T_3" + "P-masterState_1_T_4" + "P-masterState_2_F_0" + "P-masterState_2_F_1" + "P-masterState_2_F_2" + "P-masterState_2_F_3" + "P-masterState_2_F_4" + "P-masterState_2_T_0" + "P-masterState_2_T_1" + "P-masterState_2_T_2" + "P-masterState_2_T_3" + "P-masterState_2_T_4" + "P-masterState_3_F_0" + "P-masterState_3_F_1" + "P-masterState_3_F_2" + "P-masterState_3_F_3" + "P-masterState_3_F_4" + "P-masterState_3_T_0" + "P-masterState_3_T_1" + "P-masterState_3_T_2" + "P-masterState_3_T_3" + "P-masterState_3_T_4" + "P-masterState_4_F_0" + "P-masterState_4_F_1" + "P-masterState_4_F_2" + "P-masterState_4_F_3" + "P-masterState_4_F_4" + "P-masterState_4_T_0" + "P-masterState_4_T_1" + "P-masterState_4_T_2" + "P-masterState_4_T_3" + "P-masterState_4_T_4")) or (2 <= ("P-electedSecondary_0" + "P-electedSecondary_1" + "P-electedSecondary_2" + "P-electedSecondary_3" + "P-electedSecondary_4"))))) )

query: EF not ( (not(not((2 <= ("P-stage_0_NEG" + "P-stage_0_PRIM" + "P-stage_0_SEC" + "P-stage_1_NEG" + "P-stage_1_PRIM" + "P-stage_1_SEC" + "P-stage_2_NEG" + "P-stage_2_PRIM" + "P-stage_2_SEC" + "P-stage_3_NEG" + "P-stage_3_PRIM" + "P-stage_3_SEC" + "P-stage_4_NEG" + "P-stage_4_PRIM" + "P-stage_4_SEC")))) and (((("P-polling_0" + "P-polling_1" + "P-polling_2" + "P-polling_3" + "P-polling_4") <= ("P-stage_0_NEG" + "P-stage_0_PRIM" + "P-stage_0_SEC" + "P-stage_1_NEG" + "P-stage_1_PRIM" + "P-stage_1_SEC" + "P-stage_2_NEG" + "P-stage_2_PRIM" + "P-stage_2_SEC" + "P-stage_3_NEG" + "P-stage_3_PRIM" + "P-stage_3_SEC" + "P-stage_4_NEG" + "P-stage_4_PRIM" + "P-stage_4_SEC")) or (("P-poll__pollEnd_0" + "P-poll__pollEnd_1" + "P-poll__pollEnd_2" + "P-poll__pollEnd_3" + "P-poll__pollEnd_4") <= ("P-sendAnnPs__broadcasting_0_1" + "P-sendAnnPs__broadcasting_0_2" + "P-sendAnnPs__broadcasting_0_3" + "P-sendAnnPs__broadcasting_0_4" + "P-sendAnnPs__broadcasting_1_1" + "P-sendAnnPs__broadcasting_1_2" + "P-sendAnnPs__broadcasting_1_3" + "P-sendAnnPs__broadcasting_1_4" + "P-sendAnnPs__broadcasting_2_1" + "P-sendAnnPs__broadcasting_2_2" + "P-sendAnnPs__broadcasting_2_3" + "P-sendAnnPs__broadcasting_2_4" + "P-sendAnnPs__broadcasting_3_1" + "P-sendAnnPs__broadcasting_3_2" + "P-sendAnnPs__broadcasting_3_3" + "P-sendAnnPs__broadcasting_3_4" + "P-sendAnnPs__broadcasting_4_1" + "P-sendAnnPs__broadcasting_4_2" + "P-sendAnnPs__broadcasting_4_3" + "P-sendAnnPs__broadcasting_4_4"))) and ((3 <= ("P-masterState_0_F_0" + "P-masterState_0_F_1" + "P-masterState_0_F_2" + "P-masterState_0_F_3" + "P-masterState_0_F_4" + "P-masterState_0_T_0" + "P-masterState_0_T_1" + "P-masterState_0_T_2" + "P-masterState_0_T_3" + "P-masterState_0_T_4" + "P-masterState_1_F_0" + "P-masterState_1_F_1" + "P-masterState_1_F_2" + "P-masterState_1_F_3" + "P-masterState_1_F_4" + "P-masterState_1_T_0" + "P-masterState_1_T_1" + "P-masterState_1_T_2" + "P-masterState_1_T_3" + "P-masterState_1_T_4" + "P-masterState_2_F_0" + "P-masterState_2_F_1" + "P-masterState_2_F_2" + "P-masterState_2_F_3" + "P-masterState_2_F_4" + "P-masterState_2_T_0" + "P-masterState_2_T_1" + "P-masterState_2_T_2" + "P-masterState_2_T_3" + "P-masterState_2_T_4" + "P-masterState_3_F_0" + "P-masterState_3_F_1" + "P-masterState_3_F_2" + "P-masterState_3_F_3" + "P-masterState_3_F_4" + "P-masterState_3_T_0" + "P-masterState_3_T_1" + "P-masterState_3_T_2" + "P-masterState_3_T_3" + "P-masterState_3_T_4" + "P-masterState_4_F_0" + "P-masterState_4_F_1" + "P-masterState_4_F_2" + "P-masterState_4_F_3" + "P-masterState_4_F_4" + "P-masterState_4_T_0" + "P-masterState_4_T_1" + "P-masterState_4_T_2" + "P-masterState_4_T_3" + "P-masterState_4_T_4")) or (2 <= ("P-electedSecondary_0" + "P-electedSecondary_1" + "P-electedSecondary_2" + "P-electedSecondary_3" + "P-electedSecondary_4"))))) )
NeoElection-COL-4-ReachabilityCardinality-12: not EF not ( (((3 <= ("P-masterState_0_F_0" + "P-masterState_0_F_1" + "P-masterState_0_F_2" + "P-masterState_0_F_3" + "P-masterState_0_F_4" + "P-masterState_0_T_0" + "P-masterState_0_T_1" + "P-masterState_0_T_2" + "P-masterState_0_T_3" + "P-masterState_0_T_4" + "P-masterState_1_F_0" + "P-masterState_1_F_1" + "P-masterState_1_F_2" + "P-masterState_1_F_3" + "P-masterState_1_F_4" + "P-masterState_1_T_0" + "P-masterState_1_T_1" + "P-masterState_1_T_2" + "P-masterState_1_T_3" + "P-masterState_1_T_4" + "P-masterState_2_F_0" + "P-masterState_2_F_1" + "P-masterState_2_F_2" + "P-masterState_2_F_3" + "P-masterState_2_F_4" + "P-masterState_2_T_0" + "P-masterState_2_T_1" + "P-masterState_2_T_2" + "P-masterState_2_T_3" + "P-masterState_2_T_4" + "P-masterState_3_F_0" + "P-masterState_3_F_1" + "P-masterState_3_F_2" + "P-masterState_3_F_3" + "P-masterState_3_F_4" + "P-masterState_3_T_0" + "P-masterState_3_T_1" + "P-masterState_3_T_2" + "P-masterState_3_T_3" + "P-masterState_3_T_4" + "P-masterState_4_F_0" + "P-masterState_4_F_1" + "P-masterState_4_F_2" + "P-masterState_4_F_3" + "P-masterState_4_F_4" + "P-masterState_4_T_0" + "P-masterState_4_T_1" + "P-masterState_4_T_2" + "P-masterState_4_T_3" + "P-masterState_4_T_4")) or ((3 <= ("P-negotiation_0_0_NONE" + "P-negotiation_0_0_CO" + "P-negotiation_0_0_DONE" + "P-negotiation_0_1_NONE" + "P-negotiation_0_1_CO" + "P-negotiation_0_1_DONE" + "P-negotiation_0_2_NONE" + "P-negotiation_0_2_CO" + "P-negotiation_0_2_DONE" + "P-negotiation_0_3_NONE" + "P-negotiation_0_3_CO" + "P-negotiation_0_3_DONE" + "P-negotiation_0_4_NONE" + "P-negotiation_0_4_CO" + "P-negotiation_0_4_DONE" + "P-negotiation_1_0_NONE" + "P-negotiation_1_0_CO" + "P-negotiation_1_0_DONE" + "P-negotiation_1_1_NONE" + "P-negotiation_1_1_CO" + "P-negotiation_1_1_DONE" + "P-negotiation_1_2_NONE" + "P-negotiation_1_2_CO" + "P-negotiation_1_2_DONE" + "P-negotiation_1_3_NONE" + "P-negotiation_1_3_CO" + "P-negotiation_1_3_DONE" + "P-negotiation_1_4_NONE" + "P-negotiation_1_4_CO" + "P-negotiation_1_4_DONE" + "P-negotiation_2_0_NONE" + "P-negotiation_2_0_CO" + "P-negotiation_2_0_DONE" + "P-negotiation_2_1_NONE" + "P-negotiation_2_1_CO" + "P-negotiation_2_1_DONE" + "P-negotiation_2_2_NONE" + "P-negotiation_2_2_CO" + "P-negotiation_2_2_DONE" + "P-negotiation_2_3_NONE" + "P-negotiation_2_3_CO" + "P-negotiation_2_3_DONE" + "P-negotiation_2_4_NONE" + "P-negotiation_2_4_CO" + "P-negotiation_2_4_DONE" + "P-negotiation_3_0_NONE" + "P-negotiation_3_0_CO" + "P-negotiation_3_0_DONE" + "P-negotiation_3_1_NONE" + "P-negotiation_3_1_CO" + "P-negotiation_3_1_DONE" + "P-negotiation_3_2_NONE" + "P-negotiation_3_2_CO" + "P-negotiation_3_2_DONE" + "P-negotiation_3_3_NONE" + "P-negotiation_3_3_CO" + "P-negotiation_3_3_DONE" + "P-negotiation_3_4_NONE" + "P-negotiation_3_4_CO" + "P-negotiation_3_4_DONE" + "P-negotiation_4_0_NONE" + "P-negotiation_4_0_CO" + "P-negotiation_4_0_DONE" + "P-negotiation_4_1_NONE" + "P-negotiation_4_1_CO" + "P-negotiation_4_1_DONE" + "P-negotiation_4_2_NONE" + "P-negotiation_4_2_CO" + "P-negotiation_4_2_DONE" + "P-negotiation_4_3_NONE" + "P-negotiation_4_3_CO" + "P-negotiation_4_3_DONE" + "P-negotiation_4_4_NONE" + "P-negotiation_4_4_CO" + "P-negotiation_4_4_DONE")) or (("P-negotiation_0_0_NONE" + "P-negotiation_0_0_CO" + "P-negotiation_0_0_DONE" + "P-negotiation_0_1_NONE" + "P-negotiation_0_1_CO" + "P-negotiation_0_1_DONE" + "P-negotiation_0_2_NONE" + "P-negotiation_0_2_CO" + "P-negotiation_0_2_DONE" + "P-negotiation_0_3_NONE" + "P-negotiation_0_3_CO" + "P-negotiation_0_3_DONE" + "P-negotiation_0_4_NONE" + "P-negotiation_0_4_CO" + "P-negotiation_0_4_DONE" + "P-negotiation_1_0_NONE" + "P-negotiation_1_0_CO" + "P-negotiation_1_0_DONE" + "P-negotiation_1_1_NONE" + "P-negotiation_1_1_CO" + "P-negotiation_1_1_DONE" + "P-negotiation_1_2_NONE" + "P-negotiation_1_2_CO" + "P-negotiation_1_2_DONE" + "P-negotiation_1_3_NONE" + "P-negotiation_1_3_CO" + "P-negotiation_1_3_DONE" + "P-negotiation_1_4_NONE" + "P-negotiation_1_4_CO" + "P-negotiation_1_4_DONE" + "P-negotiation_2_0_NONE" + "P-negotiation_2_0_CO" + "P-negotiation_2_0_DONE" + "P-negotiation_2_1_NONE" + "P-negotiation_2_1_CO" + "P-negotiation_2_1_DONE" + "P-negotiation_2_2_NONE" + "P-negotiation_2_2_CO" + "P-negotiation_2_2_DONE" + "P-negotiation_2_3_NONE" + "P-negotiation_2_3_CO" + "P-negotiation_2_3_DONE" + "P-negotiation_2_4_NONE" + "P-negotiation_2_4_CO" + "P-negotiation_2_4_DONE" + "P-negotiation_3_0_NONE" + "P-negotiation_3_0_CO" + "P-negotiation_3_0_DONE" + "P-negotiation_3_1_NONE" + "P-negotiation_3_1_CO" + "P-negotiation_3_1_DONE" + "P-negotiation_3_2_NONE" + "P-negotiation_3_2_CO" + "P-negotiation_3_2_DONE" + "P-negotiation_3_3_NONE" + "P-negotiation_3_3_CO" + "P-negotiation_3_3_DONE" + "P-negotiation_3_4_NONE" + "P-negotiation_3_4_CO" + "P-negotiation_3_4_DONE" + "P-negotiation_4_0_NONE" + "P-negotiation_4_0_CO" + "P-negotiation_4_0_DONE" + "P-negotiation_4_1_NONE" + "P-negotiation_4_1_CO" + "P-negotiation_4_1_DONE" + "P-negotiation_4_2_NONE" + "P-negotiation_4_2_CO" + "P-negotiation_4_2_DONE" + "P-negotiation_4_3_NONE" + "P-negotiation_4_3_CO" + "P-negotiation_4_3_DONE" + "P-negotiation_4_4_NONE" + "P-negotiation_4_4_CO" + "P-negotiation_4_4_DONE") <= ("P-dead_0" + "P-dead_1" + "P-dead_2" + "P-dead_3" + "P-dead_4")))) or (1 <= ("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4"))) )

query: EF not ( (((3 <= ("P-masterState_0_F_0" + "P-masterState_0_F_1" + "P-masterState_0_F_2" + "P-masterState_0_F_3" + "P-masterState_0_F_4" + "P-masterState_0_T_0" + "P-masterState_0_T_1" + "P-masterState_0_T_2" + "P-masterState_0_T_3" + "P-masterState_0_T_4" + "P-masterState_1_F_0" + "P-masterState_1_F_1" + "P-masterState_1_F_2" + "P-masterState_1_F_3" + "P-masterState_1_F_4" + "P-masterState_1_T_0" + "P-masterState_1_T_1" + "P-masterState_1_T_2" + "P-masterState_1_T_3" + "P-masterState_1_T_4" + "P-masterState_2_F_0" + "P-masterState_2_F_1" + "P-masterState_2_F_2" + "P-masterState_2_F_3" + "P-masterState_2_F_4" + "P-masterState_2_T_0" + "P-masterState_2_T_1" + "P-masterState_2_T_2" + "P-masterState_2_T_3" + "P-masterState_2_T_4" + "P-masterState_3_F_0" + "P-masterState_3_F_1" + "P-masterState_3_F_2" + "P-masterState_3_F_3" + "P-masterState_3_F_4" + "P-masterState_3_T_0" + "P-masterState_3_T_1" + "P-masterState_3_T_2" + "P-masterState_3_T_3" + "P-masterState_3_T_4" + "P-masterState_4_F_0" + "P-masterState_4_F_1" + "P-masterState_4_F_2" + "P-masterState_4_F_3" + "P-masterState_4_F_4" + "P-masterState_4_T_0" + "P-masterState_4_T_1" + "P-masterState_4_T_2" + "P-masterState_4_T_3" + "P-masterState_4_T_4")) or ((3 <= ("P-negotiation_0_0_NONE" + "P-negotiation_0_0_CO" + "P-negotiation_0_0_DONE" + "P-negotiation_0_1_NONE" + "P-negotiation_0_1_CO" + "P-negotiation_0_1_DONE" + "P-negotiation_0_2_NONE" + "P-negotiation_0_2_CO" + "P-negotiation_0_2_DONE" + "P-negotiation_0_3_NONE" + "P-negotiation_0_3_CO" + "P-negotiation_0_3_DONE" + "P-negotiation_0_4_NONE" + "P-negotiation_0_4_CO" + "P-negotiation_0_4_DONE" + "P-negotiation_1_0_NONE" + "P-negotiation_1_0_CO" + "P-negotiation_1_0_DONE" + "P-negotiation_1_1_NONE" + "P-negotiation_1_1_CO" + "P-negotiation_1_1_DONE" + "P-negotiation_1_2_NONE" + "P-negotiation_1_2_CO" + "P-negotiation_1_2_DONE" + "P-negotiation_1_3_NONE" + "P-negotiation_1_3_CO" + "P-negotiation_1_3_DONE" + "P-negotiation_1_4_NONE" + "P-negotiation_1_4_CO" + "P-negotiation_1_4_DONE" + "P-negotiation_2_0_NONE" + "P-negotiation_2_0_CO" + "P-negotiation_2_0_DONE" + "P-negotiation_2_1_NONE" + "P-negotiation_2_1_CO" + "P-negotiation_2_1_DONE" + "P-negotiation_2_2_NONE" + "P-negotiation_2_2_CO" + "P-negotiation_2_2_DONE" + "P-negotiation_2_3_NONE" + "P-negotiation_2_3_CO" + "P-negotiation_2_3_DONE" + "P-negotiation_2_4_NONE" + "P-negotiation_2_4_CO" + "P-negotiation_2_4_DONE" + "P-negotiation_3_0_NONE" + "P-negotiation_3_0_CO" + "P-negotiation_3_0_DONE" + "P-negotiation_3_1_NONE" + "P-negotiation_3_1_CO" + "P-negotiation_3_1_DONE" + "P-negotiation_3_2_NONE" + "P-negotiation_3_2_CO" + "P-negotiation_3_2_DONE" + "P-negotiation_3_3_NONE" + "P-negotiation_3_3_CO" + "P-negotiation_3_3_DONE" + "P-negotiation_3_4_NONE" + "P-negotiation_3_4_CO" + "P-negotiation_3_4_DONE" + "P-negotiation_4_0_NONE" + "P-negotiation_4_0_CO" + "P-negotiation_4_0_DONE" + "P-negotiation_4_1_NONE" + "P-negotiation_4_1_CO" + "P-negotiation_4_1_DONE" + "P-negotiation_4_2_NONE" + "P-negotiation_4_2_CO" + "P-negotiation_4_2_DONE" + "P-negotiation_4_3_NONE" + "P-negotiation_4_3_CO" + "P-negotiation_4_3_DONE" + "P-negotiation_4_4_NONE" + "P-negotiation_4_4_CO" + "P-negotiation_4_4_DONE")) or (("P-negotiation_0_0_NONE" + "P-negotiation_0_0_CO" + "P-negotiation_0_0_DONE" + "P-negotiation_0_1_NONE" + "P-negotiation_0_1_CO" + "P-negotiation_0_1_DONE" + "P-negotiation_0_2_NONE" + "P-negotiation_0_2_CO" + "P-negotiation_0_2_DONE" + "P-negotiation_0_3_NONE" + "P-negotiation_0_3_CO" + "P-negotiation_0_3_DONE" + "P-negotiation_0_4_NONE" + "P-negotiation_0_4_CO" + "P-negotiation_0_4_DONE" + "P-negotiation_1_0_NONE" + "P-negotiation_1_0_CO" + "P-negotiation_1_0_DONE" + "P-negotiation_1_1_NONE" + "P-negotiation_1_1_CO" + "P-negotiation_1_1_DONE" + "P-negotiation_1_2_NONE" + "P-negotiation_1_2_CO" + "P-negotiation_1_2_DONE" + "P-negotiation_1_3_NONE" + "P-negotiation_1_3_CO" + "P-negotiation_1_3_DONE" + "P-negotiation_1_4_NONE" + "P-negotiation_1_4_CO" + "P-negotiation_1_4_DONE" + "P-negotiation_2_0_NONE" + "P-negotiation_2_0_CO" + "P-negotiation_2_0_DONE" + "P-negotiation_2_1_NONE" + "P-negotiation_2_1_CO" + "P-negotiation_2_1_DONE" + "P-negotiation_2_2_NONE" + "P-negotiation_2_2_CO" + "P-negotiation_2_2_DONE" + "P-negotiation_2_3_NONE" + "P-negotiation_2_3_CO" + "P-negotiation_2_3_DONE" + "P-negotiation_2_4_NONE" + "P-negotiation_2_4_CO" + "P-negotiation_2_4_DONE" + "P-negotiation_3_0_NONE" + "P-negotiation_3_0_CO" + "P-negotiation_3_0_DONE" + "P-negotiation_3_1_NONE" + "P-negotiation_3_1_CO" + "P-negotiation_3_1_DONE" + "P-negotiation_3_2_NONE" + "P-negotiation_3_2_CO" + "P-negotiation_3_2_DONE" + "P-negotiation_3_3_NONE" + "P-negotiation_3_3_CO" + "P-negotiation_3_3_DONE" + "P-negotiation_3_4_NONE" + "P-negotiation_3_4_CO" + "P-negotiation_3_4_DONE" + "P-negotiation_4_0_NONE" + "P-negotiation_4_0_CO" + "P-negotiation_4_0_DONE" + "P-negotiation_4_1_NONE" + "P-negotiation_4_1_CO" + "P-negotiation_4_1_DONE" + "P-negotiation_4_2_NONE" + "P-negotiation_4_2_CO" + "P-negotiation_4_2_DONE" + "P-negotiation_4_3_NONE" + "P-negotiation_4_3_CO" + "P-negotiation_4_3_DONE" + "P-negotiation_4_4_NONE" + "P-negotiation_4_4_CO" + "P-negotiation_4_4_DONE") <= ("P-dead_0" + "P-dead_1" + "P-dead_2" + "P-dead_3" + "P-dead_4")))) or (1 <= ("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4"))) )
NeoElection-COL-4-ReachabilityCardinality-13: EF ( not(not(((3 <= ("P-poll__waitingMessage_0" + "P-poll__waitingMessage_1" + "P-poll__waitingMessage_2" + "P-poll__waitingMessage_3" + "P-poll__waitingMessage_4")) and (("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4") <= ("P-poll__handlingMessage_0" + "P-poll__handlingMessage_1" + "P-poll__handlingMessage_2" + "P-poll__handlingMessage_3" + "P-poll__handlingMessage_4"))))) )

query: EF ( not(not(((3 <= ("P-poll__waitingMessage_0" + "P-poll__waitingMessage_1" + "P-poll__waitingMessage_2" + "P-poll__waitingMessage_3" + "P-poll__waitingMessage_4")) and (("P-crashed_0" + "P-crashed_1" + "P-crashed_2" + "P-crashed_3" + "P-crashed_4") <= ("P-poll__handlingMessage_0" + "P-poll__handlingMessage_1" + "P-poll__handlingMessage_2" + "P-poll__handlingMessage_3" + "P-poll__handlingMessage_4"))))) )
NeoElection-COL-4-ReachabilityCardinality-14: EF ( not(not((2 <= ("P-electedSecondary_0" + "P-electedSecondary_1" + "P-electedSecondary_2" + "P-electedSecondary_3" + "P-electedSecondary_4")))) )

query: EF ( not(not((2 <= ("P-electedSecondary_0" + "P-electedSecondary_1" + "P-electedSecondary_2" + "P-electedSecondary_3" + "P-electedSecondary_4")))) )
NeoElection-COL-4-ReachabilityCardinality-15: not EF not ( (3 <= ("P-masterState_0_F_0" + "P-masterState_0_F_1" + "P-masterState_0_F_2" + "P-masterState_0_F_3" + "P-masterState_0_F_4" + "P-masterState_0_T_0" + "P-masterState_0_T_1" + "P-masterState_0_T_2" + "P-masterState_0_T_3" + "P-masterState_0_T_4" + "P-masterState_1_F_0" + "P-masterState_1_F_1" + "P-masterState_1_F_2" + "P-masterState_1_F_3" + "P-masterState_1_F_4" + "P-masterState_1_T_0" + "P-masterState_1_T_1" + "P-masterState_1_T_2" + "P-masterState_1_T_3" + "P-masterState_1_T_4" + "P-masterState_2_F_0" + "P-masterState_2_F_1" + "P-masterState_2_F_2" + "P-masterState_2_F_3" + "P-masterState_2_F_4" + "P-masterState_2_T_0" + "P-masterState_2_T_1" + "P-masterState_2_T_2" + "P-masterState_2_T_3" + "P-masterState_2_T_4" + "P-masterState_3_F_0" + "P-masterState_3_F_1" + "P-masterState_3_F_2" + "P-masterState_3_F_3" + "P-masterState_3_F_4" + "P-masterState_3_T_0" + "P-masterState_3_T_1" + "P-masterState_3_T_2" + "P-masterState_3_T_3" + "P-masterState_3_T_4" + "P-masterState_4_F_0" + "P-masterState_4_F_1" + "P-masterState_4_F_2" + "P-masterState_4_F_3" + "P-masterState_4_F_4" + "P-masterState_4_T_0" + "P-masterState_4_T_1" + "P-masterState_4_T_2" + "P-masterState_4_T_3" + "P-masterState_4_T_4")) )

query: EF not ( (3 <= ("P-masterState_0_F_0" + "P-masterState_0_F_1" + "P-masterState_0_F_2" + "P-masterState_0_F_3" + "P-masterState_0_F_4" + "P-masterState_0_T_0" + "P-masterState_0_T_1" + "P-masterState_0_T_2" + "P-masterState_0_T_3" + "P-masterState_0_T_4" + "P-masterState_1_F_0" + "P-masterState_1_F_1" + "P-masterState_1_F_2" + "P-masterState_1_F_3" + "P-masterState_1_F_4" + "P-masterState_1_T_0" + "P-masterState_1_T_1" + "P-masterState_1_T_2" + "P-masterState_1_T_3" + "P-masterState_1_T_4" + "P-masterState_2_F_0" + "P-masterState_2_F_1" + "P-masterState_2_F_2" + "P-masterState_2_F_3" + "P-masterState_2_F_4" + "P-masterState_2_T_0" + "P-masterState_2_T_1" + "P-masterState_2_T_2" + "P-masterState_2_T_3" + "P-masterState_2_T_4" + "P-masterState_3_F_0" + "P-masterState_3_F_1" + "P-masterState_3_F_2" + "P-masterState_3_F_3" + "P-masterState_3_F_4" + "P-masterState_3_T_0" + "P-masterState_3_T_1" + "P-masterState_3_T_2" + "P-masterState_3_T_3" + "P-masterState_3_T_4" + "P-masterState_4_F_0" + "P-masterState_4_F_1" + "P-masterState_4_F_2" + "P-masterState_4_F_3" + "P-masterState_4_F_4" + "P-masterState_4_T_0" + "P-masterState_4_T_1" + "P-masterState_4_T_2" + "P-masterState_4_T_3" + "P-masterState_4_T_4")) )
NeoElection-COL-4-ReachabilityCardinality-0: not EF not ( (("P-poll__pollEnd_0" + "P-poll__pollEnd_1" + "P-poll__pollEnd_2" + "P-poll__pollEnd_3" + "P-poll__pollEnd_4") <= ("P-network_0_0_AskP_0" + "P-network_0_0_AskP_1" + "P-network_0_0_AskP_2" + "P-network_0_0_AskP_3" + "P-network_0_0_AskP_4" + "P-network_0_0_AnsP_0" + "P-network_0_0_AnsP_1" + "P-network_0_0_AnsP_2" + "P-network_0_0_AnsP_3" + "P-network_0_0_AnsP_4" + "P-network_0_0_RI_0" + "P-network_0_0_RI_1" + "P-network_0_0_RI_2" + "P-network_0_0_RI_3" + "P-network_0_0_RI_4" + "P-network_0_0_AI_0" + "P-network_0_0_AI_1" + "P-network_0_0_AI_2" + "P-network_0_0_AI_3" + "P-network_0_0_AI_4" + "P-network_0_0_AnnP_0" + "P-network_0_0_AnnP_1" + "P-network_0_0_AnnP_2" + "P-network_0_0_AnnP_3" + "P-network_0_0_AnnP_4" + "P-network_0_0_RP_0" + "P-network_0_0_RP_1" + "P-network_0_0_RP_2" + "P-network_0_0_RP_3" + "P-network_0_0_RP_4" + "P-network_0_1_AskP_0" + "P-network_0_1_AskP_1" + "P-network_0_1_AskP_2" + "P-network_0_1_AskP_3" + "P-network_0_1_AskP_4" + "P-network_0_1_AnsP_0" + "P-network_0_1_AnsP_1" + "P-network_0_1_AnsP_2" + "P-network_0_1_AnsP_3" + "P-network_0_1_AnsP_4" + "P-network_0_1_RI_0" + "P-network_0_1_RI_1" + "P-network_0_1_RI_2" + "P-network_0_1_RI_3" + "P-network_0_1_RI_4" + "P-network_0_1_AI_0" + "P-network_0_1_AI_1" + "P-network_0_1_AI_2" + "P-network_0_1_AI_3" + "P-network_0_1_AI_4" + "P-network_0_1_AnnP_0" + "P-network_0_1_AnnP_1" + "P-network_0_1_AnnP_2" + "P-network_0_1_AnnP_3" + "P-network_0_1_AnnP_4" + "P-network_0_1_RP_0" + "P-network_0_1_RP_1" + "P-network_0_1_RP_2" + "P-network_0_1_RP_3" + "P-network_0_1_RP_4" + "P-network_0_2_AskP_0" + "P-network_0_2_AskP_1" + "P-network_0_2_AskP_2" + "P-network_0_2_AskP_3" + "P-network_0_2_AskP_4" + "P-network_0_2_AnsP_0" + "P-network_0_2_AnsP_1" + "P-network_0_2_AnsP_2" + "P-network_0_2_AnsP_3" + "P-network_0_2_AnsP_4" + "P-network_0_2_RI_0" + "P-network_0_2_RI_1" + "P-network_0_2_RI_2" + "P-network_0_2_RI_3" + "P-network_0_2_RI_4" + "P-network_0_2_AI_0" + "P-network_0_2_AI_1" + "P-network_0_2_AI_2" + "P-network_0_2_AI_3" + "P-network_0_2_AI_4" + "P-network_0_2_AnnP_0" + "P-network_0_2_AnnP_1" + "P-network_0_2_AnnP_2" + "P-network_0_2_AnnP_3" + "P-network_0_2_AnnP_4" + "P-network_0_2_RP_0" + "P-network_0_2_RP_1" + "P-network_0_2_RP_2" + "P-network_0_2_RP_3" + "P-network_0_2_RP_4" + "P-network_0_3_AskP_0" + "P-network_0_3_AskP_1" + "P-network_0_3_AskP_2" + "P-network_0_3_AskP_3" + "P-network_0_3_AskP_4" + "P-network_0_3_AnsP_0" + "P-network_0_3_AnsP_1" + "P-network_0_3_AnsP_2" + "P-network_0_3_AnsP_3" + "P-network_0_3_AnsP_4" + "P-network_0_3_RI_0" + "P-network_0_3_RI_1" + "P-network_0_3_RI_2" + "P-network_0_3_RI_3" + "P-network_0_3_RI_4" + "P-network_0_3_AI_0" + "P-network_0_3_AI_1" + "P-network_0_3_AI_2" + "P-network_0_3_AI_3" + "P-network_0_3_AI_4" + "P-network_0_3_AnnP_0" + "P-network_0_3_AnnP_1" + "P-network_0_3_AnnP_2" + "P-network_0_3_AnnP_3" + "P-network_0_3_AnnP_4" + "P-network_0_3_RP_0" + "P-network_0_3_RP_1" + "P-network_0_3_RP_2" + "P-network_0_3_RP_3" + "P-network_0_3_RP_4" + "P-network_0_4_AskP_0" + "P-network_0_4_AskP_1" + "P-network_0_4_AskP_2" + "P-network_0_4_AskP_3" + "P-network_0_4_AskP_4" + "P-network_0_4_AnsP_0" + "P-network_0_4_AnsP_1" + "P-network_0_4_AnsP_2" + "P-network_0_4_AnsP_3" + "P-network_0_4_AnsP_4" + "P-network_0_4_RI_0" + "P-network_0_4_RI_1" + "P-network_0_4_RI_2" + "P-network_0_4_RI_3" + "P-network_0_4_RI_4" + "P-network_0_4_AI_0" + "P-network_0_4_AI_1" + "P-network_0_4_AI_2" + "P-network_0_4_AI_3" + "P-network_0_4_AI_4" + "P-network_0_4_AnnP_0" + "P-network_0_4_AnnP_1" + "P-network_0_4_AnnP_2" + "P-network_0_4_AnnP_3" + "P-network_0_4_AnnP_4" + "P-network_0_4_RP_0" + "P-network_0_4_RP_1" + "P-network_0_4_RP_2" + "P-network_0_4_RP_3" + "P-network_0_4_RP_4" + "P-network_1_0_AskP_0" + "P-network_1_0_AskP_1" + "P-network_1_0_AskP_2" + "P-network_1_0_AskP_3" + "P-network_1_0_AskP_4" + "P-network_1_0_AnsP_0" + "P-network_1_0_AnsP_1" + "P-network_1_0_AnsP_2" + "P-network_1_0_AnsP_3" + "P-network_1_0_AnsP_4" + "P-network_1_0_RI_0" + "P-network_1_0_RI_1" + "P-network_1_0_RI_2" + "P-network_1_0_RI_3" + "P-network_1_0_RI_4" + "P-network_1_0_AI_0" + "P-network_1_0_AI_1" + "P-network_1_0_AI_2" + "P-network_1_0_AI_3" + "P-network_1_0_AI_4" + "P-network_1_0_AnnP_0" + "P-network_1_0_AnnP_1" + "P-network_1_0_AnnP_2" + "P-network_1_0_AnnP_3" + "P-network_1_0_AnnP_4" + "P-network_1_0_RP_0" + "P-network_1_0_RP_1" + "P-network_1_0_RP_2" + "P-network_1_0_RP_3" + "P-network_1_0_RP_4" + "P-network_1_1_AskP_0" + "P-network_1_1_AskP_1" + "P-network_1_1_AskP_2" + "P-network_1_1_AskP_3" + "P-network_1_1_AskP_4" + "P-network_1_1_AnsP_0" + "P-network_1_1_AnsP_1" + "P-network_1_1_AnsP_2" + "P-network_1_1_AnsP_3" + "P-network_1_1_AnsP_4" + "P-network_1_1_RI_0" + "P-network_1_1_RI_1" + "P-network_1_1_RI_2" + "P-network_1_1_RI_3" + "P-network_1_1_RI_4" + "P-network_1_1_AI_0" + "P-network_1_1_AI_1" + "P-network_1_1_AI_2" + "P-network_1_1_AI_3" + "P-network_1_1_AI_4" + "P-network_1_1_AnnP_0" + "P-network_1_1_AnnP_1" + "P-network_1_1_AnnP_2" + "P-network_1_1_AnnP_3" + "P-network_1_1_AnnP_4" + "P-network_1_1_RP_0" + "P-network_1_1_RP_1" + "P-network_1_1_RP_2" + "P-network_1_1_RP_3" + "P-network_1_1_RP_4" + "P-network_1_2_AskP_0" + "P-network_1_2_AskP_1" + "P-network_1_2_AskP_2" + "P-network_1_2_AskP_3" + "P-network_1_2_AskP_4" + "P-network_1_2_AnsP_0" + "P-network_1_2_AnsP_1" + "P-network_1_2_AnsP_2" + "P-network_1_2_AnsP_3" + "P-network_1_2_AnsP_4" + "P-network_1_2_RI_0" + "P-network_1_2_RI_1" + "P-network_1_2_RI_2" + "P-network_1_2_RI_3" + "P-network_1_2_RI_4" + "P-network_1_2_AI_0" + "P-network_1_2_AI_1" + "P-network_1_2_AI_2" + "P-network_1_2_AI_3" + "P-network_1_2_AI_4" + "P-network_1_2_AnnP_0" + "P-network_1_2_AnnP_1" + "P-network_1_2_AnnP_2" + "P-network_1_2_AnnP_3" + "P-network_1_2_AnnP_4" + "P-network_1_2_RP_0" + "P-network_1_2_RP_1" + "P-network_1_2_RP_2" + "P-network_1_2_RP_3" + "P-network_1_2_RP_4" + "P-network_1_3_AskP_0" + "P-network_1_3_AskP_1" + "P-network_1_3_AskP_2" + "P-network_1_3_AskP_3" + "P-network_1_3_AskP_4" + "P-network_1_3_AnsP_0" + "P-network_1_3_AnsP_1" + "P-network_1_3_AnsP_2" + "P-network_1_3_AnsP_3" + "P-network_1_3_AnsP_4" + "P-network_1_3_RI_0" + "P-network_1_3_RI_1" + "P-network_1_3_RI_2" + "P-network_1_3_RI_3" + "P-network_1_3_RI_4" + "P-network_1_3_AI_0" + "P-network_1_3_AI_1" + "P-network_1_3_AI_2" + "P-network_1_3_AI_3" + "P-network_1_3_AI_4" + "P-network_1_3_AnnP_0" + "P-network_1_3_AnnP_1" + "P-network_1_3_AnnP_2" + "P-network_1_3_AnnP_3" + "P-network_1_3_AnnP_4" + "P-network_1_3_RP_0" + "P-network_1_3_RP_1" + "P-network_1_3_RP_2" + "P-network_1_3_RP_3" + "P-network_1_3_RP_4" + "P-network_1_4_AskP_0" + "P-network_1_4_AskP_1" + "P-network_1_4_AskP_2" + "P-network_1_4_AskP_3" + "P-network_1_4_AskP_4" + "P-network_1_4_AnsP_0" + "P-network_1_4_AnsP_1" + "P-network_1_4_AnsP_2" + "P-network_1_4_AnsP_3" + "P-network_1_4_AnsP_4" + "P-network_1_4_RI_0" + "P-network_1_4_RI_1" + "P-network_1_4_RI_2" + "P-network_1_4_RI_3" + "P-network_1_4_RI_4" + "P-network_1_4_AI_0" + "P-network_1_4_AI_1" + "P-network_1_4_AI_2" + "P-network_1_4_AI_3" + "P-network_1_4_AI_4" + "P-network_1_4_AnnP_0" + "P-network_1_4_AnnP_1" + "P-network_1_4_AnnP_2" + "P-network_1_4_AnnP_3" + "P-network_1_4_AnnP_4" + "P-network_1_4_RP_0" + "P-network_1_4_RP_1" + "P-network_1_4_RP_2" + "P-network_1_4_RP_3" + "P-network_1_4_RP_4" + "P-network_2_0_AskP_0" + "P-network_2_0_AskP_1" + "P-network_2_0_AskP_2" + "P-network_2_0_AskP_3" + "P-network_2_0_AskP_4" + "P-network_2_0_AnsP_0" + "P-network_2_0_AnsP_1" + "P-network_2_0_AnsP_2" + "P-network_2_0_AnsP_3" + "P-network_2_0_AnsP_4" + "P-network_2_0_RI_0" + "P-network_2_0_RI_1" + "P-network_2_0_RI_2" + "P-network_2_0_RI_3" + "P-network_2_0_RI_4" + "P-network_2_0_AI_0" + "P-network_2_0_AI_1" + "P-network_2_0_AI_2" + "P-network_2_0_AI_3" + "P-network_2_0_AI_4" + "P-network_2_0_AnnP_0" + "P-network_2_0_AnnP_1" + "P-network_2_0_AnnP_2" + "P-network_2_0_AnnP_3" + "P-network_2_0_AnnP_4" + "P-network_2_0_RP_0" + "P-network_2_0_RP_1" + "P-network_2_0_RP_2" + "P-network_2_0_RP_3" + "P-network_2_0_RP_4" + "P-network_2_1_AskP_0" + "P-network_2_1_AskP_1" + "P-network_2_1_AskP_2" + "P-network_2_1_AskP_3" + "P-network_2_1_AskP_4" + "P-network_2_1_AnsP_0" + "P-network_2_1_AnsP_1" + "P-network_2_1_AnsP_2" + "P-network_2_1_AnsP_3" + "P-network_2_1_AnsP_4" + "P-network_2_1_RI_0" + "P-network_2_1_RI_1" + "P-network_2_1_RI_2" + "P-network_2_1_RI_3" + "P-network_2_1_RI_4" + "P-network_2_1_AI_0" + "P-network_2_1_AI_1" + "P-network_2_1_AI_2" + "P-network_2_1_AI_3" + "P-network_2_1_AI_4" + "P-network_2_1_AnnP_0" + "P-network_2_1_AnnP_1" + "P-network_2_1_AnnP_2" + "P-network_2_1_AnnP_3" + "P-network_2_1_AnnP_4" + "P-network_2_1_RP_0" + "P-network_2_1_RP_1" + "P-network_2_1_RP_2" + "P-network_2_1_RP_3" + "P-network_2_1_RP_4" + "P-network_2_2_AskP_0" + "P-network_2_2_AskP_1" + "P-network_2_2_AskP_2" + "P-network_2_2_AskP_3" + "P-network_2_2_AskP_4" + "P-network_2_2_AnsP_0" + "P-network_2_2_AnsP_1" + "P-network_2_2_AnsP_2" + "P-network_2_2_AnsP_3" + "P-network_2_2_AnsP_4" + "P-network_2_2_RI_0" + "P-network_2_2_RI_1" + "P-network_2_2_RI_2" + "P-network_2_2_RI_3" + "P-network_2_2_RI_4" + "P-network_2_2_AI_0" + "P-network_2_2_AI_1" + "P-network_2_2_AI_2" + "P-network_2_2_AI_3" + "P-network_2_2_AI_4" + "P-network_2_2_AnnP_0" + "P-network_2_2_AnnP_1" + "P-network_2_2_AnnP_2" + "P-network_2_2_AnnP_3" + "P-network_2_2_AnnP_4" + "P-network_2_2_RP_0" + "P-network_2_2_RP_1" + "P-network_2_2_RP_2" + "P-network_2_2_RP_3" + "P-network_2_2_RP_4" + "P-network_2_3_AskP_0" + "P-network_2_3_AskP_1" + "P-network_2_3_AskP_2" + "P-network_2_3_AskP_3" + "P-network_2_3_AskP_4" + "P-network_2_3_AnsP_0" + "P-network_2_3_AnsP_1" + "P-network_2_3_AnsP_2" + "P-network_2_3_AnsP_3" + "P-network_2_3_AnsP_4" + "P-network_2_3_RI_0" + "P-network_2_3_RI_1" + "P-network_2_3_RI_2" + "P-network_2_3_RI_3" + "P-network_2_3_RI_4" + "P-network_2_3_AI_0" + "P-network_2_3_AI_1" + "P-network_2_3_AI_2" + "P-network_2_3_AI_3" + "P-network_2_3_AI_4" + "P-network_2_3_AnnP_0" + "P-network_2_3_AnnP_1" + "P-network_2_3_AnnP_2" + "P-network_2_3_AnnP_3" + "P-network_2_3_AnnP_4" + "P-network_2_3_RP_0" + "P-network_2_3_RP_1" + "P-network_2_3_RP_2" + "P-network_2_3_RP_3" + "P-network_2_3_RP_4" + "P-network_2_4_AskP_0" + "P-network_2_4_AskP_1" + "P-network_2_4_AskP_2" + "P-network_2_4_AskP_3" + "P-network_2_4_AskP_4" + "P-network_2_4_AnsP_0" + "P-network_2_4_AnsP_1" + "P-network_2_4_AnsP_2" + "P-network_2_4_AnsP_3" + "P-network_2_4_AnsP_4" + "P-network_2_4_RI_0" + "P-network_2_4_RI_1" + "P-network_2_4_RI_2" + "P-network_2_4_RI_3" + "P-network_2_4_RI_4" + "P-network_2_4_AI_0" + "P-network_2_4_AI_1" + "P-network_2_4_AI_2" + "P-network_2_4_AI_3" + "P-network_2_4_AI_4" + "P-network_2_4_AnnP_0" + "P-network_2_4_AnnP_1" + "P-network_2_4_AnnP_2" + "P-network_2_4_AnnP_3" + "P-network_2_4_AnnP_4" + "P-network_2_4_RP_0" + "P-network_2_4_RP_1" + "P-network_2_4_RP_2" + "P-network_2_4_RP_3" + "P-network_2_4_RP_4" + "P-network_3_0_AskP_0" + "P-network_3_0_AskP_1" + "P-network_3_0_AskP_2" + "P-network_3_0_AskP_3" + "P-network_3_0_AskP_4" + "P-network_3_0_AnsP_0" + "P-network_3_0_AnsP_1" + "P-network_3_0_AnsP_2" + "P-network_3_0_AnsP_3" + "P-network_3_0_AnsP_4" + "P-network_3_0_RI_0" + "P-network_3_0_RI_1" + "P-network_3_0_RI_2" + "P-network_3_0_RI_3" + "P-network_3_0_RI_4" + "P-network_3_0_AI_0" + "P-network_3_0_AI_1" + "P-network_3_0_AI_2" + "P-network_3_0_AI_3" + "P-network_3_0_AI_4" + "P-network_3_0_AnnP_0" + "P-network_3_0_AnnP_1" + "P-network_3_0_AnnP_2" + "P-network_3_0_AnnP_3" + "P-network_3_0_AnnP_4" + "P-network_3_0_RP_0" + "P-network_3_0_RP_1" + "P-network_3_0_RP_2" + "P-network_3_0_RP_3" + "P-network_3_0_RP_4" + "P-network_3_1_AskP_0" + "P-network_3_1_AskP_1" + "P-network_3_1_AskP_2" + "P-network_3_1_AskP_3" + "P-network_3_1_AskP_4" + "P-network_3_1_AnsP_0" + "P-network_3_1_AnsP_1" + "P-network_3_1_AnsP_2" + "P-network_3_1_AnsP_3" + "P-network_3_1_AnsP_4" + "P-network_3_1_RI_0" + "P-network_3_1_RI_1" + "P-network_3_1_RI_2" + "P-network_3_1_RI_3" + "P-network_3_1_RI_4" + "P-network_3_1_AI_0" + "P-network_3_1_AI_1" + "P-network_3_1_AI_2" + "P-network_3_1_AI_3" + "P-network_3_1_AI_4" + "P-network_3_1_AnnP_0" + "P-network_3_1_AnnP_1" + "P-network_3_1_AnnP_2" + "P-network_3_1_AnnP_3" + "P-network_3_1_AnnP_4" + "P-network_3_1_RP_0" + "P-network_3_1_RP_1" + "P-network_3_1_RP_2" + "P-network_3_1_RP_3" + "P-network_3_1_RP_4" + "P-network_3_2_AskP_0" + "P-network_3_2_AskP_1" + "P-network_3_2_AskP_2" + "P-network_3_2_AskP_3" + "P-network_3_2_AskP_4" + "P-network_3_2_AnsP_0" + "P-network_3_2_AnsP_1" + "P-network_3_2_AnsP_2" + "P-network_3_2_AnsP_3" + "P-network_3_2_AnsP_4" + "P-network_3_2_RI_0" + "P-network_3_2_RI_1" + "P-network_3_2_RI_2" + "P-network_3_2_RI_3" + "P-network_3_2_RI_4" + "P-network_3_2_AI_0" + "P-network_3_2_AI_1" + "P-network_3_2_AI_2" + "P-network_3_2_AI_3" + "P-network_3_2_AI_4" + "P-network_3_2_AnnP_0" + "P-network_3_2_AnnP_1" + "P-network_3_2_AnnP_2" + "P-network_3_2_AnnP_3" + "P-network_3_2_AnnP_4" + "P-network_3_2_RP_0" + "P-network_3_2_RP_1" + "P-network_3_2_RP_2" + "P-network_3_2_RP_3" + "P-network_3_2_RP_4" + "P-network_3_3_AskP_0" + "P-network_3_3_AskP_1" + "P-network_3_3_AskP_2" + "P-network_3_3_AskP_3" + "P-network_3_3_AskP_4" + "P-network_3_3_AnsP_0" + "P-network_3_3_AnsP_1" + "P-network_3_3_AnsP_2" + "P-network_3_3_AnsP_3" + "P-network_3_3_AnsP_4" + "P-network_3_3_RI_0" + "P-network_3_3_RI_1" + "P-network_3_3_RI_2" + "P-network_3_3_RI_3" + "P-network_3_3_RI_4" + "P-network_3_3_AI_0" + "P-network_3_3_AI_1" + "P-network_3_3_AI_2" + "P-network_3_3_AI_3" + "P-network_3_3_AI_4" + "P-network_3_3_AnnP_0" + "P-network_3_3_AnnP_1" + "P-network_3_3_AnnP_2" + "P-network_3_3_AnnP_3" + "P-network_3_3_AnnP_4" + "P-network_3_3_RP_0" + "P-network_3_3_RP_1" + "P-network_3_3_RP_2" + "P-network_3_3_RP_3" + "P-network_3_3_RP_4" + "P-network_3_4_AskP_0" + "P-network_3_4_AskP_1" + "P-network_3_4_AskP_2" + "P-network_3_4_AskP_3" + "P-network_3_4_AskP_4" + "P-network_3_4_AnsP_0" + "P-network_3_4_AnsP_1" + "P-network_3_4_AnsP_2" + "P-network_3_4_AnsP_3" + "P-network_3_4_AnsP_4" + "P-network_3_4_RI_0" + "P-network_3_4_RI_1" + "P-network_3_4_RI_2" + "P-network_3_4_RI_3" + "P-network_3_4_RI_4" + "P-network_3_4_AI_0" + "P-network_3_4_AI_1" + "P-network_3_4_AI_2" + "P-network_3_4_AI_3" + "P-network_3_4_AI_4" + "P-network_3_4_AnnP_0" + "P-network_3_4_AnnP_1" + "P-network_3_4_AnnP_2" + "P-network_3_4_AnnP_3" + "P-network_3_4_AnnP_4" + "P-network_3_4_RP_0" + "P-network_3_4_RP_1" + "P-network_3_4_RP_2" + "P-network_3_4_RP_3" + "P-network_3_4_RP_4" + "P-network_4_0_AskP_0" + "P-network_4_0_AskP_1" + "P-network_4_0_AskP_2" + "P-network_4_0_AskP_3" + "P-network_4_0_AskP_4" + "P-network_4_0_AnsP_0" + "P-network_4_0_AnsP_1" + "P-network_4_0_AnsP_2" + "P-network_4_0_AnsP_3" + "P-network_4_0_AnsP_4" + "P-network_4_0_RI_0" + "P-network_4_0_RI_1" + "P-network_4_0_RI_2" + "P-network_4_0_RI_3" + "P-network_4_0_RI_4" + "P-network_4_0_AI_0" + "P-network_4_0_AI_1" + "P-network_4_0_AI_2" + "P-network_4_0_AI_3" + "P-network_4_0_AI_4" + "P-network_4_0_AnnP_0" + "P-network_4_0_AnnP_1" + "P-network_4_0_AnnP_2" + "P-network_4_0_AnnP_3" + "P-network_4_0_AnnP_4" + "P-network_4_0_RP_0" + "P-network_4_0_RP_1" + "P-network_4_0_RP_2" + "P-network_4_0_RP_3" + "P-network_4_0_RP_4" + "P-network_4_1_AskP_0" + "P-network_4_1_AskP_1" + "P-network_4_1_AskP_2" + "P-network_4_1_AskP_3" + "P-network_4_1_AskP_4" + "P-network_4_1_AnsP_0" + "P-network_4_1_AnsP_1" + "P-network_4_1_AnsP_2" + "P-network_4_1_AnsP_3" + "P-network_4_1_AnsP_4" + "P-network_4_1_RI_0" + "P-network_4_1_RI_1" + "P-network_4_1_RI_2" + "P-network_4_1_RI_3" + "P-network_4_1_RI_4" + "P-network_4_1_AI_0" + "P-network_4_1_AI_1" + "P-network_4_1_AI_2" + "P-network_4_1_AI_3" + "P-network_4_1_AI_4" + "P-network_4_1_AnnP_0" + "P-network_4_1_AnnP_1" + "P-network_4_1_AnnP_2" + "P-network_4_1_AnnP_3" + "P-network_4_1_AnnP_4" + "P-network_4_1_RP_0" + "P-network_4_1_RP_1" + "P-network_4_1_RP_2" + "P-network_4_1_RP_3" + "P-network_4_1_RP_4" + "P-network_4_2_AskP_0" + "P-network_4_2_AskP_1" + "P-network_4_2_AskP_2" + "P-network_4_2_AskP_3" + "P-network_4_2_AskP_4" + "P-network_4_2_AnsP_0" + "P-network_4_2_AnsP_1" + "P-network_4_2_AnsP_2" + "P-network_4_2_AnsP_3" + "P-network_4_2_AnsP_4" + "P-network_4_2_RI_0" + "P-network_4_2_RI_1" + "P-network_4_2_RI_2" + "P-network_4_2_RI_3" + "P-network_4_2_RI_4" + "P-network_4_2_AI_0" + "P-network_4_2_AI_1" + "P-network_4_2_AI_2" + "P-network_4_2_AI_3" + "P-network_4_2_AI_4" + "P-network_4_2_AnnP_0" + "P-network_4_2_AnnP_1" + "P-network_4_2_AnnP_2" + "P-network_4_2_AnnP_3" + "P-network_4_2_AnnP_4" + "P-network_4_2_RP_0" + "P-network_4_2_RP_1" + "P-network_4_2_RP_2" + "P-network_4_2_RP_3" + "P-network_4_2_RP_4" + "P-network_4_3_AskP_0" + "P-network_4_3_AskP_1" + "P-network_4_3_AskP_2" + "P-network_4_3_AskP_3" + "P-network_4_3_AskP_4" + "P-network_4_3_AnsP_0" + "P-network_4_3_AnsP_1" + "P-network_4_3_AnsP_2" + "P-network_4_3_AnsP_3" + "P-network_4_3_AnsP_4" + "P-network_4_3_RI_0" + "P-network_4_3_RI_1" + "P-network_4_3_RI_2" + "P-network_4_3_RI_3" + "P-network_4_3_RI_4" + "P-network_4_3_AI_0" + "P-network_4_3_AI_1" + "P-network_4_3_AI_2" + "P-network_4_3_AI_3" + "P-network_4_3_AI_4" + "P-network_4_3_AnnP_0" + "P-network_4_3_AnnP_1" + "P-network_4_3_AnnP_2" + "P-network_4_3_AnnP_3" + "P-network_4_3_AnnP_4" + "P-network_4_3_RP_0" + "P-network_4_3_RP_1" + "P-network_4_3_RP_2" + "P-network_4_3_RP_3" + "P-network_4_3_RP_4" + "P-network_4_4_AskP_0" + "P-network_4_4_AskP_1" + "P-network_4_4_AskP_2" + "P-network_4_4_AskP_3" + "P-network_4_4_AskP_4" + "P-network_4_4_AnsP_0" + "P-network_4_4_AnsP_1" + "P-network_4_4_AnsP_2" + "P-network_4_4_AnsP_3" + "P-network_4_4_AnsP_4" + "P-network_4_4_RI_0" + "P-network_4_4_RI_1" + "P-network_4_4_RI_2" + "P-network_4_4_RI_3" + "P-network_4_4_RI_4" + "P-network_4_4_AI_0" + "P-network_4_4_AI_1" + "P-network_4_4_AI_2" + "P-network_4_4_AI_3" + "P-network_4_4_AI_4" + "P-network_4_4_AnnP_0" + "P-network_4_4_AnnP_1" + "P-network_4_4_AnnP_2" + "P-network_4_4_AnnP_3" + "P-network_4_4_AnnP_4" + "P-network_4_4_RP_0" + "P-network_4_4_RP_1" + "P-network_4_4_RP_2" + "P-network_4_4_RP_3" + "P-network_4_4_RP_4")) )


BK_TIME_CONFINEMENT_REACHED

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_NeoElection-PT-4"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="tapaalPAR"
export BK_RESULT_DIR="/root/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/S_NeoElection-PT-4.tgz
mv S_NeoElection-PT-4 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool tapaalPAR"
echo " Input is S_NeoElection-PT-4, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r184kn-smll-146444125901069"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;