About the Execution of Marcie for S_LamportFastMutEx-PT-4
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
9950.620 | 1200317.00 | 1200010.00 | 19.80 | TFFFFTTFFTFTFTTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
........
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is S_LamportFastMutEx-PT-4, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r161kn-blw3-146416418500255
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-0
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-1
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-10
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-11
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-12
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-13
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-14
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-15
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-2
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-3
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-4
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-5
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-6
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-7
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-8
FORMULA_NAME LamportFastMutEx-COL-4-CTLCardinality-9
=== Now, execution of the tool begins
BK_START 1464337774870
Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --mcc-mode --memory=6 --suppress
parse successfull
net created successfully
Net: LamportFastMutEx_PT_4
(NrP: 135 NrTr: 230 NrArc: 990)
net check time: 0m 0.000sec
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.004sec
init dd package: 0m 3.895sec
RS generation: 2m11.065sec
-> reachability set: #nodes 153998 (1.5e+05) #states 1,914,784 (6)
starting MCC model checker
--------------------------
checking: AG [EX [sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]
normalized: ~ [E [true U ~ [EX [sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]]
abstracting: (sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 1,914,784 (6)
.-> the formula is TRUE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.677sec
checking: ~ [EF [AF [sum(P_b_4_true, P_b_4_false, P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)]]]
normalized: ~ [E [true U ~ [EG [~ [sum(P_b_4_true, P_b_4_false, P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)]]]]]
abstracting: (sum(P_b_4_true, P_b_4_false, P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)) states: 0
EG iterations: 0
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.065sec
checking: ~ [EG [~ [[1<=sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) & sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]]
normalized: ~ [EG [~ [[1<=sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) & sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]]
abstracting: (sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)) states: 1,736,124 (6)
abstracting: (1<=sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 448,064 (5)
..........10:200049..........20:164108........
EG iterations: 28
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m16.078sec
checking: A [EF [sum(P_sety_9_4, P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)] U EX [1<=sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]
normalized: [~ [EG [~ [EX [1<=sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]]] & ~ [E [~ [EX [1<=sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]] U [~ [E [true U sum(P_sety_9_4, P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)]] & ~ [EX [1<=sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]]]]]
abstracting: (1<=sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)) states: 242,056 (5)
.abstracting: (sum(P_sety_9_4, P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)) states: 1,663,444 (6)
abstracting: (1<=sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)) states: 242,056 (5)
.abstracting: (1<=sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)) states: 242,056 (5)
...........10:134258.......
EG iterations: 17
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m22.257sec
checking: A [AF [1<=sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] U AX [sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)]]
normalized: [~ [EG [EX [~ [sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)]]]] & ~ [E [EX [~ [sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)]] U [EG [~ [1<=sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]] & EX [~ [sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)]]]]]]
abstracting: (sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)) states: 1,867,805 (6)
.abstracting: (1<=sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 448,064 (5)
..........10:226374..........20:140262..........30:87342..........40:80915..........50:49565..........60:26242..........70:1240.....
EG iterations: 75
abstracting: (sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)) states: 1,867,805 (6)
.abstracting: (sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)) states: 1,867,805 (6)
...........10:103206....
EG iterations: 14
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 4m30.225sec
checking: [~ [~ [EG [sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_setbi_5_4, P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]] | [3<=sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) & ~ [1<=sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]]
normalized: [EG [sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_setbi_5_4, P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)] | [3<=sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) & ~ [1<=sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]]
abstracting: (1<=sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)) states: 242,056 (5)
abstracting: (3<=sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)) states: 616
abstracting: (sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_setbi_5_4, P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)) states: 1,709,136 (6)
..........10:161366...
EG iterations: 13
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m32.693sec
checking: EG [[AF [sum(P_b_4_true, P_b_4_false, P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_CS_21_4, P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)] | ~ [3<=sum(P_setbi_5_4, P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]
normalized: EG [[~ [3<=sum(P_setbi_5_4, P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)] | ~ [EG [~ [sum(P_b_4_true, P_b_4_false, P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_CS_21_4, P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)]]]]]
abstracting: (sum(P_b_4_true, P_b_4_false, P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_CS_21_4, P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)) states: 0
EG iterations: 0
abstracting: (3<=sum(P_setbi_5_4, P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)) states: 340
.
EG iterations: 1
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 5.086sec
checking: EF [~ [EF [sum(y_4, y_3, y_2, y_1, y_0)<=sum(P_done_4_4, P_done_4_3, P_done_4_2, P_done_4_1, P_done_4_0, P_done_3_4, P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_4, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_4, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_4, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)]]]
normalized: E [true U ~ [E [true U sum(y_4, y_3, y_2, y_1, y_0)<=sum(P_done_4_4, P_done_4_3, P_done_4_2, P_done_4_1, P_done_4_0, P_done_3_4, P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_4, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_4, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_4, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)]]]
abstracting: (sum(y_4, y_3, y_2, y_1, y_0)<=sum(P_done_4_4, P_done_4_3, P_done_4_2, P_done_4_1, P_done_4_0, P_done_3_4, P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_4, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_4, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_4, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)) states: 1,751,304 (6)
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m36.662sec
checking: E [EX [sum(P_wait_4_4, P_wait_4_3, P_wait_4_2, P_wait_4_1, P_wait_4_0, P_wait_3_4, P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_4, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_4, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_4, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)] U AG [3<=sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]
normalized: E [EX [sum(P_wait_4_4, P_wait_4_3, P_wait_4_2, P_wait_4_1, P_wait_4_0, P_wait_3_4, P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_4, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_4, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_4, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)] U ~ [E [true U ~ [3<=sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]]
abstracting: (3<=sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 1,896 (3)
abstracting: (sum(P_wait_4_4, P_wait_4_3, P_wait_4_2, P_wait_4_1, P_wait_4_0, P_wait_3_4, P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_4, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_4, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_4, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)) states: 188,872 (5)
.-> the formula is FALSE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m15.433sec
checking: [AG [sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] & [A [2<=sum(x_4, x_3, x_2, x_1, x_0) U sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] | AF [[sum(P_sety_9_4, P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & 2<=sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]]
normalized: [[~ [EG [~ [[sum(P_sety_9_4, P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & 2<=sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]] | [~ [EG [~ [sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)]]] & ~ [E [~ [sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] U [~ [2<=sum(x_4, x_3, x_2, x_1, x_0)] & ~ [sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)]]]]]] & ~ [E [true U ~ [sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]]
abstracting: (sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 1,756,752 (6)
abstracting: (sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)) states: 1,749,144 (6)
abstracting: (2<=sum(x_4, x_3, x_2, x_1, x_0)) states: 0
abstracting: (sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)) states: 1,749,144 (6)
abstracting: (sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)) states: 1,749,144 (6)
.....
before gc: list nodes free: 3263763
after gc: idd nodes used:416652, unused:63583348; list nodes free:295971554
.....10:102321..........20:26227.....
EG iterations: 25
abstracting: (2<=sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)) states: 6,880 (3)
abstracting: (sum(P_sety_9_4, P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)) states: 1,672,504 (6)
.
EG iterations: 1
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 2m59.722sec
checking: [EG [[[3<=sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | 2<=sum(x_4, x_3, x_2, x_1, x_0)] & [sum(P_sety_9_4, P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(x_4, x_3, x_2, x_1, x_0) | sum(P_done_4_4, P_done_4_3, P_done_4_2, P_done_4_1, P_done_4_0, P_done_3_4, P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_4, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_4, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_4, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)]]] | EF [AG [3<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)]]]
normalized: [E [true U ~ [E [true U ~ [3<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)]]]] | EG [[[sum(P_sety_9_4, P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(x_4, x_3, x_2, x_1, x_0) | sum(P_done_4_4, P_done_4_3, P_done_4_2, P_done_4_1, P_done_4_0, P_done_3_4, P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_4, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_4, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_4, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)] & [3<=sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | 2<=sum(x_4, x_3, x_2, x_1, x_0)]]]]
abstracting: (2<=sum(x_4, x_3, x_2, x_1, x_0)) states: 0
abstracting: (3<=sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)) states: 616
abstracting: (sum(P_done_4_4, P_done_4_3, P_done_4_2, P_done_4_1, P_done_4_0, P_done_3_4, P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_4, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_4, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_4, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 208,408 (5)
abstracting: (sum(P_sety_9_4, P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(x_4, x_3, x_2, x_1, x_0)) states: 1,898,652 (6)
.......
EG iterations: 7
abstracting: (3<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 340
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m33.594sec
checking: A [[[sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0) | sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)] | sum(P_done_4_4, P_done_4_3, P_done_4_2, P_done_4_1, P_done_4_0, P_done_3_4, P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_4, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_4, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_4, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)] U EG [sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(x_4, x_3, x_2, x_1, x_0)]]
normalized: [~ [EG [~ [EG [sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(x_4, x_3, x_2, x_1, x_0)]]]] & ~ [E [~ [EG [sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(x_4, x_3, x_2, x_1, x_0)]] U [~ [[sum(P_done_4_4, P_done_4_3, P_done_4_2, P_done_4_1, P_done_4_0, P_done_3_4, P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_4, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_4, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_4, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0) | [sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0) | sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]] & ~ [EG [sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(x_4, x_3, x_2, x_1, x_0)]]]]]]
abstracting: (sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(x_4, x_3, x_2, x_1, x_0)) states: 1,871,992 (6)
.
EG iterations: 1
abstracting: (sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)) states: 1,549,361 (6)
abstracting: (sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 1,563,629 (6)
abstracting: (sum(P_done_4_4, P_done_4_3, P_done_4_2, P_done_4_1, P_done_4_0, P_done_3_4, P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_4, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_4, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_4, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 208,408 (5)
abstracting: (sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(x_4, x_3, x_2, x_1, x_0)) states: 1,871,992 (6)
.
EG iterations: 1
abstracting: (sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(x_4, x_3, x_2, x_1, x_0)) states: 1,871,992 (6)
.
EG iterations: 1
..........10:36559........
EG iterations: 18
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m56.478sec
checking: [E [[2<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0) | sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(x_4, x_3, x_2, x_1, x_0)] U [sum(y_4, y_3, y_2, y_1, y_0)<=sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) & 1<=sum(P_wait_4_4, P_wait_4_3, P_wait_4_2, P_wait_4_1, P_wait_4_0, P_wait_3_4, P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_4, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_4, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_4, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)]] | EG [EF [sum(P_CS_21_4, P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_CS_21_4, P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)]]]
normalized: [EG [E [true U sum(P_CS_21_4, P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_CS_21_4, P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)]] | E [[2<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0) | sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(x_4, x_3, x_2, x_1, x_0)] U [sum(y_4, y_3, y_2, y_1, y_0)<=sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) & 1<=sum(P_wait_4_4, P_wait_4_3, P_wait_4_2, P_wait_4_1, P_wait_4_0, P_wait_3_4, P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_4, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_4, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_4, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)]]]
abstracting: (1<=sum(P_wait_4_4, P_wait_4_3, P_wait_4_2, P_wait_4_1, P_wait_4_0, P_wait_3_4, P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_4, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_4, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_4, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)) states: 1,766,400 (6)
abstracting: (sum(y_4, y_3, y_2, y_1, y_0)<=sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)) states: 202,096 (5)
abstracting: (sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(x_4, x_3, x_2, x_1, x_0)) states: 1,905,816 (6)
abstracting: (2<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 20,128 (4)
abstracting: (sum(P_CS_21_4, P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_CS_21_4, P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)) states: 1,914,784 (6)
EG iterations: 0
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m39.069sec
checking: [EX [~ [1<=sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]] & [[3<=sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0) & [[sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0) | sum(y_4, y_3, y_2, y_1, y_0)<=sum(P_wait_4_4, P_wait_4_3, P_wait_4_2, P_wait_4_1, P_wait_4_0, P_wait_3_4, P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_4, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_4, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_4, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)] | ~ [sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_CS_21_4, P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)]]] & AG [sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)]]]
normalized: [[~ [E [true U ~ [sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)]]] & [3<=sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0) & [~ [sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_CS_21_4, P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)] | [sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0) | sum(y_4, y_3, y_2, y_1, y_0)<=sum(P_wait_4_4, P_wait_4_3, P_wait_4_2, P_wait_4_1, P_wait_4_0, P_wait_3_4, P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_4, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_4, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_4, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)]]]] & EX [~ [1<=sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]
abstracting: (1<=sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)) states: 191,008 (5)
.abstracting: (sum(y_4, y_3, y_2, y_1, y_0)<=sum(P_wait_4_4, P_wait_4_3, P_wait_4_2, P_wait_4_1, P_wait_4_0, P_wait_3_4, P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_4, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_4, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_4, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)) states: 1,766,400 (6)
abstracting: (sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 1,564,216 (6)
abstracting: (sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_CS_21_4, P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)) states: 1,539,373 (6)
abstracting: (3<=sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)) states: 617
abstracting: (sum(P_fordo_12_4, P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)) states: 1,715,004 (6)
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m55.900sec
checking: ~ [[[~ [[sum(x_4, x_3, x_2, x_1, x_0)<=sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & sum(y_4, y_3, y_2, y_1, y_0)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)]] & AG [sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)]] | ~ [[sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(x_4, x_3, x_2, x_1, x_0) | ~ [sum(P_wait_4_4, P_wait_4_3, P_wait_4_2, P_wait_4_1, P_wait_4_0, P_wait_3_4, P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_4, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_4, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_4, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(y_4, y_3, y_2, y_1, y_0)]]]]]
normalized: ~ [[~ [[sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(x_4, x_3, x_2, x_1, x_0) | ~ [sum(P_wait_4_4, P_wait_4_3, P_wait_4_2, P_wait_4_1, P_wait_4_0, P_wait_3_4, P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_4, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_4, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_4, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(y_4, y_3, y_2, y_1, y_0)]]] | [~ [E [true U ~ [sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)]]] & ~ [[sum(x_4, x_3, x_2, x_1, x_0)<=sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & sum(y_4, y_3, y_2, y_1, y_0)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)]]]]]
abstracting: (sum(y_4, y_3, y_2, y_1, y_0)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)) states: 1,796,608 (6)
abstracting: (sum(x_4, x_3, x_2, x_1, x_0)<=sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)) states: 191,008 (5)
abstracting: (sum(P_ifyi_15_4, P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_await_13_4, P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)) states: 1,884,864 (6)
abstracting: (sum(P_wait_4_4, P_wait_4_3, P_wait_4_2, P_wait_4_1, P_wait_4_0, P_wait_3_4, P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_4, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_4, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_4, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(y_4, y_3, y_2, y_1, y_0)) states: 287,320 (5)
abstracting: (sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(x_4, x_3, x_2, x_1, x_0)) states: 1,888,884 (6)
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m10.933sec
checking: [~ [AF [[3<=sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0) & 3<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)]]] | [[[[1<=sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(x_4, x_3, x_2, x_1, x_0)] & 2<=sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)] | ~ [[2<=sum(P_done_4_4, P_done_4_3, P_done_4_2, P_done_4_1, P_done_4_0, P_done_3_4, P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_4, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_4, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_4, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0) & 3<=sum(P_setx_3_4, P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)]]] & AG [[1<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & sum(P_done_4_4, P_done_4_3, P_done_4_2, P_done_4_1, P_done_4_0, P_done_3_4, P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_4, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_4, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_4, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)]]]]
normalized: [[~ [E [true U ~ [[1<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & sum(P_done_4_4, P_done_4_3, P_done_4_2, P_done_4_1, P_done_4_0, P_done_3_4, P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_4, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_4, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_4, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)]]]] & [~ [[2<=sum(P_done_4_4, P_done_4_3, P_done_4_2, P_done_4_1, P_done_4_0, P_done_3_4, P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_4, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_4, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_4, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0) & 3<=sum(P_setx_3_4, P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)]] | [2<=sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) & [1<=sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(x_4, x_3, x_2, x_1, x_0)]]]] | EG [~ [[3<=sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0) & 3<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)]]]]
abstracting: (3<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)) states: 1,156 (3)
abstracting: (3<=sum(P_start_1_4, P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)) states: 617
EG iterations: 0
abstracting: (sum(P_setbi_24_4, P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(x_4, x_3, x_2, x_1, x_0)) states: 1,871,992 (6)
abstracting: (1<=sum(P_ify0_4_4, P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)) states: 393,856 (5)
abstracting: (2<=sum(P_setbi_11_4, P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)) states: 8,968 (3)
abstracting: (3<=sum(P_setx_3_4, P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)) states: 617
abstracting: (2<=sum(P_done_4_4, P_done_4_3, P_done_4_2, P_done_4_1, P_done_4_0, P_done_3_4, P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_4, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_4, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_4, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)) states: 1,576,320 (6)
abstracting: (sum(P_done_4_4, P_done_4_3, P_done_4_2, P_done_4_1, P_done_4_0, P_done_3_4, P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_4, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_4, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_4, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_awaity_4, P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 208,408 (5)
abstracting: (1<=sum(P_ifxi_10_4, P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)) states: 355,948 (5)
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-4-CTLCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m15.182sec
Total processing time: 20m 0.136sec
BK_STOP 1464338975187
--------------------
content from stderr:
check for maximal unmarked siphon
found
The net has a maximal unmarked siphon:
P_start_1_0
P_wait_0_1
P_wait_0_3
P_wait_0_4
P_wait_1_0
P_wait_2_0
P_wait_0_2
P_done_0_2
P_done_2_0
P_done_3_0
P_await_13_0
P_done_0_0
P_done_0_1
P_done_0_3
P_done_0_4
P_done_1_0
P_wait_3_0
P_wait_4_0
P_setbi_5_0
P_ifxi_10_0
P_setbi_11_0
P_ify0_4_0
P_setx_3_0
P_b_0_false
P_b_0_true
P_sety_9_0
P_CS_21_0
P_setbi_24_0
P_done_4_0
P_ifyi_15_0
P_awaity_0
P_fordo_12_0
P_wait_0_0
The net has transition(s) that can never fire:
T_setx_3_5
T_yne0_4_5
T_setbi_5_1
T_setx_3_2
T_setbi_2_1
T_setbi_2_2
T_setx_3_1
T_yne0_4_4
T_setx_3_3
T_setx_3_4
T_yne0_4_2
T_yne0_4_3
T_sety_9_1
T_sety_9_2
T_setbi_5_2
T_fordo_12_1
T_awaity_1
T_setbi_24_2
T_sety_9_3
T_yeq0_4_1
T_sety_9_4
T_sety_9_5
T_xnei_10_3
T_xnei_10_2
T_xnei_10_4
T_xnei_10_5
T_sety0_23_2
T_setbi_11_1
T_sety0_23_1
T_setbi_11_2
T_await_13_1
T_await_13_2
T_await_13_3
T_await_13_4
T_await_13_5
T_await_13_6
T_await_13_11
T_await_13_16
T_await_13_21
T_forod_13_1
T_ynei_15_2
T_ynei_15_3
T_ynei_15_4
T_ynei_15_5
T_xeqi_10_1
T_yeqi_15_1
T_sety0_23_3
T_sety0_23_4
T_sety0_23_5
T_setbi_24_1
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
.........10 185069.........20 154882......................................................................
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_LamportFastMutEx-PT-4"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/home/hulinhub/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/S_LamportFastMutEx-PT-4.tgz
mv S_LamportFastMutEx-PT-4 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is S_LamportFastMutEx-PT-4, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r161kn-blw3-146416418500255"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;