About the Execution of Marcie for S_LamportFastMutEx-PT-3
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5546.360 | 25839.00 | 25019.00 | 20.20 | TFFFFFFTFTTTTTFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
........
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is S_LamportFastMutEx-PT-3, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r161kn-blw3-146416418500250
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-0
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-1
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-10
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-11
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-12
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-13
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-14
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-15
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-2
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-3
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-4
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-5
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-6
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-7
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-8
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1464337751800
Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --mcc-mode --memory=6 --suppress
parse successfull
net created successfully
Net: LamportFastMutEx_PT_3
(NrP: 100 NrTr: 156 NrArc: 664)
net check time: 0m 0.000sec
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.002sec
init dd package: 0m 3.911sec
RS generation: 0m 3.230sec
-> reachability set: #nodes 6365 (6.4e+03) #states 19,742 (4)
starting MCC model checker
--------------------------
checking: EF [3<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]
normalized: E [true U 3<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]
abstracting: (3<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 12
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.401sec
checking: EF [2<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]
normalized: E [true U 2<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]
abstracting: (2<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)) states: 75
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.173sec
checking: EF [2<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]
normalized: E [true U 2<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]
abstracting: (2<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 396
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.143sec
checking: AG [~ [~ [~ [1<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]]
normalized: ~ [E [true U 1<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]
abstracting: (1<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)) states: 1,869 (3)
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.981sec
checking: EF [~ [~ [~ [sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]]
normalized: E [true U ~ [sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]
abstracting: (sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 19,742 (4)
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.040sec
checking: EF [~ [[[1<=sum(y_3, y_2, y_1, y_0) & 2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)] | ~ [2<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]]
normalized: E [true U ~ [[[1<=sum(y_3, y_2, y_1, y_0) & 2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)] | ~ [2<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]]
abstracting: (2<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)) states: 75
abstracting: (2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 129
abstracting: (1<=sum(y_3, y_2, y_1, y_0)) states: 19,742 (4)
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.105sec
checking: EF [[2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0) & sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]
normalized: E [true U [2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0) & sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]
abstracting: (sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)) states: 16,841 (4)
abstracting: (2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 129
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.917sec
checking: EF [~ [sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]
normalized: E [true U ~ [sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]
abstracting: (sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)) states: 19,742 (4)
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.045sec
checking: EF [~ [[3<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) | ~ [2<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]]
normalized: E [true U ~ [[3<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) | ~ [2<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]]
abstracting: (2<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)) states: 129
abstracting: (3<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)) states: 19,742 (4)
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.084sec
checking: AG [[sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0) | sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]
normalized: ~ [E [true U ~ [[sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0) | sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]]
abstracting: (sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 17,222 (4)
abstracting: (sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)) states: 15,689 (4)
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.524sec
checking: EF [[[2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0) & ~ [2<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)]] & sum(y_3, y_2, y_1, y_0)<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)]]
normalized: E [true U [sum(y_3, y_2, y_1, y_0)<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0) & [2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0) & ~ [2<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)]]]]
abstracting: (2<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)) states: 223
abstracting: (2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 129
abstracting: (sum(y_3, y_2, y_1, y_0)<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)) states: 13,608 (4)
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.020sec
checking: EF [[~ [~ [2<=sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)]] & ~ [~ [3<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]]
normalized: E [true U [2<=sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0) & 3<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]
abstracting: (3<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 12
abstracting: (2<=sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)) states: 8,889 (3)
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.074sec
checking: EF [[3<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0) & [~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)] | [sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]]
normalized: E [true U [3<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0) & [~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)] | [sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]]
abstracting: (sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)) states: 15,395 (4)
abstracting: (sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)) states: 7,898 (3)
abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)) states: 17,765 (4)
abstracting: (3<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.174sec
checking: AG [[[[1<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0) & sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(y_3, y_2, y_1, y_0)] | [sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | 2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)]] | ~ [3<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)]]]
normalized: ~ [E [true U ~ [[[[sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | 2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)] | [1<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0) & sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(y_3, y_2, y_1, y_0)]] | ~ [3<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)]]]]]
abstracting: (3<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)) states: 0
abstracting: (sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(y_3, y_2, y_1, y_0)) states: 19,577 (4)
abstracting: (1<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)) states: 12,075 (4)
abstracting: (2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 129
abstracting: (sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)) states: 16,871 (4)
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.196sec
checking: AG [[[~ [1<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)] | ~ [3<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]] | [[sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) | 3<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] | [3<=sum(x_3, x_2, x_1, x_0) | 3<=sum(y_3, y_2, y_1, y_0)]]]]
normalized: ~ [E [true U ~ [[[~ [1<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)] | ~ [3<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]] | [[3<=sum(x_3, x_2, x_1, x_0) | 3<=sum(y_3, y_2, y_1, y_0)] | [sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) | 3<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]]]]
abstracting: (3<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 12
abstracting: (sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)) states: 8,039 (3)
abstracting: (3<=sum(y_3, y_2, y_1, y_0)) states: 0
abstracting: (3<=sum(x_3, x_2, x_1, x_0)) states: 0
abstracting: (3<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)) states: 0
abstracting: (1<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)) states: 1,869 (3)
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.220sec
checking: AG [[[[sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(y_3, y_2, y_1, y_0) | 1<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)] & ~ [2<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)]] | [sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) & [sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) & sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)]]]]
normalized: ~ [E [true U ~ [[[sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) & [sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) & sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)]] | [~ [2<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)] & [sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(y_3, y_2, y_1, y_0) | 1<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)]]]]]]
abstracting: (1<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)) states: 12,075 (4)
abstracting: (sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(y_3, y_2, y_1, y_0)) states: 19,613 (4)
abstracting: (2<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)) states: 223
abstracting: (sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)) states: 8,507 (3)
abstracting: (sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)) states: 17,651 (4)
abstracting: (sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 8,003 (3)
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.351sec
Total processing time: 0m25.803sec
BK_STOP 1464337777639
--------------------
content from stderr:
check for maximal unmarked siphon
found
The net has a maximal unmarked siphon:
P_done_3_0
P_start_1_0
P_b_0_false
P_sety_9_0
P_ifxi_10_0
P_setbi_5_0
P_ify0_4_0
P_done_2_0
P_done_0_0
P_done_0_1
P_done_0_2
P_done_0_3
P_done_1_0
P_b_0_true
P_setx_3_0
P_await_13_0
P_wait_0_0
P_wait_0_1
P_wait_0_2
P_wait_0_3
P_wait_1_0
P_setbi_11_0
P_fordo_12_0
P_wait_3_0
P_wait_2_0
P_ifyi_15_0
P_awaity_0
P_CS_21_0
P_setbi_24_0
The net has transition(s) that can never fire:
T_setbi_2_2
T_setbi_2_1
T_awaity_1
T_setx_3_1
T_setx_3_2
T_xnei_10_3
T_setx_3_3
T_setx_3_4
T_xnei_10_4
T_yne0_4_2
T_yne0_4_3
T_yne0_4_4
T_sety_9_3
T_sety_9_4
T_xnei_10_2
T_setbi_5_1
T_setbi_5_2
T_yeq0_4_1
T_sety_9_1
T_sety_9_2
T_sety0_23_2
T_sety0_23_1
T_sety0_23_4
T_sety0_23_3
T_setbi_11_1
T_setbi_11_2
T_fordo_12_1
T_await_13_1
T_await_13_2
T_await_13_3
T_await_13_4
T_await_13_5
T_await_13_9
T_await_13_13
T_forod_13_1
T_ynei_15_2
T_ynei_15_3
T_ynei_15_4
T_yeqi_15_1
T_xeqi_10_1
T_setbi_24_1
T_setbi_24_2
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
.........10 7529.................10 6365...............................................................10 6365.............
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_LamportFastMutEx-PT-3"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/home/hulinhub/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/S_LamportFastMutEx-PT-3.tgz
mv S_LamportFastMutEx-PT-3 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is S_LamportFastMutEx-PT-3, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r161kn-blw3-146416418500250"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;