About the Execution of Marcie for S_Diffusion2D-PT-D10N010
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5674.830 | 44998.00 | 45030.00 | 29.80 | TTTFFTTFTTFFTFFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
................................
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is S_Diffusion2D-PT-D10N010, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r149kn-smll-146416258200129
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-0
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-1
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-10
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-11
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-12
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-13
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-14
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-15
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-2
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-3
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-4
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-5
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-6
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-7
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-8
FORMULA_NAME Diffusion2D-PT-D10N010-CTLCardinality-9
=== Now, execution of the tool begins
BK_START 1464194862648
Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --mcc-mode --memory=6 --suppress
parse successfull
net created successfully
Net: Diffusion2D_PT_D10N010
(NrP: 100 NrTr: 684 NrArc: 1368)
net check time: 0m 0.000sec
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.006sec
init dd package: 0m 3.834sec
RS generation: 0m 0.279sec
-> reachability set: #nodes 1090 (1.1e+03) #states 42,634,215,112,710 (13)
starting MCC model checker
--------------------------
checking: AG [AF [~ [2<=cAMP__8_6_]]]
normalized: ~ [E [true U EG [2<=cAMP__8_6_]]]
abstracting: (2<=cAMP__8_6_) states: 325,949,656,825 (11)
.
EG iterations: 1
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.088sec
checking: EF [AX [[1<=cAMP__1_8_ & 1<=cAMP__5_6_]]]
normalized: E [true U ~ [EX [~ [[1<=cAMP__1_8_ & 1<=cAMP__5_6_]]]]]
abstracting: (1<=cAMP__5_6_) states: 3,911,395,881,900 (12)
abstracting: (1<=cAMP__1_8_) states: 3,911,395,881,900 (12)
.-> the formula is TRUE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.142sec
checking: EF [[EG [3<=cAMP__5_6_] & AX [2<=cAMP__7_5_]]]
normalized: E [true U [~ [EX [~ [2<=cAMP__7_5_]]] & EG [3<=cAMP__5_6_]]]
abstracting: (3<=cAMP__5_6_) states: 24,370,067,800 (10)
.
EG iterations: 1
abstracting: (2<=cAMP__7_5_) states: 325,949,656,825 (11)
.-> the formula is TRUE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.399sec
checking: AG [cAMP__4_5_<=cAMP__4_5_]
normalized: ~ [E [true U ~ [cAMP__4_5_<=cAMP__4_5_]]]
abstracting: (cAMP__4_5_<=cAMP__4_5_) states: 42,634,215,112,710 (13)
-> the formula is TRUE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: E [AX [1<=cAMP__4_9_] U AG [cAMP__10_5_<=cAMP__3_9_]]
normalized: E [~ [EX [~ [1<=cAMP__4_9_]]] U ~ [E [true U ~ [cAMP__10_5_<=cAMP__3_9_]]]]
abstracting: (cAMP__10_5_<=cAMP__3_9_) states: 39,025,920,455,941 (13)
abstracting: (1<=cAMP__4_9_) states: 3,911,395,881,900 (12)
.-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.806sec
checking: E [~ [[1<=cAMP__1_4_ & 2<=cAMP__10_5_]] U AX [2<=cAMP__2_10_]]
normalized: E [~ [[1<=cAMP__1_4_ & 2<=cAMP__10_5_]] U ~ [EX [~ [2<=cAMP__2_10_]]]]
abstracting: (2<=cAMP__2_10_) states: 325,949,656,825 (11)
.abstracting: (2<=cAMP__10_5_) states: 325,949,656,825 (11)
abstracting: (1<=cAMP__1_4_) states: 3,911,395,881,900 (12)
-> the formula is TRUE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.244sec
checking: ~ [~ [AG [[1<=cAMP__2_1_ | cAMP__4_1_<=cAMP__3_5_]]]]
normalized: ~ [E [true U ~ [[1<=cAMP__2_1_ | cAMP__4_1_<=cAMP__3_5_]]]]
abstracting: (cAMP__4_1_<=cAMP__3_5_) states: 39,025,920,455,941 (13)
abstracting: (1<=cAMP__2_1_) states: 3,911,395,881,900 (12)
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.864sec
checking: AG [AG [[cAMP__5_1_<=cAMP__8_9_ & cAMP__3_1_<=cAMP__10_5_]]]
normalized: ~ [E [true U E [true U ~ [[cAMP__5_1_<=cAMP__8_9_ & cAMP__3_1_<=cAMP__10_5_]]]]]
abstracting: (cAMP__3_1_<=cAMP__10_5_) states: 39,025,920,455,941 (13)
abstracting: (cAMP__5_1_<=cAMP__8_9_) states: 39,025,920,455,941 (13)
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.915sec
checking: A [~ [[1<=cAMP__7_7_ | cAMP__8_8_<=cAMP__8_3_]] U EF [3<=cAMP__6_2_]]
normalized: [~ [EG [~ [E [true U 3<=cAMP__6_2_]]]] & ~ [E [~ [E [true U 3<=cAMP__6_2_]] U [[1<=cAMP__7_7_ | cAMP__8_8_<=cAMP__8_3_] & ~ [E [true U 3<=cAMP__6_2_]]]]]]
abstracting: (3<=cAMP__6_2_) states: 24,370,067,800 (10)
abstracting: (cAMP__8_8_<=cAMP__8_3_) states: 39,025,920,455,941 (13)
abstracting: (1<=cAMP__7_7_) states: 3,911,395,881,900 (12)
abstracting: (3<=cAMP__6_2_) states: 24,370,067,800 (10)
abstracting: (3<=cAMP__6_2_) states: 24,370,067,800 (10)
.
EG iterations: 1
-> the formula is TRUE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.105sec
checking: [EX [[~ [cAMP__8_2_<=cAMP__7_2_] & [2<=cAMP__8_3_ & 3<=cAMP__2_2_]]] | EF [EF [1<=cAMP__10_1_]]]
normalized: [E [true U E [true U 1<=cAMP__10_1_]] | EX [[~ [cAMP__8_2_<=cAMP__7_2_] & [2<=cAMP__8_3_ & 3<=cAMP__2_2_]]]]
abstracting: (3<=cAMP__2_2_) states: 24,370,067,800 (10)
abstracting: (2<=cAMP__8_3_) states: 325,949,656,825 (11)
abstracting: (cAMP__8_2_<=cAMP__7_2_) states: 39,025,920,455,941 (13)
.abstracting: (1<=cAMP__10_1_) states: 3,911,395,881,900 (12)
-> the formula is TRUE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.365sec
checking: ~ [[~ [~ [~ [cAMP__10_9_<=cAMP__3_5_]]] | EF [[1<=cAMP__1_3_ & cAMP__7_2_<=cAMP__2_10_]]]]
normalized: ~ [[E [true U [1<=cAMP__1_3_ & cAMP__7_2_<=cAMP__2_10_]] | ~ [cAMP__10_9_<=cAMP__3_5_]]]
abstracting: (cAMP__10_9_<=cAMP__3_5_) states: 39,025,920,455,941 (13)
abstracting: (cAMP__7_2_<=cAMP__2_10_) states: 39,025,920,455,941 (13)
abstracting: (1<=cAMP__1_3_) states: 3,911,395,881,900 (12)
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 4.013sec
checking: EF [[1<=cAMP__1_2_ & [~ [cAMP__7_2_<=cAMP__9_2_] | [cAMP__5_7_<=cAMP__9_7_ & 1<=cAMP__2_2_]]]]
normalized: E [true U [1<=cAMP__1_2_ & [~ [cAMP__7_2_<=cAMP__9_2_] | [cAMP__5_7_<=cAMP__9_7_ & 1<=cAMP__2_2_]]]]
abstracting: (1<=cAMP__2_2_) states: 3,911,395,881,900 (12)
abstracting: (cAMP__5_7_<=cAMP__9_7_) states: 39,025,920,455,941 (13)
abstracting: (cAMP__7_2_<=cAMP__9_2_) states: 39,025,920,455,941 (13)
abstracting: (1<=cAMP__1_2_) states: 3,911,395,881,900 (12)
-> the formula is TRUE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 5.142sec
checking: EF [[EX [2<=cAMP__6_2_] & [[cAMP__1_10_<=cAMP__6_8_ | 3<=cAMP__6_7_] | cAMP__9_1_<=cAMP__1_4_]]]
normalized: E [true U [EX [2<=cAMP__6_2_] & [cAMP__9_1_<=cAMP__1_4_ | [cAMP__1_10_<=cAMP__6_8_ | 3<=cAMP__6_7_]]]]
abstracting: (3<=cAMP__6_7_) states: 24,370,067,800 (10)
abstracting: (cAMP__1_10_<=cAMP__6_8_) states: 39,025,920,455,941 (13)
abstracting: (cAMP__9_1_<=cAMP__1_4_) states: 39,025,920,455,941 (13)
abstracting: (2<=cAMP__6_2_) states: 325,949,656,825 (11)
.-> the formula is TRUE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.492sec
checking: [[[~ [3<=cAMP__6_6_] | AF [3<=cAMP__10_7_]] & AX [~ [cAMP__2_7_<=cAMP__6_6_]]] | AG [~ [[cAMP__6_9_<=cAMP__4_8_ & 2<=cAMP__10_5_]]]]
normalized: [~ [E [true U [cAMP__6_9_<=cAMP__4_8_ & 2<=cAMP__10_5_]]] | [~ [EX [cAMP__2_7_<=cAMP__6_6_]] & [~ [EG [~ [3<=cAMP__10_7_]]] | ~ [3<=cAMP__6_6_]]]]
abstracting: (3<=cAMP__6_6_) states: 24,370,067,800 (10)
abstracting: (3<=cAMP__10_7_) states: 24,370,067,800 (10)
.
EG iterations: 1
abstracting: (cAMP__2_7_<=cAMP__6_6_) states: 39,025,920,455,941 (13)
.abstracting: (2<=cAMP__10_5_) states: 325,949,656,825 (11)
abstracting: (cAMP__6_9_<=cAMP__4_8_) states: 39,025,920,455,941 (13)
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.436sec
checking: [[AG [~ [2<=cAMP__1_7_]] & [[[2<=cAMP__8_6_ | 2<=cAMP__2_9_] & 3<=cAMP__2_3_] | EX [cAMP__8_2_<=cAMP__3_10_]]] | ~ [cAMP__8_2_<=cAMP__10_4_]]
normalized: [~ [cAMP__8_2_<=cAMP__10_4_] | [[EX [cAMP__8_2_<=cAMP__3_10_] | [3<=cAMP__2_3_ & [2<=cAMP__8_6_ | 2<=cAMP__2_9_]]] & ~ [E [true U 2<=cAMP__1_7_]]]]
abstracting: (2<=cAMP__1_7_) states: 325,949,656,825 (11)
abstracting: (2<=cAMP__2_9_) states: 325,949,656,825 (11)
abstracting: (2<=cAMP__8_6_) states: 325,949,656,825 (11)
abstracting: (3<=cAMP__2_3_) states: 24,370,067,800 (10)
abstracting: (cAMP__8_2_<=cAMP__3_10_) states: 39,025,920,455,941 (13)
.abstracting: (cAMP__8_2_<=cAMP__10_4_) states: 39,025,920,455,941 (13)
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.391sec
checking: [[[AF [cAMP__4_2_<=cAMP__3_9_] | AX [1<=cAMP__10_1_]] | cAMP__8_2_<=cAMP__2_9_] & [EF [2<=cAMP__5_10_] & ~ [[cAMP__5_10_<=cAMP__7_9_ & 2<=cAMP__3_5_]]]]
normalized: [[~ [[cAMP__5_10_<=cAMP__7_9_ & 2<=cAMP__3_5_]] & E [true U 2<=cAMP__5_10_]] & [cAMP__8_2_<=cAMP__2_9_ | [~ [EX [~ [1<=cAMP__10_1_]]] | ~ [EG [~ [cAMP__4_2_<=cAMP__3_9_]]]]]]
abstracting: (cAMP__4_2_<=cAMP__3_9_) states: 39,025,920,455,941 (13)
.
EG iterations: 1
abstracting: (1<=cAMP__10_1_) states: 3,911,395,881,900 (12)
.abstracting: (cAMP__8_2_<=cAMP__2_9_) states: 39,025,920,455,941 (13)
abstracting: (2<=cAMP__5_10_) states: 325,949,656,825 (11)
abstracting: (2<=cAMP__3_5_) states: 325,949,656,825 (11)
abstracting: (cAMP__5_10_<=cAMP__7_9_) states: 39,025,920,455,941 (13)
-> the formula is TRUE
FORMULA Diffusion2D-PT-D10N010-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.431sec
Total processing time: 0m44.954sec
BK_STOP 1464194907646
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.003sec
490 490 580 650 760 870 900 1000
iterations count:8700 (12), effective:99 (0)
initing FirstDep: 0m 0.001sec
940 966 988 1004 1026 1046 1052 1074
iterations count:8626 (12), effective:99 (0)
1144 976 856 806 1466 1242 1066 926 966 1002 1018 1062
iterations count:12481 (18), effective:157 (0)
778 622 640 1465 1150 940 820 892 946 976 1030
iterations count:11790 (17), effective:150 (0)
1355 1108 1039 1047 1058 1068 1071 1082
iterations count:8629 (12), effective:99 (0)
2102 1760 1382 1385 1425 1461 1486 1507
iterations count:8994 (13), effective:107 (0)
1757 1613 1523 1424 1325 1244 1172 1082
iterations count:8678 (12), effective:100 (0)
1797 1662 1554 1464 1374 1284 1212 1122
iterations count:8654 (12), effective:100 (0)
iterations count:684 (1), effective:0 (0)
2452 2137 1906 1675 1465 1276 1108 1066
iterations count:8630 (12), effective:99 (0)
2452 2137 1906 1675 1465 1276 1108 1066
iterations count:8630 (12), effective:99 (0)
2452 2137 1906 1675 1465 1276 1108 1066
iterations count:8630 (12), effective:99 (0)
1244 1118 1039 1047 1058 1068 1071 1082
iterations count:8633 (12), effective:99 (0)
iterations count:684 (1), effective:0 (0)
2151 1871 1631 1471 1251 1051 991 1751 1625 1517 1436 1310 1229 1193 1094
iterations count:15383 (22), effective:180 (0)
2603 2395 1660 1516 1428 1332 1252 1180 1124 1044 1841 1688 1580 1481 1391 1283 1238 1157
iterations count:18706 (27), effective:236 (0)
1763 1718 1643 1523 1540 1420 1332 1252 1164 1092 1737 1575 1467 1368 1287 1188 1116 1067
iterations count:18906 (27), effective:256 (0)
938 964 988 1002 1024 1046 1052 1072
iterations count:8686 (12), effective:100 (0)
1654 1446 1254 1110 1026 1046 1052 1074
iterations count:8633 (12), effective:99 (0)
940 966 988 1004 1026 1046 1052 1074
iterations count:8629 (12), effective:99 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_Diffusion2D-PT-D10N010"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/root/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/S_Diffusion2D-PT-D10N010.tgz
mv S_Diffusion2D-PT-D10N010 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is S_Diffusion2D-PT-D10N010, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r149kn-smll-146416258200129"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;