About the Execution of Marcie for SwimmingPool-PT-04
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.................................
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is SwimmingPool-PT-04, examination is UpperBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r125kn-qhx2-146373371400389
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of positive values
NUM_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-0
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-1
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-10
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-11
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-12
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-13
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-14
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-15
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-2
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-3
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-4
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-5
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-6
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-7
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-8
FORMULA_NAME SwimmingPool-PT-04-UpperBounds-9
=== Now, execution of the tool begins
BK_START 1464507875491
Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=UpperBounds.xml --mcc-mode --memory=6 --suppress
parse successfull
net created successfully
Net: SwimmingPool_PT_04
(NrP: 9 NrTr: 7 NrArc: 20)
net check time: 0m 0.000sec
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
init dd package: 0m16.986sec
RS generation: 1m29.307sec
-> reachability set: #nodes 325739 (3.3e+05) #states 164,385,221 (8)
starting MCC model checker
--------------------------
checking: place_bound(Cabins)
normalized: place_bound(Cabins)
-> the formula is 40
FORMULA SwimmingPool-PT-04-UpperBounds-0 40 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: place_bound(Out)
normalized: place_bound(Out)
-> the formula is 80
FORMULA SwimmingPool-PT-04-UpperBounds-1 80 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: place_bound(Undress)
normalized: place_bound(Undress)
-> the formula is 40
FORMULA SwimmingPool-PT-04-UpperBounds-2 40 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: place_bound(Cabins)
normalized: place_bound(Cabins)
-> the formula is 40
FORMULA SwimmingPool-PT-04-UpperBounds-3 40 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: place_bound(WaitBag)
normalized: place_bound(WaitBag)
-> the formula is 40
FORMULA SwimmingPool-PT-04-UpperBounds-4 40 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: place_bound(Cabins)
normalized: place_bound(Cabins)
-> the formula is 40
FORMULA SwimmingPool-PT-04-UpperBounds-5 40 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: place_bound(Out)
normalized: place_bound(Out)
-> the formula is 80
FORMULA SwimmingPool-PT-04-UpperBounds-6 80 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: place_bound(WaitBag)
normalized: place_bound(WaitBag)
-> the formula is 40
FORMULA SwimmingPool-PT-04-UpperBounds-7 40 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: place_bound(Out)
normalized: place_bound(Out)
-> the formula is 80
FORMULA SwimmingPool-PT-04-UpperBounds-8 80 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: place_bound(Dress)
normalized: place_bound(Dress)
-> the formula is 40
FORMULA SwimmingPool-PT-04-UpperBounds-9 40 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: place_bound(InBath)
normalized: place_bound(InBath)
-> the formula is 60
FORMULA SwimmingPool-PT-04-UpperBounds-10 60 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: place_bound(InBath)
normalized: place_bound(InBath)
-> the formula is 60
FORMULA SwimmingPool-PT-04-UpperBounds-11 60 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: place_bound(InBath)
normalized: place_bound(InBath)
-> the formula is 60
FORMULA SwimmingPool-PT-04-UpperBounds-12 60 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: place_bound(WaitBag)
normalized: place_bound(WaitBag)
-> the formula is 40
FORMULA SwimmingPool-PT-04-UpperBounds-13 40 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: place_bound(Dressed)
normalized: place_bound(Dressed)
-> the formula is 40
FORMULA SwimmingPool-PT-04-UpperBounds-14 40 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: place_bound(Dressed)
normalized: place_bound(Dressed)
-> the formula is 40
FORMULA SwimmingPool-PT-04-UpperBounds-15 40 TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
Total processing time: 2m25.013sec
BK_STOP 1464508020775
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.004sec
iterations count:63 (9), effective:15 (2)
initing FirstDep: 0m 0.000sec
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="SwimmingPool-PT-04"
export BK_EXAMINATION="UpperBounds"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/home/fko/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/SwimmingPool-PT-04.tgz
mv SwimmingPool-PT-04 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is SwimmingPool-PT-04, examination is UpperBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r125kn-qhx2-146373371400389"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "UpperBounds" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "UpperBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "UpperBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property UpperBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "UpperBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;