fond
Model Checking Contest @ Petri Nets 2016
6th edition, Toruń, Poland, June 21, 2016
Execution of r125kn-qhx2-146373371300309
Last Updated
June 30, 2016

About the Execution of Marcie for Solitaire-PT-SqrNC5x5

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
7992.800 348172.00 348058.00 31.00 FFTTFFFFTTFTTTFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
............................................................................
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is Solitaire-PT-SqrNC5x5, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r125kn-qhx2-146373371300309
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-0
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-1
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-10
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-11
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-12
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-13
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-14
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-15
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-2
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-3
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-4
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-5
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-6
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-7
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-8
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-9

=== Now, execution of the tool begins

BK_START 1464492114326


Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --mcc-mode --memory=6 --suppress

parse successfull
net created successfully

Net: Solitaire_PT_SqrNC5x5
(NrP: 50 NrTr: 84 NrArc: 456)

net check time: 0m 0.001sec

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.001sec

init dd package: 0m17.465sec


RS generation: 1m21.090sec


-> reachability set: #nodes 64614 (6.5e+04) #states 16,098,428 (7)



starting MCC model checker
--------------------------

checking: EG [~ [EX [3<=F46]]]
normalized: EG [~ [EX [3<=F46]]]

abstracting: (3<=F46) states: 0
.
EG iterations: 0
-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.007sec

checking: AG [EX [~ [2<=F35]]]
normalized: ~ [E [true U ~ [EX [~ [2<=F35]]]]]

abstracting: (2<=F35) states: 0
.-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m22.138sec

checking: ~ [EG [~ [2<=F65]]]
normalized: ~ [EG [~ [2<=F65]]]

abstracting: (2<=F65) states: 0

EG iterations: 0
-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: EF [A [3<=T43 U 3<=F55]]
normalized: E [true U [~ [E [~ [3<=F55] U [~ [3<=F55] & ~ [3<=T43]]]] & ~ [EG [~ [3<=F55]]]]]

abstracting: (3<=F55) states: 0

EG iterations: 0
abstracting: (3<=T43) states: 0
abstracting: (3<=F55) states: 0
abstracting: (3<=F55) states: 0
-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.027sec

checking: ~ [[T54<=T24 & ~ [EF [3<=F42]]]]
normalized: ~ [[T54<=T24 & ~ [E [true U 3<=F42]]]]

abstracting: (3<=F42) states: 0
abstracting: (T54<=T24) states: 12,045,399 (7)
-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.364sec

checking: AX [A [F54<=F56 U 1<=T56]]
normalized: ~ [EX [~ [[~ [EG [~ [1<=T56]]] & ~ [E [~ [1<=T56] U [~ [F54<=F56] & ~ [1<=T56]]]]]]]]

abstracting: (1<=T56) states: 7,884,254 (6)
abstracting: (F54<=F56) states: 12,072,269 (7)
abstracting: (1<=T56) states: 7,884,254 (6)
abstracting: (1<=T56) states: 7,884,254 (6)
.
EG iterations: 1
.-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.277sec

checking: EG [[EX [1<=F64] | T62<=F53]]
normalized: EG [[T62<=F53 | EX [1<=F64]]]

abstracting: (1<=F64) states: 8,184,761 (6)
.abstracting: (T62<=F53) states: 12,090,222 (7)
..........10:65513...
EG iterations: 13
-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.461sec

checking: EG [[EG [3<=F63] | EG [F22<=T36]]]
normalized: EG [[EG [3<=F63] | EG [F22<=T36]]]

abstracting: (F22<=T36) states: 12,008,028 (7)
..........10:79535..........20:101953......
EG iterations: 26
abstracting: (3<=F63) states: 0
.
EG iterations: 1
.
EG iterations: 1
-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m51.348sec

checking: ~ [[EG [F44<=F26] & 1<=T44]]
normalized: ~ [[1<=T44 & EG [F44<=F26]]]

abstracting: (F44<=F26) states: 11,994,047 (7)
..........10:60912..
EG iterations: 12
abstracting: (1<=T44) states: 7,927,714 (6)
-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 4.238sec

checking: AF [EX [[2<=T25 & T46<=T44]]]
normalized: ~ [EG [~ [EX [[2<=T25 & T46<=T44]]]]]

abstracting: (T46<=T44) states: 12,058,176 (7)
abstracting: (2<=T25) states: 0
.
EG iterations: 0
-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.129sec

checking: ~ [AF [[[3<=T66 & 2<=T23] & T44<=F43]]]
normalized: EG [~ [[T44<=F43 & [3<=T66 & 2<=T23]]]]

abstracting: (2<=T23) states: 0
abstracting: (3<=T66) states: 0
abstracting: (T44<=F43) states: 12,212,518 (7)

EG iterations: 0
-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.152sec

checking: AF [EG [[F65<=F24 & T66<=F23]]]
normalized: ~ [EG [~ [EG [[F65<=F24 & T66<=F23]]]]]

abstracting: (T66<=F23) states: 12,136,209 (7)
abstracting: (F65<=F24) states: 12,035,501 (7)
.
EG iterations: 1
..........10:97663..........20:137467..........30:48102..........40:312.....
EG iterations: 45
-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 2m28.387sec

checking: [EX [EG [F55<=F23]] | ~ [F63<=T42]]
normalized: [~ [F63<=T42] | EX [EG [F55<=F23]]]

abstracting: (F55<=F23) states: 12,074,209 (7)
.
EG iterations: 1
.abstracting: (F63<=T42) states: 11,952,945 (7)
-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 1.952sec

checking: AG [[[1<=F26 | ~ [3<=F66]] | ~ [~ [F23<=T22]]]]
normalized: ~ [E [true U ~ [[F23<=T22 | [1<=F26 | ~ [3<=F66]]]]]]

abstracting: (3<=F66) states: 0
abstracting: (1<=F26) states: 8,010,218 (6)
abstracting: (F23<=T22) states: 11,973,314 (7)
-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.739sec

checking: EX [[[F55<=T56 | ~ [T24<=F32]] & EF [3<=F55]]]
normalized: EX [[E [true U 3<=F55] & [F55<=T56 | ~ [T24<=F32]]]]

abstracting: (T24<=F32) states: 12,253,452 (7)
abstracting: (F55<=T56) states: 11,965,256 (7)
abstracting: (3<=F55) states: 0
.-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.482sec

checking: [[E [F52<=T52 U 2<=T63] | EX [[3<=T36 & 3<=F63]]] & EF [2<=F56]]
normalized: [E [true U 2<=F56] & [EX [[3<=T36 & 3<=F63]] | E [F52<=T52 U 2<=T63]]]

abstracting: (2<=T63) states: 0
abstracting: (F52<=T52) states: 7,884,254 (6)
abstracting: (3<=F63) states: 0
abstracting: (3<=T36) states: 0
.abstracting: (2<=F56) states: 0
-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.058sec


Total processing time: 5m47.965sec


BK_STOP 1464492462498

--------------------
content from stderr:

check for maximal unmarked siphon
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok

.........10 64838................

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Solitaire-PT-SqrNC5x5"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/home/fko/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/Solitaire-PT-SqrNC5x5.tgz
mv Solitaire-PT-SqrNC5x5 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is Solitaire-PT-SqrNC5x5, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r125kn-qhx2-146373371300309"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;