About the Execution of Marcie for QuasiCertifProtocol-COL-02
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5437.720 | 8925.00 | 8989.00 | 20.20 | TTFFTFFTFTFTFFTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.............
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is QuasiCertifProtocol-COL-02, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r101kn-smll-146369143500016
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-0
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-1
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-15
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-2
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-3
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-4
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-5
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-6
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-7
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-8
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1463692893874
Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --mcc-mode --memory=6 --suppress
parse successfull
net created successfully
Unfolding complete |P|=86|T|=56|A|=223
Time for unfolding: 0m 2.207sec
Net: QuasiCertifProtocol_COL_02
(NrP: 86 NrTr: 56 NrArc: 223)
net check time: 0m 0.000sec
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
init dd package: 0m 3.696sec
RS generation: 0m 0.036sec
-> reachability set: #nodes 1808 (1.8e+03) #states 1,029 (3)
starting MCC model checker
--------------------------
checking: EF [2<=Astart_dot]
normalized: E [true U 2<=Astart_dot]
abstracting: (2<=Astart_dot) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.001sec
checking: EF [3<=a2_dot]
normalized: E [true U 3<=a2_dot]
abstracting: (3<=a2_dot) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: EF [3<=a3_dot]
normalized: E [true U 3<=a3_dot]
abstracting: (3<=a3_dot) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: EF [~ [~ [2<=AstopOK_dot]]]
normalized: E [true U 2<=AstopOK_dot]
abstracting: (2<=AstopOK_dot) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: EF [[~ [[3<=sum(n2_tsid2, n2_tsid1, n2_tsid0) | 2<=a2_dot]] & 2<=malicious_reservoir_dot]]
normalized: E [true U [2<=malicious_reservoir_dot & ~ [[3<=sum(n2_tsid2, n2_tsid1, n2_tsid0) | 2<=a2_dot]]]]
abstracting: (2<=a2_dot) states: 0
abstracting: (3<=sum(n2_tsid2, n2_tsid1, n2_tsid0)) states: 8
abstracting: (2<=malicious_reservoir_dot) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.036sec
checking: AG [[sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0) | ~ [~ [3<=Astart_dot]]]]
normalized: ~ [E [true U ~ [[sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0) | 3<=Astart_dot]]]]
abstracting: (3<=Astart_dot) states: 0
abstracting: (sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)) states: 1,029 (3)
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.036sec
checking: AG [[~ [3<=sum(c1_tsid2, c1_tsid1, c1_tsid0)] | Astart_dot<=sum(n6_tsid2, n6_tsid1, n6_tsid0)]]
normalized: ~ [E [true U ~ [[Astart_dot<=sum(n6_tsid2, n6_tsid1, n6_tsid0) | ~ [3<=sum(c1_tsid2, c1_tsid1, c1_tsid0)]]]]]
abstracting: (3<=sum(c1_tsid2, c1_tsid1, c1_tsid0)) states: 243
abstracting: (Astart_dot<=sum(n6_tsid2, n6_tsid1, n6_tsid0)) states: 1,025 (3)
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.070sec
checking: EF [[[[1<=sum(n6_tsid2, n6_tsid1, n6_tsid0) & 2<=a1_dot] & 2<=sum(n3_tsid2, n3_tsid1, n3_tsid0)] & 2<=sum(n5_tsid2, n5_tsid1, n5_tsid0)]]
normalized: E [true U [2<=sum(n5_tsid2, n5_tsid1, n5_tsid0) & [2<=sum(n3_tsid2, n3_tsid1, n3_tsid0) & [1<=sum(n6_tsid2, n6_tsid1, n6_tsid0) & 2<=a1_dot]]]]
abstracting: (2<=a1_dot) states: 0
abstracting: (1<=sum(n6_tsid2, n6_tsid1, n6_tsid0)) states: 630
abstracting: (2<=sum(n3_tsid2, n3_tsid1, n3_tsid0)) states: 32
abstracting: (2<=sum(n5_tsid2, n5_tsid1, n5_tsid0)) states: 56
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.106sec
checking: AG [[[[3<=AstopOK_dot & sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)] | 3<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)] | ~ [[2<=sum(n3_tsid2, n3_tsid1, n3_tsid0) | 3<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)]]]]
normalized: ~ [E [true U ~ [[~ [[2<=sum(n3_tsid2, n3_tsid1, n3_tsid0) | 3<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)]] | [3<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0) | [3<=AstopOK_dot & sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)]]]]]]
abstracting: (sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)) states: 666
abstracting: (3<=AstopOK_dot) states: 0
abstracting: (3<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)) states: 396
abstracting: (3<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)) states: 396
abstracting: (2<=sum(n3_tsid2, n3_tsid1, n3_tsid0)) states: 32
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.138sec
checking: AG [~ [[1<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0) & [3<=a5_dot & 1<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)]]]]
normalized: ~ [E [true U [1<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0) & [3<=a5_dot & 1<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)]]]]
abstracting: (1<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)) states: 453
abstracting: (3<=a5_dot) states: 0
abstracting: (1<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)) states: 279
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.071sec
checking: AG [[[~ [sum(n3_tsid2, n3_tsid1, n3_tsid0)<=a4_dot] | [sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0) | sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)<=sum(n5_tsid2, n5_tsid1, n5_tsid0)]] | ~ [sum(c1_tsid2, c1_tsid1, c1_tsid0)<=sum(s5_tsid2, s5_tsid1, s5_tsid0)]]]
normalized: ~ [E [true U ~ [[[~ [sum(n3_tsid2, n3_tsid1, n3_tsid0)<=a4_dot] | [sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0) | sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)<=sum(n5_tsid2, n5_tsid1, n5_tsid0)]] | ~ [sum(c1_tsid2, c1_tsid1, c1_tsid0)<=sum(s5_tsid2, s5_tsid1, s5_tsid0)]]]]]
abstracting: (sum(c1_tsid2, c1_tsid1, c1_tsid0)<=sum(s5_tsid2, s5_tsid1, s5_tsid0)) states: 573
abstracting: (sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)<=sum(n5_tsid2, n5_tsid1, n5_tsid0)) states: 981
abstracting: (sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)) states: 1,029 (3)
abstracting: (sum(n3_tsid2, n3_tsid1, n3_tsid0)<=a4_dot) states: 973
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.140sec
checking: EF [[[~ [sum(s3_tsid2, s3_tsid1, s3_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)] & [sum(s3_tsid2, s3_tsid1, s3_tsid0)<=sum(s6_tsid2, s6_tsid1, s6_tsid0) | sum(s4_tsid2, s4_tsid1, s4_tsid0)<=a1_dot]] & [sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)<=sum(s2_tsid2, s2_tsid1, s2_tsid0) & [1<=a2_dot | 1<=sum(s6_tsid2, s6_tsid1, s6_tsid0)]]]]
normalized: E [true U [[sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)<=sum(s2_tsid2, s2_tsid1, s2_tsid0) & [1<=a2_dot | 1<=sum(s6_tsid2, s6_tsid1, s6_tsid0)]] & [[sum(s3_tsid2, s3_tsid1, s3_tsid0)<=sum(s6_tsid2, s6_tsid1, s6_tsid0) | sum(s4_tsid2, s4_tsid1, s4_tsid0)<=a1_dot] & ~ [sum(s3_tsid2, s3_tsid1, s3_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)]]]]
abstracting: (sum(s3_tsid2, s3_tsid1, s3_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)) states: 1,029 (3)
abstracting: (sum(s4_tsid2, s4_tsid1, s4_tsid0)<=a1_dot) states: 876
abstracting: (sum(s3_tsid2, s3_tsid1, s3_tsid0)<=sum(s6_tsid2, s6_tsid1, s6_tsid0)) states: 843
abstracting: (1<=sum(s6_tsid2, s6_tsid1, s6_tsid0)) states: 318
abstracting: (1<=a2_dot) states: 4
abstracting: (sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)<=sum(s2_tsid2, s2_tsid1, s2_tsid0)) states: 1,005 (3)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.178sec
checking: EF [[[[sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)<=sum(c1_tsid2, c1_tsid1, c1_tsid0) | a1_dot<=sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)] & [1<=a2_dot & sum(c1_tsid2, c1_tsid1, c1_tsid0)<=sum(n1_tsid2, n1_tsid1, n1_tsid0)]] & ~ [~ [1<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)]]]]
normalized: E [true U [1<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0) & [[1<=a2_dot & sum(c1_tsid2, c1_tsid1, c1_tsid0)<=sum(n1_tsid2, n1_tsid1, n1_tsid0)] & [sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)<=sum(c1_tsid2, c1_tsid1, c1_tsid0) | a1_dot<=sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)]]]]
abstracting: (a1_dot<=sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)) states: 997
abstracting: (sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)<=sum(c1_tsid2, c1_tsid1, c1_tsid0)) states: 684
abstracting: (sum(c1_tsid2, c1_tsid1, c1_tsid0)<=sum(n1_tsid2, n1_tsid1, n1_tsid0)) states: 417
abstracting: (1<=a2_dot) states: 4
abstracting: (1<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)) states: 54
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.145sec
checking: EF [[~ [[AstopOK_dot<=sum(c1_tsid2, c1_tsid1, c1_tsid0) | sum(n2_tsid2, n2_tsid1, n2_tsid0)<=Astart_dot]] & [~ [sum(n5_tsid2, n5_tsid1, n5_tsid0)<=sum(n3_tsid2, n3_tsid1, n3_tsid0)] & [sum(s2_tsid2, s2_tsid1, s2_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0) | a4_dot<=sum(n3_tsid2, n3_tsid1, n3_tsid0)]]]]
normalized: E [true U [[~ [sum(n5_tsid2, n5_tsid1, n5_tsid0)<=sum(n3_tsid2, n3_tsid1, n3_tsid0)] & [sum(s2_tsid2, s2_tsid1, s2_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0) | a4_dot<=sum(n3_tsid2, n3_tsid1, n3_tsid0)]] & ~ [[AstopOK_dot<=sum(c1_tsid2, c1_tsid1, c1_tsid0) | sum(n2_tsid2, n2_tsid1, n2_tsid0)<=Astart_dot]]]]
abstracting: (sum(n2_tsid2, n2_tsid1, n2_tsid0)<=Astart_dot) states: 973
abstracting: (AstopOK_dot<=sum(c1_tsid2, c1_tsid1, c1_tsid0)) states: 990
abstracting: (a4_dot<=sum(n3_tsid2, n3_tsid1, n3_tsid0)) states: 1,025 (3)
abstracting: (sum(s2_tsid2, s2_tsid1, s2_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)) states: 921
abstracting: (sum(n5_tsid2, n5_tsid1, n5_tsid0)<=sum(n3_tsid2, n3_tsid1, n3_tsid0)) states: 877
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.180sec
checking: AG [[[[3<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0) | 3<=a2_dot] & [1<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0) | 1<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)]] | [[sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n2_tsid2, n2_tsid1, n2_tsid0) | 3<=sum(s2_tsid2, s2_tsid1, s2_tsid0)] | ~ [2<=SstopAbort_dot]]]]
normalized: ~ [E [true U ~ [[[~ [2<=SstopAbort_dot] | [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n2_tsid2, n2_tsid1, n2_tsid0) | 3<=sum(s2_tsid2, s2_tsid1, s2_tsid0)]] | [[1<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0) | 1<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)] & [3<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0) | 3<=a2_dot]]]]]]
abstracting: (3<=a2_dot) states: 0
abstracting: (3<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)) states: 363
abstracting: (1<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)) states: 279
abstracting: (1<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)) states: 366
abstracting: (3<=sum(s2_tsid2, s2_tsid1, s2_tsid0)) states: 6
abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n2_tsid2, n2_tsid1, n2_tsid0)) states: 399
abstracting: (2<=SstopAbort_dot) states: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.175sec
checking: AG [[[[1<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0) & AstopAbort_dot<=sum(n2_tsid2, n2_tsid1, n2_tsid0)] | [SstopAbort_dot<=sum(n1_tsid2, n1_tsid1, n1_tsid0) & sum(n6_tsid2, n6_tsid1, n6_tsid0)<=CstopAbort_dot]] | [[sum(s4_tsid2, s4_tsid1, s4_tsid0)<=a4_dot | malicious_reservoir_dot<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)] | [sum(n2_tsid2, n2_tsid1, n2_tsid0)<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0) | 2<=a2_dot]]]]
normalized: ~ [E [true U ~ [[[[sum(s4_tsid2, s4_tsid1, s4_tsid0)<=a4_dot | malicious_reservoir_dot<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)] | [sum(n2_tsid2, n2_tsid1, n2_tsid0)<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0) | 2<=a2_dot]] | [[SstopAbort_dot<=sum(n1_tsid2, n1_tsid1, n1_tsid0) & sum(n6_tsid2, n6_tsid1, n6_tsid0)<=CstopAbort_dot] | [1<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0) & AstopAbort_dot<=sum(n2_tsid2, n2_tsid1, n2_tsid0)]]]]]]
abstracting: (AstopAbort_dot<=sum(n2_tsid2, n2_tsid1, n2_tsid0)) states: 666
abstracting: (1<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)) states: 495
abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=CstopAbort_dot) states: 399
abstracting: (SstopAbort_dot<=sum(n1_tsid2, n1_tsid1, n1_tsid0)) states: 558
abstracting: (2<=a2_dot) states: 0
abstracting: (sum(n2_tsid2, n2_tsid1, n2_tsid0)<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)) states: 973
abstracting: (malicious_reservoir_dot<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)) states: 927
abstracting: (sum(s4_tsid2, s4_tsid1, s4_tsid0)<=a4_dot) states: 876
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.251sec
Total processing time: 0m 8.890sec
BK_STOP 1463692902799
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:899 (16), effective:56 (1)
initing FirstDep: 0m 0.000sec
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-COL-02"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/root/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-COL-02.tgz
mv QuasiCertifProtocol-COL-02 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is QuasiCertifProtocol-COL-02, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r101kn-smll-146369143500016"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;