About the Execution of Marcie for Philosophers-PT-000010
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5415.720 | 44311.00 | 44464.00 | 20.20 | TFFFFFFTFFFTFTTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.................
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is Philosophers-PT-000010, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r089kn-ebro-146369093700327
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-0
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-1
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-10
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-11
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-12
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-13
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-14
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-15
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-2
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-3
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-4
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-5
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-6
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-7
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-8
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-9
=== Now, execution of the tool begins
BK_START 1464110281409
Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --mcc-mode --memory=6 --suppress
parse successfull
net created successfully
Net: Philosophers_PT_000010
(NrP: 50 NrTr: 50 NrArc: 160)
net check time: 0m 0.000sec
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
init dd package: 0m 8.804sec
RS generation: 0m 0.008sec
-> reachability set: #nodes 240 (2.4e+02) #states 59,049 (4)
starting MCC model checker
--------------------------
checking: ~ [~ [AF [1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]]
normalized: ~ [EG [~ [1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]]
abstracting: (1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 43,922 (4)
.........
EG iterations: 9
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.169sec
checking: ~ [EF [EX [3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]]
normalized: ~ [E [true U EX [3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]]
abstracting: (3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 3,387 (3)
.-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.296sec
checking: EF [AF [~ [sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]
normalized: E [true U ~ [EG [sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]
abstracting: (sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,049 (4)
EG iterations: 0
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.087sec
checking: EG [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]
normalized: EG [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]
abstracting: (sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 46,892 (4)
.
EG iterations: 1
-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.163sec
checking: EX [EF [~ [sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]
normalized: EX [E [true U ~ [sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]
abstracting: (sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,049 (4)
.-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.091sec
checking: ~ [AG [[[3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & 2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] | ~ [sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]]
normalized: E [true U ~ [[~ [sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] | [3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & 2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]]
abstracting: (2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 58,857 (4)
abstracting: (3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 41,385 (4)
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 52,083 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.597sec
checking: AG [AX [[sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2) | sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]
normalized: ~ [E [true U EX [~ [[sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2) | sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]]]
abstracting: (sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 53,082 (4)
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 22,606 (4)
.-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.839sec
checking: [~ [AG [~ [sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]] & AG [sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]
normalized: [~ [E [true U ~ [sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]] & E [true U sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,049 (4)
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,049 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.348sec
checking: [AG [sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)] & [~ [EF [sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]] | 3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]
normalized: [[3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) | ~ [E [true U sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]] & ~ [E [true U ~ [sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]]
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 59,049 (4)
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 22,606 (4)
abstracting: (3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 41,385 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.441sec
checking: [~ [[EG [sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)] & AG [3<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]] & [EG [[1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) & 1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]] | 3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]
normalized: [[3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) | EG [[1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) & 1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]] & ~ [[EG [sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)] & ~ [E [true U ~ [3<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]]]]
abstracting: (3<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 56,412 (4)
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 23,441 (4)
....
EG iterations: 4
abstracting: (1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 52,323 (4)
abstracting: (1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 52,323 (4)
.
EG iterations: 1
abstracting: (3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 41,385 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.640sec
checking: [~ [[~ [[sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2) | 3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]] | EF [2<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]] | A [sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) U ~ [2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]
normalized: [~ [[~ [[sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2) | 3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]] | E [true U 2<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]] | [~ [E [2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) U [2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) & ~ [sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]]] & ~ [EG [2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]]
abstracting: (2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 58,857 (4)
.
EG iterations: 1
abstracting: (sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 34,001 (4)
abstracting: (2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 58,857 (4)
abstracting: (2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 58,857 (4)
abstracting: (2<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 18,082 (4)
abstracting: (3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 3,387 (3)
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 34,001 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.839sec
checking: EG [[[[sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] & [2<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) | 1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]] | AG [sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]
normalized: EG [[~ [E [true U ~ [sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]] | [[2<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) | 1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)] & [sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]]
abstracting: (sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,049 (4)
abstracting: (sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,049 (4)
abstracting: (1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 43,922 (4)
abstracting: (2<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 18,082 (4)
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 45,448 (4)
...
EG iterations: 3
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.543sec
checking: [[[AG [3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)] | [[3<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) | 1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)] & sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]] | ~ [3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]] & AX [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]
normalized: [~ [EX [~ [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]] & [~ [3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)] | [[sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2) & [3<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) | 1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]] | ~ [E [true U ~ [3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]]]]
abstracting: (3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 41,385 (4)
abstracting: (1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 52,323 (4)
abstracting: (3<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 22,948 (4)
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 34,001 (4)
abstracting: (3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 41,385 (4)
abstracting: (sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,049 (4)
.-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.734sec
checking: AG [[[sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) & ~ [sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]] | ~ [[sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2) & sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]]]
normalized: ~ [E [true U ~ [[[sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) & ~ [sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]] | ~ [[sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2) & sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]]]]]
abstracting: (sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 59,049 (4)
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 22,606 (4)
abstracting: (sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 12,599 (4)
abstracting: (sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 23,441 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.731sec
checking: ~ [[EF [~ [1<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]] & [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) & [[2<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2) | 3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)] | [sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) | 2<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]]]]]
normalized: ~ [[E [true U ~ [1<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]] & [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) & [[2<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2) | 3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)] | [sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) | 2<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]]]]]
abstracting: (2<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 38,393 (4)
abstracting: (sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,049 (4)
abstracting: (3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 3,387 (3)
abstracting: (2<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 38,393 (4)
abstracting: (sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 59,049 (4)
abstracting: (1<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 58,025 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.694sec
checking: [[EF [~ [sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]] & AX [sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]] | [[EF [sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] & EX [sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]] & AX [[sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) | sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]]]
normalized: [[~ [EX [~ [sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]] & E [true U ~ [sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]] | [~ [EX [~ [[sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) | sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]]] & [E [true U sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] & EX [sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]]]
abstracting: (sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 12,599 (4)
.abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,049 (4)
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 22,606 (4)
abstracting: (sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 53,082 (4)
.abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 45,448 (4)
abstracting: (sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 52,083 (4)
.-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 7.089sec
Total processing time: 0m44.254sec
BK_STOP 1464110325720
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:263 (5), effective:30 (0)
initing FirstDep: 0m 0.000sec
485
iterations count:1269 (25), effective:223 (4)
iterations count:880 (17), effective:144 (2)
612
iterations count:1455 (29), effective:255 (5)
iterations count:50 (1), effective:0 (0)
iterations count:564 (11), effective:99 (1)
iterations count:482 (9), effective:83 (1)
iterations count:384 (7), effective:46 (0)
iterations count:832 (16), effective:132 (2)
iterations count:711 (14), effective:118 (2)
iterations count:370 (7), effective:65 (1)
iterations count:265 (5), effective:37 (0)
iterations count:561 (11), effective:101 (2)
iterations count:50 (1), effective:0 (0)
iterations count:711 (14), effective:118 (2)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Philosophers-PT-000010"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/users/gast00/fkordon/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/Philosophers-PT-000010.tgz
mv Philosophers-PT-000010 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is Philosophers-PT-000010, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r089kn-ebro-146369093700327"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;