fond
Model Checking Contest @ Petri Nets 2016
6th edition, Toruń, Poland, June 21, 2016
Execution of r089kn-ebro-146369093700322
Last Updated
June 30, 2016

About the Execution of Marcie for Philosophers-PT-000005

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
5415.050 19891.00 19995.00 20.20 TTFTTFTTTTFFFTTT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
.................
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is Philosophers-PT-000005, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r089kn-ebro-146369093700322
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-0
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-1
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-10
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-11
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-12
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-13
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-14
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-15
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-2
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-3
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-4
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-5
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-6
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-7
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-8
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-9

=== Now, execution of the tool begins

BK_START 1464110241128


Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --mcc-mode --memory=6 --suppress

parse successfull
net created successfully

Net: Philosophers_PT_000005
(NrP: 25 NrTr: 25 NrArc: 80)

net check time: 0m 0.000sec

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec

init dd package: 0m 9.257sec


RS generation: 0m 0.001sec


-> reachability set: #nodes 110 (1.1e+02) #states 243



starting MCC model checker
--------------------------

checking: AG [2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]
normalized: ~ [E [true U ~ [2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]

abstracting: (2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 131
-> the formula is FALSE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.091sec

checking: EF [3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]
normalized: E [true U 3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]

abstracting: (3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 51
-> the formula is TRUE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.091sec

checking: EF [~ [~ [~ [2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]]
normalized: E [true U ~ [2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]

abstracting: (2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 76
-> the formula is TRUE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.087sec

checking: EF [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]
normalized: E [true U sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]

abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 123
-> the formula is TRUE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.085sec

checking: EF [[2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) | 1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]
normalized: E [true U [2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) | 1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]

abstracting: (1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 120
abstracting: (2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 76
-> the formula is TRUE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.178sec

checking: EF [~ [~ [~ [sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]]]
normalized: E [true U ~ [sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]

abstracting: (sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 188
-> the formula is TRUE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.090sec

checking: EF [~ [[[3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & 3<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] & ~ [2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]]
normalized: E [true U ~ [[[3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & 3<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] & ~ [2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]]

abstracting: (2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 76
abstracting: (3<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 0
abstracting: (3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 51
-> the formula is TRUE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.267sec

checking: EF [~ [[[3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) | 1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] & sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]]]
normalized: E [true U ~ [[sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) & [3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) | 1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]]]

abstracting: (1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 120
abstracting: (3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 51
abstracting: (sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 243
-> the formula is TRUE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.253sec

checking: EF [[~ [[sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]] & 1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]
normalized: E [true U [1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & ~ [[sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]]]]

abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 243
abstracting: (sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 182
abstracting: (1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 211
-> the formula is TRUE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.260sec

checking: AG [[[sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1) | [1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & 2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]] & sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]
normalized: ~ [E [true U ~ [[sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1) & [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1) | [1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & 2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]]]]

abstracting: (2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 76
abstracting: (1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 211
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 127
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 87
-> the formula is FALSE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.341sec

checking: AG [[[~ [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)] & [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | 2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]] | sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]
normalized: ~ [E [true U ~ [[sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) | [~ [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)] & [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | 2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]]]]

abstracting: (2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 76
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 243
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 243
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 77
-> the formula is FALSE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.385sec

checking: AG [[[[sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) & 3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)] & [sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1) & 3<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]] | ~ [~ [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]]
normalized: ~ [E [true U ~ [[sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) | [[sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1) & 3<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)] & [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) & 3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]]]]

abstracting: (3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 51
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 243
abstracting: (3<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 26
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 87
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 123
-> the formula is FALSE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.524sec

checking: EF [[~ [[sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) & sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]] | [~ [2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)] & [2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]]
normalized: E [true U [[~ [2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)] & [2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]] | ~ [[sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) & sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]]

abstracting: (sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 182
abstracting: (sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 147
abstracting: (sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 188
abstracting: (2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 131
abstracting: (2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 131
-> the formula is TRUE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.527sec

checking: AG [[[~ [1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)] & [sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) & sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]] | [[3<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) & sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] & 1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]]
normalized: ~ [E [true U ~ [[[1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1) & [3<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) & sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]] | [[sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) & sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)] & ~ [1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]]]]]

abstracting: (1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 161
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 112
abstracting: (sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 147
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 127
abstracting: (3<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 86
abstracting: (1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 120
-> the formula is FALSE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.529sec

checking: EF [[[~ [sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)] & [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) & sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]] | [[sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] | 1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]]
normalized: E [true U [[[sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) & sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] & ~ [sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]] | [1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1) | [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]]]

abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 32
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 207
abstracting: (1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 161
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 243
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 127
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 243
-> the formula is TRUE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.538sec

checking: EF [[[~ [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)] & [sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1) | 2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]] & [[2<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)] | [sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1) | sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]]]
normalized: E [true U [[~ [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)] & [sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1) | 2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]] & [[sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1) | sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)] | [2<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]]

abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 243
abstracting: (2<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 196
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 147
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 112
abstracting: (2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 131
abstracting: (sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 188
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 77
-> the formula is TRUE

FORMULA Philosophers-COL-000005-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.611sec


Total processing time: 0m19.835sec


BK_STOP 1464110261019

--------------------
content from stderr:

check for maximal unmarked siphon
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:108 (4), effective:15 (0)

initing FirstDep: 0m 0.000sec


iterations count:95 (3), effective:17 (0)

iterations count:199 (7), effective:25 (1)

iterations count:139 (5), effective:17 (0)

iterations count:69 (2), effective:5 (0)

iterations count:78 (3), effective:10 (0)

iterations count:335 (13), effective:49 (1)

iterations count:25 (1), effective:0 (0)

iterations count:131 (5), effective:18 (0)

iterations count:228 (9), effective:37 (1)

iterations count:99 (3), effective:13 (0)

iterations count:165 (6), effective:24 (0)

iterations count:111 (4), effective:14 (0)

iterations count:216 (8), effective:33 (1)

iterations count:105 (4), effective:13 (0)

iterations count:67 (2), effective:10 (0)

iterations count:163 (6), effective:21 (0)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Philosophers-PT-000005"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/users/gast00/fkordon/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/Philosophers-PT-000005.tgz
mv Philosophers-PT-000005 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is Philosophers-PT-000005, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r089kn-ebro-146369093700322"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;