About the Execution of Marcie for Philosophers-PT-000005
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5415.050 | 19891.00 | 19995.00 | 20.20 | TTFTTFTTTTFFFTTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.................
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is Philosophers-PT-000005, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r089kn-ebro-146369093700322
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-0
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-1
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-10
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-11
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-12
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-13
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-14
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-15
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-2
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-3
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-4
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-5
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-6
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-7
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-8
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1464110241128
Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --mcc-mode --memory=6 --suppress
parse successfull
net created successfully
Net: Philosophers_PT_000005
(NrP: 25 NrTr: 25 NrArc: 80)
net check time: 0m 0.000sec
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
init dd package: 0m 9.257sec
RS generation: 0m 0.001sec
-> reachability set: #nodes 110 (1.1e+02) #states 243
starting MCC model checker
--------------------------
checking: AG [2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]
normalized: ~ [E [true U ~ [2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]
abstracting: (2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 131
-> the formula is FALSE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.091sec
checking: EF [3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]
normalized: E [true U 3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]
abstracting: (3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 51
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.091sec
checking: EF [~ [~ [~ [2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]]
normalized: E [true U ~ [2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]
abstracting: (2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 76
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.087sec
checking: EF [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]
normalized: E [true U sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 123
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.085sec
checking: EF [[2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) | 1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]
normalized: E [true U [2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) | 1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]
abstracting: (1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 120
abstracting: (2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 76
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.178sec
checking: EF [~ [~ [~ [sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]]]
normalized: E [true U ~ [sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]
abstracting: (sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 188
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.090sec
checking: EF [~ [[[3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & 3<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] & ~ [2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]]
normalized: E [true U ~ [[[3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & 3<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] & ~ [2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]]
abstracting: (2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 76
abstracting: (3<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 0
abstracting: (3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 51
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.267sec
checking: EF [~ [[[3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) | 1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] & sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]]]
normalized: E [true U ~ [[sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) & [3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) | 1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]]]
abstracting: (1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 120
abstracting: (3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 51
abstracting: (sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 243
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.253sec
checking: EF [[~ [[sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]] & 1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]
normalized: E [true U [1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & ~ [[sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]]]]
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 243
abstracting: (sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 182
abstracting: (1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 211
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.260sec
checking: AG [[[sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1) | [1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & 2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]] & sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]
normalized: ~ [E [true U ~ [[sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1) & [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1) | [1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & 2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]]]]
abstracting: (2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 76
abstracting: (1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 211
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 127
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 87
-> the formula is FALSE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.341sec
checking: AG [[[~ [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)] & [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | 2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]] | sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]
normalized: ~ [E [true U ~ [[sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) | [~ [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)] & [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | 2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]]]]
abstracting: (2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 76
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 243
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 243
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 77
-> the formula is FALSE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.385sec
checking: AG [[[[sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) & 3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)] & [sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1) & 3<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]] | ~ [~ [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]]
normalized: ~ [E [true U ~ [[sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) | [[sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1) & 3<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)] & [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) & 3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]]]]
abstracting: (3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 51
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 243
abstracting: (3<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 26
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 87
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 123
-> the formula is FALSE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.524sec
checking: EF [[~ [[sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) & sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]] | [~ [2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)] & [2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]]
normalized: E [true U [[~ [2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)] & [2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]] | ~ [[sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) & sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]]
abstracting: (sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 182
abstracting: (sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 147
abstracting: (sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 188
abstracting: (2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 131
abstracting: (2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 131
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.527sec
checking: AG [[[~ [1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)] & [sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) & sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]] | [[3<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) & sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] & 1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]]
normalized: ~ [E [true U ~ [[[1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1) & [3<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) & sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]] | [[sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) & sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)] & ~ [1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]]]]]
abstracting: (1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 161
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 112
abstracting: (sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 147
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 127
abstracting: (3<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 86
abstracting: (1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 120
-> the formula is FALSE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.529sec
checking: EF [[[~ [sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)] & [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) & sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]] | [[sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] | 1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]]
normalized: E [true U [[[sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) & sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] & ~ [sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]] | [1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1) | [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]]]
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 32
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 207
abstracting: (1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 161
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 243
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)) states: 127
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)) states: 243
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.538sec
checking: EF [[[~ [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)] & [sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1) | 2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]] & [[2<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)] | [sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1) | sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]]]
normalized: E [true U [[~ [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)] & [sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1) | 2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]] & [[sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1) | sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)] | [2<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]]
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 243
abstracting: (2<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)) states: 196
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 147
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 112
abstracting: (2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)) states: 131
abstracting: (sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 188
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)) states: 77
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.611sec
Total processing time: 0m19.835sec
BK_STOP 1464110261019
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:108 (4), effective:15 (0)
initing FirstDep: 0m 0.000sec
iterations count:95 (3), effective:17 (0)
iterations count:199 (7), effective:25 (1)
iterations count:139 (5), effective:17 (0)
iterations count:69 (2), effective:5 (0)
iterations count:78 (3), effective:10 (0)
iterations count:335 (13), effective:49 (1)
iterations count:25 (1), effective:0 (0)
iterations count:131 (5), effective:18 (0)
iterations count:228 (9), effective:37 (1)
iterations count:99 (3), effective:13 (0)
iterations count:165 (6), effective:24 (0)
iterations count:111 (4), effective:14 (0)
iterations count:216 (8), effective:33 (1)
iterations count:105 (4), effective:13 (0)
iterations count:67 (2), effective:10 (0)
iterations count:163 (6), effective:21 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Philosophers-PT-000005"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/users/gast00/fkordon/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/Philosophers-PT-000005.tgz
mv Philosophers-PT-000005 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is Philosophers-PT-000005, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r089kn-ebro-146369093700322"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;