About the Execution of Marcie for Philosophers-COL-000005
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5438.320 | 17345.00 | 16620.00 | 20.00 | TTFFTTFFTTFTTFFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
...............
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is Philosophers-COL-000005, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r089kn-ebro-146369093500201
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-0
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-1
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-10
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-11
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-12
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-13
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-14
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-15
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-2
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-3
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-4
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-5
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-6
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-7
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-8
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-9
=== Now, execution of the tool begins
BK_START 1464106585389
Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --mcc-mode --memory=6 --suppress
parse successfull
net created successfully
Unfolding complete |P|=25|T|=25|A|=80
Time for unfolding: 0m 0.904sec
Net: Philosophers_COL_000005
(NrP: 25 NrTr: 25 NrArc: 80)
net check time: 0m 0.000sec
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
init dd package: 0m 7.653sec
RS generation: 0m 0.003sec
-> reachability set: #nodes 110 (1.1e+02) #states 243
starting MCC model checker
--------------------------
checking: AG [AF [sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]]
normalized: ~ [E [true U EG [~ [sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]]]]
abstracting: (sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)) states: 188
...
EG iterations: 3
-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.075sec
checking: AF [EG [sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]]
normalized: ~ [EG [~ [EG [sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]]]]
abstracting: (sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)) states: 188
.
EG iterations: 1
...
EG iterations: 3
-> the formula is TRUE
FORMULA Philosophers-COL-000005-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.064sec
checking: ~ [~ [~ [EF [sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]]]]
normalized: ~ [E [true U sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]]
abstracting: (sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)) states: 77
-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.069sec
checking: A [~ [sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)] U AX [2<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]]
normalized: [~ [EG [EX [~ [2<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]]]] & ~ [E [EX [~ [2<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]] U [sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1) & EX [~ [2<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]]]]]]
abstracting: (2<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)) states: 76
.abstracting: (sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)) states: 208
abstracting: (2<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)) states: 76
.abstracting: (2<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)) states: 76
..
EG iterations: 1
-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.255sec
checking: AG [E [2<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) U sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]]
normalized: ~ [E [true U ~ [E [2<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) U sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]]]]
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 127
abstracting: (2<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)) states: 76
-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.132sec
checking: EX [AX [[sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1) | sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]]]
normalized: EX [~ [EX [~ [[sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1) | sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]]]]]
abstracting: (sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 127
abstracting: (sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)) states: 243
..-> the formula is TRUE
FORMULA Philosophers-COL-000005-CTLCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.125sec
checking: EX [[AF [sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)] & AG [sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]]]
normalized: EX [[~ [EG [~ [sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]]] & ~ [E [true U ~ [sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]]]]]
abstracting: (sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 32
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)) states: 243
.
EG iterations: 1
.-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.130sec
checking: [sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1) | sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)]
normalized: [sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1) | sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)]
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)) states: 147
abstracting: (sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)) states: 207
-> the formula is TRUE
FORMULA Philosophers-COL-000005-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.133sec
checking: AF [~ [[sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1) & sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]]
normalized: ~ [EG [[sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1) & sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]]
abstracting: (sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)) states: 207
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)) states: 207
.
EG iterations: 1
-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.130sec
checking: [E [sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) U ~ [sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]] | sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]
normalized: [sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1) | E [sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) U ~ [sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]]]
abstracting: (sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)) states: 77
abstracting: (sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)) states: 112
abstracting: (sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)) states: 207
-> the formula is TRUE
FORMULA Philosophers-COL-000005-CTLCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.198sec
checking: ~ [A [[sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) | sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)] U [1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]]]
normalized: ~ [[~ [EG [~ [[1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]]]] & ~ [E [~ [[1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]] U [~ [[1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]] & ~ [[sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) | sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]]]]]]]
abstracting: (sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 243
abstracting: (sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)) states: 112
abstracting: (sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)) states: 243
abstracting: (1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 120
abstracting: (sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)) states: 243
abstracting: (1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 120
abstracting: (sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)) states: 243
abstracting: (1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 120
....
EG iterations: 4
-> the formula is TRUE
FORMULA Philosophers-COL-000005-CTLCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.521sec
checking: [[[sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & EG [sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]] | AG [1<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]] | ~ [[~ [~ [2<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]] | EG [1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]]]]
normalized: [~ [[2<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1) | EG [1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]]] | [~ [E [true U ~ [1<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]] | [sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & EG [sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]]]]
abstracting: (sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)) states: 123
....
EG iterations: 4
abstracting: (sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 127
abstracting: (1<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)) states: 241
abstracting: (1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 120
...
EG iterations: 3
abstracting: (2<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)) states: 131
-> the formula is TRUE
FORMULA Philosophers-COL-000005-CTLCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.336sec
checking: [[[[~ [sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)] & [2<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) | 2<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]] | EG [1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]] | [~ [~ [1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]] & sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]] | AF [EG [1<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]]]
normalized: [~ [EG [~ [EG [1<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]]]] | [[1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)] | [EG [1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)] | [[2<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) | 2<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)] & ~ [sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]]]]]
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)) states: 182
abstracting: (2<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)) states: 196
abstracting: (2<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)) states: 76
abstracting: (1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 120
...
EG iterations: 3
abstracting: (sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)) states: 188
abstracting: (1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 120
abstracting: (1<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)) states: 211
..
EG iterations: 2
...
EG iterations: 3
-> the formula is TRUE
FORMULA Philosophers-COL-000005-CTLCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.454sec
checking: AG [[[[sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) | 1<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)] | [sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1) & 3<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]] & [~ [sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)] & ~ [1<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]]]
normalized: ~ [E [true U ~ [[[~ [1<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)] & ~ [sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]] & [[sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) | 1<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)] | [sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1) & 3<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]]]]]
abstracting: (3<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)) states: 86
abstracting: (sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)) states: 112
abstracting: (1<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)) states: 241
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 127
abstracting: (sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 32
abstracting: (1<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)) states: 241
-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.387sec
checking: [E [[sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1) | sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)] U ~ [sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]] & ~ [[EX [3<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)] | [sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1) | [2<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1) | 1<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]]]]]
normalized: [~ [[[sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1) | [2<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1) | 1<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]] | EX [3<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]]] & E [[sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1) | sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)] U ~ [sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]]]
abstracting: (sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)) states: 77
abstracting: (sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)) states: 182
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)) states: 207
abstracting: (3<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 0
.abstracting: (1<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)) states: 211
abstracting: (2<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)) states: 131
abstracting: (sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)) states: 243
-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.448sec
checking: [A [[sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) | 1<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)] U [sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) | 3<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]] & [[EG [sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)] | EG [sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]] | AX [[sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) | 2<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]]]]
normalized: [[[EG [sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)] | EG [sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]] | ~ [EX [~ [[sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) | 2<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]]]]] & [~ [EG [~ [[sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) | 3<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]]] & ~ [E [~ [[sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) | 3<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]] U [~ [[sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) | 1<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]] & ~ [[sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) | 3<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]]]]]]
abstracting: (3<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)) states: 86
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)) states: 147
abstracting: (1<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)) states: 161
abstracting: (sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 243
abstracting: (3<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)) states: 86
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)) states: 147
abstracting: (3<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)) states: 86
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)) states: 147
..
EG iterations: 2
abstracting: (2<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)) states: 131
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 127
.abstracting: (sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)) states: 127
...
EG iterations: 3
abstracting: (sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)) states: 188
.
EG iterations: 1
-> the formula is TRUE
FORMULA Philosophers-COL-000005-CTLCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.795sec
Total processing time: 0m17.297sec
BK_STOP 1464106602734
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:123 (4), effective:15 (0)
initing FirstDep: 0m 0.000sec
iterations count:269 (10), effective:44 (1)
iterations count:120 (4), effective:17 (0)
iterations count:68 (2), effective:5 (0)
iterations count:69 (2), effective:10 (0)
iterations count:162 (6), effective:22 (0)
iterations count:68 (2), effective:5 (0)
iterations count:111 (4), effective:14 (0)
iterations count:224 (8), effective:36 (1)
iterations count:25 (1), effective:0 (0)
iterations count:200 (8), effective:29 (1)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Philosophers-COL-000005"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/users/gast00/fkordon/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/Philosophers-COL-000005.tgz
mv Philosophers-COL-000005 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is Philosophers-COL-000005, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r089kn-ebro-146369093500201"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;