About the Execution of Tapaal(EXP) for NeoElection-PT-3
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
165.010 | 55392.00 | 54980.00 | 40.40 | 0 3 0 6 0 0 3 6 6 0 6 0 0 3 3 0 | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
............
=====================================================================
Generated by BenchKit 2-2979
Executing tool tapaalEXP
Input is NeoElection-PT-3, examination is UpperBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r079kn-smll-146363818200083
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of positive values
NUM_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-3-UpperBounds-0
FORMULA_NAME NeoElection-COL-3-UpperBounds-1
FORMULA_NAME NeoElection-COL-3-UpperBounds-10
FORMULA_NAME NeoElection-COL-3-UpperBounds-11
FORMULA_NAME NeoElection-COL-3-UpperBounds-12
FORMULA_NAME NeoElection-COL-3-UpperBounds-13
FORMULA_NAME NeoElection-COL-3-UpperBounds-14
FORMULA_NAME NeoElection-COL-3-UpperBounds-15
FORMULA_NAME NeoElection-COL-3-UpperBounds-2
FORMULA_NAME NeoElection-COL-3-UpperBounds-3
FORMULA_NAME NeoElection-COL-3-UpperBounds-4
FORMULA_NAME NeoElection-COL-3-UpperBounds-5
FORMULA_NAME NeoElection-COL-3-UpperBounds-6
FORMULA_NAME NeoElection-COL-3-UpperBounds-7
FORMULA_NAME NeoElection-COL-3-UpperBounds-8
FORMULA_NAME NeoElection-COL-3-UpperBounds-9
=== Now, execution of the tool begins
BK_START 1463661653938
---> tapaalEXP --- TAPAAL Experimental
********************************************
* TAPAAL Experimental verifying UpperBounds*
********************************************
verifypn -d -n -r 1 -s BFS -x 1 model.pnml UpperBounds.xml
P-electedPrimary_0
P-electedPrimary_1
P-electedPrimary_2
P-electedPrimary_3
FORMULA NeoElection-COL-3-UpperBounds-0 0 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
verifypn -d -n -r 1 -s BFS -x 2 model.pnml UpperBounds.xml
P-startNeg__broadcasting_0_1
P-startNeg__broadcasting_0_2
P-startNeg__broadcasting_0_3
P-startNeg__broadcasting_1_1
P-startNeg__broadcasting_1_2
P-startNeg__broadcasting_1_3
P-startNeg__broadcasting_2_1
P-startNeg__broadcasting_2_2
P-startNeg__broadcasting_2_3
P-startNeg__broadcasting_3_1
P-startNeg__broadcasting_3_2
P-startNeg__broadcasting_3_3
FORMULA NeoElection-COL-3-UpperBounds-1 3 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
verifypn -d -n -r 1 -s BFS -x 3 model.pnml UpperBounds.xml
P-network_0_0_AskP_0
P-network_0_0_AskP_1
P-network_0_0_AskP_2
P-network_0_0_AskP_3
P-network_0_0_AnsP_0
P-network_0_0_AnsP_1
P-network_0_0_AnsP_2
P-network_0_0_AnsP_3
P-network_0_0_RI_0
P-network_0_0_RI_1
P-network_0_0_RI_2
P-network_0_0_RI_3
P-network_0_0_AI_0
P-network_0_0_AI_1
P-network_0_0_AI_2
P-network_0_0_AI_3
P-network_0_0_AnnP_0
P-network_0_0_AnnP_1
P-network_0_0_AnnP_2
P-network_0_0_AnnP_3
P-network_0_0_RP_0
P-network_0_0_RP_1
P-network_0_0_RP_2
P-network_0_0_RP_3
P-network_0_1_AskP_0
P-network_0_1_AskP_1
P-network_0_1_AskP_2
P-network_0_1_AskP_3
P-network_0_1_AnsP_0
P-network_0_1_AnsP_1
P-network_0_1_AnsP_2
P-network_0_1_AnsP_3
P-network_0_1_RI_0
P-network_0_1_RI_1
P-network_0_1_RI_2
P-network_0_1_RI_3
P-network_0_1_AI_0
P-network_0_1_AI_1
P-network_0_1_AI_2
P-network_0_1_AI_3
P-network_0_1_AnnP_0
P-network_0_1_AnnP_1
P-network_0_1_AnnP_2
P-network_0_1_AnnP_3
P-network_0_1_RP_0
P-network_0_1_RP_1
P-network_0_1_RP_2
P-network_0_1_RP_3
P-network_0_2_AskP_0
P-network_0_2_AskP_1
P-network_0_2_AskP_2
P-network_0_2_AskP_3
P-network_0_2_AnsP_0
P-network_0_2_AnsP_1
P-network_0_2_AnsP_2
P-network_0_2_AnsP_3
P-network_0_2_RI_0
P-network_0_2_RI_1
P-network_0_2_RI_2
P-network_0_2_RI_3
P-network_0_2_AI_0
P-network_0_2_AI_1
P-network_0_2_AI_2
P-network_0_2_AI_3
P-network_0_2_AnnP_0
P-network_0_2_AnnP_1
P-network_0_2_AnnP_2
P-network_0_2_AnnP_3
P-network_0_2_RP_0
P-network_0_2_RP_1
P-network_0_2_RP_2
P-network_0_2_RP_3
P-network_0_3_AskP_0
P-network_0_3_AskP_1
P-network_0_3_AskP_2
P-network_0_3_AskP_3
P-network_0_3_AnsP_0
P-network_0_3_AnsP_1
P-network_0_3_AnsP_2
P-network_0_3_AnsP_3
P-network_0_3_RI_0
P-network_0_3_RI_1
P-network_0_3_RI_2
P-network_0_3_RI_3
P-network_0_3_AI_0
P-network_0_3_AI_1
P-network_0_3_AI_2
P-network_0_3_AI_3
P-network_0_3_AnnP_0
P-network_0_3_AnnP_1
P-network_0_3_AnnP_2
P-network_0_3_AnnP_3
P-network_0_3_RP_0
P-network_0_3_RP_1
P-network_0_3_RP_2
P-network_0_3_RP_3
P-network_1_0_AskP_0
P-network_1_0_AskP_1
P-network_1_0_AskP_2
P-network_1_0_AskP_3
P-network_1_0_AnsP_0
P-network_1_0_AnsP_1
P-network_1_0_AnsP_2
P-network_1_0_AnsP_3
P-network_1_0_RI_0
P-network_1_0_RI_1
P-network_1_0_RI_2
P-network_1_0_RI_3
P-network_1_0_AI_0
P-network_1_0_AI_1
P-network_1_0_AI_2
P-network_1_0_AI_3
P-network_1_0_AnnP_0
P-network_1_0_AnnP_1
P-network_1_0_AnnP_2
P-network_1_0_AnnP_3
P-network_1_0_RP_0
P-network_1_0_RP_1
P-network_1_0_RP_2
P-network_1_0_RP_3
P-network_1_1_AskP_0
P-network_1_1_AskP_1
P-network_1_1_AskP_2
P-network_1_1_AskP_3
P-network_1_1_AnsP_0
P-network_1_1_AnsP_1
P-network_1_1_AnsP_2
P-network_1_1_AnsP_3
P-network_1_1_RI_0
P-network_1_1_RI_1
P-network_1_1_RI_2
P-network_1_1_RI_3
P-network_1_1_AI_0
P-network_1_1_AI_1
P-network_1_1_AI_2
P-network_1_1_AI_3
P-network_1_1_AnnP_0
P-network_1_1_AnnP_1
P-network_1_1_AnnP_2
P-network_1_1_AnnP_3
P-network_1_1_RP_0
P-network_1_1_RP_1
P-network_1_1_RP_2
P-network_1_1_RP_3
P-network_1_2_AskP_0
P-network_1_2_AskP_1
P-network_1_2_AskP_2
P-network_1_2_AskP_3
P-network_1_2_AnsP_0
P-network_1_2_AnsP_1
P-network_1_2_AnsP_2
P-network_1_2_AnsP_3
P-network_1_2_RI_0
P-network_1_2_RI_1
P-network_1_2_RI_2
P-network_1_2_RI_3
P-network_1_2_AI_0
P-network_1_2_AI_1
P-network_1_2_AI_2
P-network_1_2_AI_3
P-network_1_2_AnnP_0
P-network_1_2_AnnP_1
P-network_1_2_AnnP_2
P-network_1_2_AnnP_3
P-network_1_2_RP_0
P-network_1_2_RP_1
P-network_1_2_RP_2
P-network_1_2_RP_3
P-network_1_3_AskP_0
P-network_1_3_AskP_1
P-network_1_3_AskP_2
P-network_1_3_AskP_3
P-network_1_3_AnsP_0
P-network_1_3_AnsP_1
P-network_1_3_AnsP_2
P-network_1_3_AnsP_3
P-network_1_3_RI_0
P-network_1_3_RI_1
P-network_1_3_RI_2
P-network_1_3_RI_3
P-network_1_3_AI_0
P-network_1_3_AI_1
P-network_1_3_AI_2
P-network_1_3_AI_3
P-network_1_3_AnnP_0
P-network_1_3_AnnP_1
P-network_1_3_AnnP_2
P-network_1_3_AnnP_3
P-network_1_3_RP_0
P-network_1_3_RP_1
P-network_1_3_RP_2
P-network_1_3_RP_3
P-network_2_0_AskP_0
P-network_2_0_AskP_1
P-network_2_0_AskP_2
P-network_2_0_AskP_3
P-network_2_0_AnsP_0
P-network_2_0_AnsP_1
P-network_2_0_AnsP_2
P-network_2_0_AnsP_3
P-network_2_0_RI_0
P-network_2_0_RI_1
P-network_2_0_RI_2
P-network_2_0_RI_3
P-network_2_0_AI_0
P-network_2_0_AI_1
P-network_2_0_AI_2
P-network_2_0_AI_3
P-network_2_0_AnnP_0
P-network_2_0_AnnP_1
P-network_2_0_AnnP_2
P-network_2_0_AnnP_3
P-network_2_0_RP_0
P-network_2_0_RP_1
P-network_2_0_RP_2
P-network_2_0_RP_3
P-network_2_1_AskP_0
P-network_2_1_AskP_1
P-network_2_1_AskP_2
P-network_2_1_AskP_3
P-network_2_1_AnsP_0
P-network_2_1_AnsP_1
P-network_2_1_AnsP_2
P-network_2_1_AnsP_3
P-network_2_1_RI_0
P-network_2_1_RI_1
P-network_2_1_RI_2
P-network_2_1_RI_3
P-network_2_1_AI_0
P-network_2_1_AI_1
P-network_2_1_AI_2
P-network_2_1_AI_3
P-network_2_1_AnnP_0
P-network_2_1_AnnP_1
P-network_2_1_AnnP_2
P-network_2_1_AnnP_3
P-network_2_1_RP_0
P-network_2_1_RP_1
P-network_2_1_RP_2
P-network_2_1_RP_3
P-network_2_2_AskP_0
P-network_2_2_AskP_1
P-network_2_2_AskP_2
P-network_2_2_AskP_3
P-network_2_2_AnsP_0
P-network_2_2_AnsP_1
P-network_2_2_AnsP_2
P-network_2_2_AnsP_3
P-network_2_2_RI_0
P-network_2_2_RI_1
P-network_2_2_RI_2
P-network_2_2_RI_3
P-network_2_2_AI_0
P-network_2_2_AI_1
P-network_2_2_AI_2
P-network_2_2_AI_3
P-network_2_2_AnnP_0
P-network_2_2_AnnP_1
P-network_2_2_AnnP_2
P-network_2_2_AnnP_3
P-network_2_2_RP_0
P-network_2_2_RP_1
P-network_2_2_RP_2
P-network_2_2_RP_3
P-network_2_3_AskP_0
P-network_2_3_AskP_1
P-network_2_3_AskP_2
P-network_2_3_AskP_3
P-network_2_3_AnsP_0
P-network_2_3_AnsP_1
P-network_2_3_AnsP_2
P-network_2_3_AnsP_3
P-network_2_3_RI_0
P-network_2_3_RI_1
P-network_2_3_RI_2
P-network_2_3_RI_3
P-network_2_3_AI_0
P-network_2_3_AI_1
P-network_2_3_AI_2
P-network_2_3_AI_3
P-network_2_3_AnnP_0
P-network_2_3_AnnP_1
P-network_2_3_AnnP_2
P-network_2_3_AnnP_3
P-network_2_3_RP_0
P-network_2_3_RP_1
P-network_2_3_RP_2
P-network_2_3_RP_3
P-network_3_0_AskP_0
P-network_3_0_AskP_1
P-network_3_0_AskP_2
P-network_3_0_AskP_3
P-network_3_0_AnsP_0
P-network_3_0_AnsP_1
P-network_3_0_AnsP_2
P-network_3_0_AnsP_3
P-network_3_0_RI_0
P-network_3_0_RI_1
P-network_3_0_RI_2
P-network_3_0_RI_3
P-network_3_0_AI_0
P-network_3_0_AI_1
P-network_3_0_AI_2
P-network_3_0_AI_3
P-network_3_0_AnnP_0
P-network_3_0_AnnP_1
P-network_3_0_AnnP_2
P-network_3_0_AnnP_3
P-network_3_0_RP_0
P-network_3_0_RP_1
P-network_3_0_RP_2
P-network_3_0_RP_3
P-network_3_1_AskP_0
P-network_3_1_AskP_1
P-network_3_1_AskP_2
P-network_3_1_AskP_3
P-network_3_1_AnsP_0
P-network_3_1_AnsP_1
P-network_3_1_AnsP_2
P-network_3_1_AnsP_3
P-network_3_1_RI_0
P-network_3_1_RI_1
P-network_3_1_RI_2
P-network_3_1_RI_3
P-network_3_1_AI_0
P-network_3_1_AI_1
P-network_3_1_AI_2
P-network_3_1_AI_3
P-network_3_1_AnnP_0
P-network_3_1_AnnP_1
P-network_3_1_AnnP_2
P-network_3_1_AnnP_3
P-network_3_1_RP_0
P-network_3_1_RP_1
P-network_3_1_RP_2
P-network_3_1_RP_3
P-network_3_2_AskP_0
P-network_3_2_AskP_1
P-network_3_2_AskP_2
P-network_3_2_AskP_3
P-network_3_2_AnsP_0
P-network_3_2_AnsP_1
P-network_3_2_AnsP_2
P-network_3_2_AnsP_3
P-network_3_2_RI_0
P-network_3_2_RI_1
P-network_3_2_RI_2
P-network_3_2_RI_3
P-network_3_2_AI_0
P-network_3_2_AI_1
P-network_3_2_AI_2
P-network_3_2_AI_3
P-network_3_2_AnnP_0
P-network_3_2_AnnP_1
P-network_3_2_AnnP_2
P-network_3_2_AnnP_3
P-network_3_2_RP_0
P-network_3_2_RP_1
P-network_3_2_RP_2
P-network_3_2_RP_3
P-network_3_3_AskP_0
P-network_3_3_AskP_1
P-network_3_3_AskP_2
P-network_3_3_AskP_3
P-network_3_3_AnsP_0
P-network_3_3_AnsP_1
P-network_3_3_AnsP_2
P-network_3_3_AnsP_3
P-network_3_3_RI_0
P-network_3_3_RI_1
P-network_3_3_RI_2
P-network_3_3_RI_3
P-network_3_3_AI_0
P-network_3_3_AI_1
P-network_3_3_AI_2
P-network_3_3_AI_3
P-network_3_3_AnnP_0
P-network_3_3_AnnP_1
P-network_3_3_AnnP_2
P-network_3_3_AnnP_3
P-network_3_3_RP_0
P-network_3_3_RP_1
P-network_3_3_RP_2
P-network_3_3_RP_3
FORMULA NeoElection-COL-3-UpperBounds-2 6 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
verifypn -d -n -r 1 -s BFS -x 4 model.pnml UpperBounds.xml
P-poll__waitingMessage_0
P-poll__waitingMessage_1
P-poll__waitingMessage_2
P-poll__waitingMessage_3
FORMULA NeoElection-COL-3-UpperBounds-3 0 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
verifypn -d -n -r 1 -s BFS -x 5 model.pnml UpperBounds.xml
P-network_0_0_AskP_0
P-network_0_0_AskP_1
P-network_0_0_AskP_2
P-network_0_0_AskP_3
P-network_0_0_AnsP_0
P-network_0_0_AnsP_1
P-network_0_0_AnsP_2
P-network_0_0_AnsP_3
P-network_0_0_RI_0
P-network_0_0_RI_1
P-network_0_0_RI_2
P-network_0_0_RI_3
P-network_0_0_AI_0
P-network_0_0_AI_1
P-network_0_0_AI_2
P-network_0_0_AI_3
P-network_0_0_AnnP_0
P-network_0_0_AnnP_1
P-network_0_0_AnnP_2
P-network_0_0_AnnP_3
P-network_0_0_RP_0
P-network_0_0_RP_1
P-network_0_0_RP_2
P-network_0_0_RP_3
P-network_0_1_AskP_0
P-network_0_1_AskP_1
P-network_0_1_AskP_2
P-network_0_1_AskP_3
P-network_0_1_AnsP_0
P-network_0_1_AnsP_1
P-network_0_1_AnsP_2
P-network_0_1_AnsP_3
P-network_0_1_RI_0
P-network_0_1_RI_1
P-network_0_1_RI_2
P-network_0_1_RI_3
P-network_0_1_AI_0
P-network_0_1_AI_1
P-network_0_1_AI_2
P-network_0_1_AI_3
P-network_0_1_AnnP_0
P-network_0_1_AnnP_1
P-network_0_1_AnnP_2
P-network_0_1_AnnP_3
P-network_0_1_RP_0
P-network_0_1_RP_1
P-network_0_1_RP_2
P-network_0_1_RP_3
P-network_0_2_AskP_0
P-network_0_2_AskP_1
P-network_0_2_AskP_2
P-network_0_2_AskP_3
P-network_0_2_AnsP_0
P-network_0_2_AnsP_1
P-network_0_2_AnsP_2
P-network_0_2_AnsP_3
P-network_0_2_RI_0
P-network_0_2_RI_1
P-network_0_2_RI_2
P-network_0_2_RI_3
P-network_0_2_AI_0
P-network_0_2_AI_1
P-network_0_2_AI_2
P-network_0_2_AI_3
P-network_0_2_AnnP_0
P-network_0_2_AnnP_1
P-network_0_2_AnnP_2
P-network_0_2_AnnP_3
P-network_0_2_RP_0
P-network_0_2_RP_1
P-network_0_2_RP_2
P-network_0_2_RP_3
P-network_0_3_AskP_0
P-network_0_3_AskP_1
P-network_0_3_AskP_2
P-network_0_3_AskP_3
P-network_0_3_AnsP_0
P-network_0_3_AnsP_1
P-network_0_3_AnsP_2
P-network_0_3_AnsP_3
P-network_0_3_RI_0
P-network_0_3_RI_1
P-network_0_3_RI_2
P-network_0_3_RI_3
P-network_0_3_AI_0
P-network_0_3_AI_1
P-network_0_3_AI_2
P-network_0_3_AI_3
P-network_0_3_AnnP_0
P-network_0_3_AnnP_1
P-network_0_3_AnnP_2
P-network_0_3_AnnP_3
P-network_0_3_RP_0
P-network_0_3_RP_1
P-network_0_3_RP_2
P-network_0_3_RP_3
P-network_1_0_AskP_0
P-network_1_0_AskP_1
P-network_1_0_AskP_2
P-network_1_0_AskP_3
P-network_1_0_AnsP_0
P-network_1_0_AnsP_1
P-network_1_0_AnsP_2
P-network_1_0_AnsP_3
P-network_1_0_RI_0
P-network_1_0_RI_1
P-network_1_0_RI_2
P-network_1_0_RI_3
P-network_1_0_AI_0
P-network_1_0_AI_1
P-network_1_0_AI_2
P-network_1_0_AI_3
P-network_1_0_AnnP_0
P-network_1_0_AnnP_1
P-network_1_0_AnnP_2
P-network_1_0_AnnP_3
P-network_1_0_RP_0
P-network_1_0_RP_1
P-network_1_0_RP_2
P-network_1_0_RP_3
P-network_1_1_AskP_0
P-network_1_1_AskP_1
P-network_1_1_AskP_2
P-network_1_1_AskP_3
P-network_1_1_AnsP_0
P-network_1_1_AnsP_1
P-network_1_1_AnsP_2
P-network_1_1_AnsP_3
P-network_1_1_RI_0
P-network_1_1_RI_1
P-network_1_1_RI_2
P-network_1_1_RI_3
P-network_1_1_AI_0
P-network_1_1_AI_1
P-network_1_1_AI_2
P-network_1_1_AI_3
P-network_1_1_AnnP_0
P-network_1_1_AnnP_1
P-network_1_1_AnnP_2
P-network_1_1_AnnP_3
P-network_1_1_RP_0
P-network_1_1_RP_1
P-network_1_1_RP_2
P-network_1_1_RP_3
P-network_1_2_AskP_0
P-network_1_2_AskP_1
P-network_1_2_AskP_2
P-network_1_2_AskP_3
P-network_1_2_AnsP_0
P-network_1_2_AnsP_1
P-network_1_2_AnsP_2
P-network_1_2_AnsP_3
P-network_1_2_RI_0
P-network_1_2_RI_1
P-network_1_2_RI_2
P-network_1_2_RI_3
P-network_1_2_AI_0
P-network_1_2_AI_1
P-network_1_2_AI_2
P-network_1_2_AI_3
P-network_1_2_AnnP_0
P-network_1_2_AnnP_1
P-network_1_2_AnnP_2
P-network_1_2_AnnP_3
P-network_1_2_RP_0
P-network_1_2_RP_1
P-network_1_2_RP_2
P-network_1_2_RP_3
P-network_1_3_AskP_0
P-network_1_3_AskP_1
P-network_1_3_AskP_2
P-network_1_3_AskP_3
P-network_1_3_AnsP_0
P-network_1_3_AnsP_1
P-network_1_3_AnsP_2
P-network_1_3_AnsP_3
P-network_1_3_RI_0
P-network_1_3_RI_1
P-network_1_3_RI_2
P-network_1_3_RI_3
P-network_1_3_AI_0
P-network_1_3_AI_1
P-network_1_3_AI_2
P-network_1_3_AI_3
P-network_1_3_AnnP_0
P-network_1_3_AnnP_1
P-network_1_3_AnnP_2
P-network_1_3_AnnP_3
P-network_1_3_RP_0
P-network_1_3_RP_1
P-network_1_3_RP_2
P-network_1_3_RP_3
P-network_2_0_AskP_0
P-network_2_0_AskP_1
P-network_2_0_AskP_2
P-network_2_0_AskP_3
P-network_2_0_AnsP_0
P-network_2_0_AnsP_1
P-network_2_0_AnsP_2
P-network_2_0_AnsP_3
P-network_2_0_RI_0
P-network_2_0_RI_1
P-network_2_0_RI_2
P-network_2_0_RI_3
P-network_2_0_AI_0
P-network_2_0_AI_1
P-network_2_0_AI_2
P-network_2_0_AI_3
P-network_2_0_AnnP_0
P-network_2_0_AnnP_1
P-network_2_0_AnnP_2
P-network_2_0_AnnP_3
P-network_2_0_RP_0
P-network_2_0_RP_1
P-network_2_0_RP_2
P-network_2_0_RP_3
P-network_2_1_AskP_0
P-network_2_1_AskP_1
P-network_2_1_AskP_2
P-network_2_1_AskP_3
P-network_2_1_AnsP_0
P-network_2_1_AnsP_1
P-network_2_1_AnsP_2
P-network_2_1_AnsP_3
P-network_2_1_RI_0
P-network_2_1_RI_1
P-network_2_1_RI_2
P-network_2_1_RI_3
P-network_2_1_AI_0
P-network_2_1_AI_1
P-network_2_1_AI_2
P-network_2_1_AI_3
P-network_2_1_AnnP_0
P-network_2_1_AnnP_1
P-network_2_1_AnnP_2
P-network_2_1_AnnP_3
P-network_2_1_RP_0
P-network_2_1_RP_1
P-network_2_1_RP_2
P-network_2_1_RP_3
P-network_2_2_AskP_0
P-network_2_2_AskP_1
P-network_2_2_AskP_2
P-network_2_2_AskP_3
P-network_2_2_AnsP_0
P-network_2_2_AnsP_1
P-network_2_2_AnsP_2
P-network_2_2_AnsP_3
P-network_2_2_RI_0
P-network_2_2_RI_1
P-network_2_2_RI_2
P-network_2_2_RI_3
P-network_2_2_AI_0
P-network_2_2_AI_1
P-network_2_2_AI_2
P-network_2_2_AI_3
P-network_2_2_AnnP_0
P-network_2_2_AnnP_1
P-network_2_2_AnnP_2
P-network_2_2_AnnP_3
P-network_2_2_RP_0
P-network_2_2_RP_1
P-network_2_2_RP_2
P-network_2_2_RP_3
P-network_2_3_AskP_0
P-network_2_3_AskP_1
P-network_2_3_AskP_2
P-network_2_3_AskP_3
P-network_2_3_AnsP_0
P-network_2_3_AnsP_1
P-network_2_3_AnsP_2
P-network_2_3_AnsP_3
P-network_2_3_RI_0
P-network_2_3_RI_1
P-network_2_3_RI_2
P-network_2_3_RI_3
P-network_2_3_AI_0
P-network_2_3_AI_1
P-network_2_3_AI_2
P-network_2_3_AI_3
P-network_2_3_AnnP_0
P-network_2_3_AnnP_1
P-network_2_3_AnnP_2
P-network_2_3_AnnP_3
P-network_2_3_RP_0
P-network_2_3_RP_1
P-network_2_3_RP_2
P-network_2_3_RP_3
P-network_3_0_AskP_0
P-network_3_0_AskP_1
P-network_3_0_AskP_2
P-network_3_0_AskP_3
P-network_3_0_AnsP_0
P-network_3_0_AnsP_1
P-network_3_0_AnsP_2
P-network_3_0_AnsP_3
P-network_3_0_RI_0
P-network_3_0_RI_1
P-network_3_0_RI_2
P-network_3_0_RI_3
P-network_3_0_AI_0
P-network_3_0_AI_1
P-network_3_0_AI_2
P-network_3_0_AI_3
P-network_3_0_AnnP_0
P-network_3_0_AnnP_1
P-network_3_0_AnnP_2
P-network_3_0_AnnP_3
P-network_3_0_RP_0
P-network_3_0_RP_1
P-network_3_0_RP_2
P-network_3_0_RP_3
P-network_3_1_AskP_0
P-network_3_1_AskP_1
P-network_3_1_AskP_2
P-network_3_1_AskP_3
P-network_3_1_AnsP_0
P-network_3_1_AnsP_1
P-network_3_1_AnsP_2
P-network_3_1_AnsP_3
P-network_3_1_RI_0
P-network_3_1_RI_1
P-network_3_1_RI_2
P-network_3_1_RI_3
P-network_3_1_AI_0
P-network_3_1_AI_1
P-network_3_1_AI_2
P-network_3_1_AI_3
P-network_3_1_AnnP_0
P-network_3_1_AnnP_1
P-network_3_1_AnnP_2
P-network_3_1_AnnP_3
P-network_3_1_RP_0
P-network_3_1_RP_1
P-network_3_1_RP_2
P-network_3_1_RP_3
P-network_3_2_AskP_0
P-network_3_2_AskP_1
P-network_3_2_AskP_2
P-network_3_2_AskP_3
P-network_3_2_AnsP_0
P-network_3_2_AnsP_1
P-network_3_2_AnsP_2
P-network_3_2_AnsP_3
P-network_3_2_RI_0
P-network_3_2_RI_1
P-network_3_2_RI_2
P-network_3_2_RI_3
P-network_3_2_AI_0
P-network_3_2_AI_1
P-network_3_2_AI_2
P-network_3_2_AI_3
P-network_3_2_AnnP_0
P-network_3_2_AnnP_1
P-network_3_2_AnnP_2
P-network_3_2_AnnP_3
P-network_3_2_RP_0
P-network_3_2_RP_1
P-network_3_2_RP_2
P-network_3_2_RP_3
P-network_3_3_AskP_0
P-network_3_3_AskP_1
P-network_3_3_AskP_2
P-network_3_3_AskP_3
P-network_3_3_AnsP_0
P-network_3_3_AnsP_1
P-network_3_3_AnsP_2
P-network_3_3_AnsP_3
P-network_3_3_RI_0
P-network_3_3_RI_1
P-network_3_3_RI_2
P-network_3_3_RI_3
P-network_3_3_AI_0
P-network_3_3_AI_1
P-network_3_3_AI_2
P-network_3_3_AI_3
P-network_3_3_AnnP_0
P-network_3_3_AnnP_1
P-network_3_3_AnnP_2
P-network_3_3_AnnP_3
P-network_3_3_RP_0
P-network_3_3_RP_1
P-network_3_3_RP_2
P-network_3_3_RP_3
FORMULA NeoElection-COL-3-UpperBounds-4 6 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
verifypn -d -n -r 1 -s BFS -x 6 model.pnml UpperBounds.xml
P-electionFailed_0
P-electionFailed_1
P-electionFailed_2
P-electionFailed_3
FORMULA NeoElection-COL-3-UpperBounds-5 0 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
verifypn -d -n -r 1 -s BFS -x 7 model.pnml UpperBounds.xml
P-crashed_0
P-crashed_1
P-crashed_2
P-crashed_3
FORMULA NeoElection-COL-3-UpperBounds-6 0 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
verifypn -d -n -r 1 -s BFS -x 8 model.pnml UpperBounds.xml
P-masterState_0_F_0
P-masterState_0_F_1
P-masterState_0_F_2
P-masterState_0_F_3
P-masterState_0_T_0
P-masterState_0_T_1
P-masterState_0_T_2
P-masterState_0_T_3
P-masterState_1_F_0
P-masterState_1_F_1
P-masterState_1_F_2
P-masterState_1_F_3
P-masterState_1_T_0
P-masterState_1_T_1
P-masterState_1_T_2
P-masterState_1_T_3
P-masterState_2_F_0
P-masterState_2_F_1
P-masterState_2_F_2
P-masterState_2_F_3
P-masterState_2_T_0
P-masterState_2_T_1
P-masterState_2_T_2
P-masterState_2_T_3
P-masterState_3_F_0
P-masterState_3_F_1
P-masterState_3_F_2
P-masterState_3_F_3
P-masterState_3_T_0
P-masterState_3_T_1
P-masterState_3_T_2
P-masterState_3_T_3
FORMULA NeoElection-COL-3-UpperBounds-7 3 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
verifypn -d -n -r 1 -s BFS -x 9 model.pnml UpperBounds.xml
P-polling_0
P-polling_1
P-polling_2
P-polling_3
FORMULA NeoElection-COL-3-UpperBounds-8 3 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
verifypn -d -n -r 1 -s BFS -x 10 model.pnml UpperBounds.xml
P-poll__networl_0_0_AskP_0
P-poll__networl_0_0_AskP_1
P-poll__networl_0_0_AskP_2
P-poll__networl_0_0_AskP_3
P-poll__networl_0_0_AnsP_0
P-poll__networl_0_0_AnsP_1
P-poll__networl_0_0_AnsP_2
P-poll__networl_0_0_AnsP_3
P-poll__networl_0_0_RI_0
P-poll__networl_0_0_RI_1
P-poll__networl_0_0_RI_2
P-poll__networl_0_0_RI_3
P-poll__networl_0_0_AI_0
P-poll__networl_0_0_AI_1
P-poll__networl_0_0_AI_2
P-poll__networl_0_0_AI_3
P-poll__networl_0_0_AnnP_0
P-poll__networl_0_0_AnnP_1
P-poll__networl_0_0_AnnP_2
P-poll__networl_0_0_AnnP_3
P-poll__networl_0_0_RP_0
P-poll__networl_0_0_RP_1
P-poll__networl_0_0_RP_2
P-poll__networl_0_0_RP_3
P-poll__networl_0_1_AskP_0
P-poll__networl_0_1_AskP_1
P-poll__networl_0_1_AskP_2
P-poll__networl_0_1_AskP_3
P-poll__networl_0_1_AnsP_0
P-poll__networl_0_1_AnsP_1
P-poll__networl_0_1_AnsP_2
P-poll__networl_0_1_AnsP_3
P-poll__networl_0_1_RI_0
P-poll__networl_0_1_RI_1
P-poll__networl_0_1_RI_2
P-poll__networl_0_1_RI_3
P-poll__networl_0_1_AI_0
P-poll__networl_0_1_AI_1
P-poll__networl_0_1_AI_2
P-poll__networl_0_1_AI_3
P-poll__networl_0_1_AnnP_0
P-poll__networl_0_1_AnnP_1
P-poll__networl_0_1_AnnP_2
P-poll__networl_0_1_AnnP_3
P-poll__networl_0_1_RP_0
P-poll__networl_0_1_RP_1
P-poll__networl_0_1_RP_2
P-poll__networl_0_1_RP_3
P-poll__networl_0_2_AskP_0
P-poll__networl_0_2_AskP_1
P-poll__networl_0_2_AskP_2
P-poll__networl_0_2_AskP_3
P-poll__networl_0_2_AnsP_0
P-poll__networl_0_2_AnsP_1
P-poll__networl_0_2_AnsP_2
P-poll__networl_0_2_AnsP_3
P-poll__networl_0_2_RI_0
P-poll__networl_0_2_RI_1
P-poll__networl_0_2_RI_2
P-poll__networl_0_2_RI_3
P-poll__networl_0_2_AI_0
P-poll__networl_0_2_AI_1
P-poll__networl_0_2_AI_2
P-poll__networl_0_2_AI_3
P-poll__networl_0_2_AnnP_0
P-poll__networl_0_2_AnnP_1
P-poll__networl_0_2_AnnP_2
P-poll__networl_0_2_AnnP_3
P-poll__networl_0_2_RP_0
P-poll__networl_0_2_RP_1
P-poll__networl_0_2_RP_2
P-poll__networl_0_2_RP_3
P-poll__networl_0_3_AskP_0
P-poll__networl_0_3_AskP_1
P-poll__networl_0_3_AskP_2
P-poll__networl_0_3_AskP_3
P-poll__networl_0_3_AnsP_0
P-poll__networl_0_3_AnsP_1
P-poll__networl_0_3_AnsP_2
P-poll__networl_0_3_AnsP_3
P-poll__networl_0_3_RI_0
P-poll__networl_0_3_RI_1
P-poll__networl_0_3_RI_2
P-poll__networl_0_3_RI_3
P-poll__networl_0_3_AI_0
P-poll__networl_0_3_AI_1
P-poll__networl_0_3_AI_2
P-poll__networl_0_3_AI_3
P-poll__networl_0_3_AnnP_0
P-poll__networl_0_3_AnnP_1
P-poll__networl_0_3_AnnP_2
P-poll__networl_0_3_AnnP_3
P-poll__networl_0_3_RP_0
P-poll__networl_0_3_RP_1
P-poll__networl_0_3_RP_2
P-poll__networl_0_3_RP_3
P-poll__networl_1_0_AskP_0
P-poll__networl_1_0_AskP_1
P-poll__networl_1_0_AskP_2
P-poll__networl_1_0_AskP_3
P-poll__networl_1_0_AnsP_0
P-poll__networl_1_0_AnsP_1
P-poll__networl_1_0_AnsP_2
P-poll__networl_1_0_AnsP_3
P-poll__networl_1_0_RI_0
P-poll__networl_1_0_RI_1
P-poll__networl_1_0_RI_2
P-poll__networl_1_0_RI_3
P-poll__networl_1_0_AI_0
P-poll__networl_1_0_AI_1
P-poll__networl_1_0_AI_2
P-poll__networl_1_0_AI_3
P-poll__networl_1_0_AnnP_0
P-poll__networl_1_0_AnnP_1
P-poll__networl_1_0_AnnP_2
P-poll__networl_1_0_AnnP_3
P-poll__networl_1_0_RP_0
P-poll__networl_1_0_RP_1
P-poll__networl_1_0_RP_2
P-poll__networl_1_0_RP_3
P-poll__networl_1_1_AskP_0
P-poll__networl_1_1_AskP_1
P-poll__networl_1_1_AskP_2
P-poll__networl_1_1_AskP_3
P-poll__networl_1_1_AnsP_0
P-poll__networl_1_1_AnsP_1
P-poll__networl_1_1_AnsP_2
P-poll__networl_1_1_AnsP_3
P-poll__networl_1_1_RI_0
P-poll__networl_1_1_RI_1
P-poll__networl_1_1_RI_2
P-poll__networl_1_1_RI_3
P-poll__networl_1_1_AI_0
P-poll__networl_1_1_AI_1
P-poll__networl_1_1_AI_2
P-poll__networl_1_1_AI_3
P-poll__networl_1_1_AnnP_0
P-poll__networl_1_1_AnnP_1
P-poll__networl_1_1_AnnP_2
P-poll__networl_1_1_AnnP_3
P-poll__networl_1_1_RP_0
P-poll__networl_1_1_RP_1
P-poll__networl_1_1_RP_2
P-poll__networl_1_1_RP_3
P-poll__networl_1_2_AskP_0
P-poll__networl_1_2_AskP_1
P-poll__networl_1_2_AskP_2
P-poll__networl_1_2_AskP_3
P-poll__networl_1_2_AnsP_0
P-poll__networl_1_2_AnsP_1
P-poll__networl_1_2_AnsP_2
P-poll__networl_1_2_AnsP_3
P-poll__networl_1_2_RI_0
P-poll__networl_1_2_RI_1
P-poll__networl_1_2_RI_2
P-poll__networl_1_2_RI_3
P-poll__networl_1_2_AI_0
P-poll__networl_1_2_AI_1
P-poll__networl_1_2_AI_2
P-poll__networl_1_2_AI_3
P-poll__networl_1_2_AnnP_0
P-poll__networl_1_2_AnnP_1
P-poll__networl_1_2_AnnP_2
P-poll__networl_1_2_AnnP_3
P-poll__networl_1_2_RP_0
P-poll__networl_1_2_RP_1
P-poll__networl_1_2_RP_2
P-poll__networl_1_2_RP_3
P-poll__networl_1_3_AskP_0
P-poll__networl_1_3_AskP_1
P-poll__networl_1_3_AskP_2
P-poll__networl_1_3_AskP_3
P-poll__networl_1_3_AnsP_0
P-poll__networl_1_3_AnsP_1
P-poll__networl_1_3_AnsP_2
P-poll__networl_1_3_AnsP_3
P-poll__networl_1_3_RI_0
P-poll__networl_1_3_RI_1
P-poll__networl_1_3_RI_2
P-poll__networl_1_3_RI_3
P-poll__networl_1_3_AI_0
P-poll__networl_1_3_AI_1
P-poll__networl_1_3_AI_2
P-poll__networl_1_3_AI_3
P-poll__networl_1_3_AnnP_0
P-poll__networl_1_3_AnnP_1
P-poll__networl_1_3_AnnP_2
P-poll__networl_1_3_AnnP_3
P-poll__networl_1_3_RP_0
P-poll__networl_1_3_RP_1
P-poll__networl_1_3_RP_2
P-poll__networl_1_3_RP_3
P-poll__networl_2_0_AskP_0
P-poll__networl_2_0_AskP_1
P-poll__networl_2_0_AskP_2
P-poll__networl_2_0_AskP_3
P-poll__networl_2_0_AnsP_0
P-poll__networl_2_0_AnsP_1
P-poll__networl_2_0_AnsP_2
P-poll__networl_2_0_AnsP_3
P-poll__networl_2_0_RI_0
P-poll__networl_2_0_RI_1
P-poll__networl_2_0_RI_2
P-poll__networl_2_0_RI_3
P-poll__networl_2_0_AI_0
P-poll__networl_2_0_AI_1
P-poll__networl_2_0_AI_2
P-poll__networl_2_0_AI_3
P-poll__networl_2_0_AnnP_0
P-poll__networl_2_0_AnnP_1
P-poll__networl_2_0_AnnP_2
P-poll__networl_2_0_AnnP_3
P-poll__networl_2_0_RP_0
P-poll__networl_2_0_RP_1
P-poll__networl_2_0_RP_2
P-poll__networl_2_0_RP_3
P-poll__networl_2_1_AskP_0
P-poll__networl_2_1_AskP_1
P-poll__networl_2_1_AskP_2
P-poll__networl_2_1_AskP_3
P-poll__networl_2_1_AnsP_0
P-poll__networl_2_1_AnsP_1
P-poll__networl_2_1_AnsP_2
P-poll__networl_2_1_AnsP_3
P-poll__networl_2_1_RI_0
P-poll__networl_2_1_RI_1
P-poll__networl_2_1_RI_2
P-poll__networl_2_1_RI_3
P-poll__networl_2_1_AI_0
P-poll__networl_2_1_AI_1
P-poll__networl_2_1_AI_2
P-poll__networl_2_1_AI_3
P-poll__networl_2_1_AnnP_0
P-poll__networl_2_1_AnnP_1
P-poll__networl_2_1_AnnP_2
P-poll__networl_2_1_AnnP_3
P-poll__networl_2_1_RP_0
P-poll__networl_2_1_RP_1
P-poll__networl_2_1_RP_2
P-poll__networl_2_1_RP_3
P-poll__networl_2_2_AskP_0
P-poll__networl_2_2_AskP_1
P-poll__networl_2_2_AskP_2
P-poll__networl_2_2_AskP_3
P-poll__networl_2_2_AnsP_0
P-poll__networl_2_2_AnsP_1
P-poll__networl_2_2_AnsP_2
P-poll__networl_2_2_AnsP_3
P-poll__networl_2_2_RI_0
P-poll__networl_2_2_RI_1
P-poll__networl_2_2_RI_2
P-poll__networl_2_2_RI_3
P-poll__networl_2_2_AI_0
P-poll__networl_2_2_AI_1
P-poll__networl_2_2_AI_2
P-poll__networl_2_2_AI_3
P-poll__networl_2_2_AnnP_0
P-poll__networl_2_2_AnnP_1
P-poll__networl_2_2_AnnP_2
P-poll__networl_2_2_AnnP_3
P-poll__networl_2_2_RP_0
P-poll__networl_2_2_RP_1
P-poll__networl_2_2_RP_2
P-poll__networl_2_2_RP_3
P-poll__networl_2_3_AskP_0
P-poll__networl_2_3_AskP_1
P-poll__networl_2_3_AskP_2
P-poll__networl_2_3_AskP_3
P-poll__networl_2_3_AnsP_0
P-poll__networl_2_3_AnsP_1
P-poll__networl_2_3_AnsP_2
P-poll__networl_2_3_AnsP_3
P-poll__networl_2_3_RI_0
P-poll__networl_2_3_RI_1
P-poll__networl_2_3_RI_2
P-poll__networl_2_3_RI_3
P-poll__networl_2_3_AI_0
P-poll__networl_2_3_AI_1
P-poll__networl_2_3_AI_2
P-poll__networl_2_3_AI_3
P-poll__networl_2_3_AnnP_0
P-poll__networl_2_3_AnnP_1
P-poll__networl_2_3_AnnP_2
P-poll__networl_2_3_AnnP_3
P-poll__networl_2_3_RP_0
P-poll__networl_2_3_RP_1
P-poll__networl_2_3_RP_2
P-poll__networl_2_3_RP_3
P-poll__networl_3_0_AskP_0
P-poll__networl_3_0_AskP_1
P-poll__networl_3_0_AskP_2
P-poll__networl_3_0_AskP_3
P-poll__networl_3_0_AnsP_0
P-poll__networl_3_0_AnsP_1
P-poll__networl_3_0_AnsP_2
P-poll__networl_3_0_AnsP_3
P-poll__networl_3_0_RI_0
P-poll__networl_3_0_RI_1
P-poll__networl_3_0_RI_2
P-poll__networl_3_0_RI_3
P-poll__networl_3_0_AI_0
P-poll__networl_3_0_AI_1
P-poll__networl_3_0_AI_2
P-poll__networl_3_0_AI_3
P-poll__networl_3_0_AnnP_0
P-poll__networl_3_0_AnnP_1
P-poll__networl_3_0_AnnP_2
P-poll__networl_3_0_AnnP_3
P-poll__networl_3_0_RP_0
P-poll__networl_3_0_RP_1
P-poll__networl_3_0_RP_2
P-poll__networl_3_0_RP_3
P-poll__networl_3_1_AskP_0
P-poll__networl_3_1_AskP_1
P-poll__networl_3_1_AskP_2
P-poll__networl_3_1_AskP_3
P-poll__networl_3_1_AnsP_0
P-poll__networl_3_1_AnsP_1
P-poll__networl_3_1_AnsP_2
P-poll__networl_3_1_AnsP_3
P-poll__networl_3_1_RI_0
P-poll__networl_3_1_RI_1
P-poll__networl_3_1_RI_2
P-poll__networl_3_1_RI_3
P-poll__networl_3_1_AI_0
P-poll__networl_3_1_AI_1
P-poll__networl_3_1_AI_2
P-poll__networl_3_1_AI_3
P-poll__networl_3_1_AnnP_0
P-poll__networl_3_1_AnnP_1
P-poll__networl_3_1_AnnP_2
P-poll__networl_3_1_AnnP_3
P-poll__networl_3_1_RP_0
P-poll__networl_3_1_RP_1
P-poll__networl_3_1_RP_2
P-poll__networl_3_1_RP_3
P-poll__networl_3_2_AskP_0
P-poll__networl_3_2_AskP_1
P-poll__networl_3_2_AskP_2
P-poll__networl_3_2_AskP_3
P-poll__networl_3_2_AnsP_0
P-poll__networl_3_2_AnsP_1
P-poll__networl_3_2_AnsP_2
P-poll__networl_3_2_AnsP_3
P-poll__networl_3_2_RI_0
P-poll__networl_3_2_RI_1
P-poll__networl_3_2_RI_2
P-poll__networl_3_2_RI_3
P-poll__networl_3_2_AI_0
P-poll__networl_3_2_AI_1
P-poll__networl_3_2_AI_2
P-poll__networl_3_2_AI_3
P-poll__networl_3_2_AnnP_0
P-poll__networl_3_2_AnnP_1
P-poll__networl_3_2_AnnP_2
P-poll__networl_3_2_AnnP_3
P-poll__networl_3_2_RP_0
P-poll__networl_3_2_RP_1
P-poll__networl_3_2_RP_2
P-poll__networl_3_2_RP_3
P-poll__networl_3_3_AskP_0
P-poll__networl_3_3_AskP_1
P-poll__networl_3_3_AskP_2
P-poll__networl_3_3_AskP_3
P-poll__networl_3_3_AnsP_0
P-poll__networl_3_3_AnsP_1
P-poll__networl_3_3_AnsP_2
P-poll__networl_3_3_AnsP_3
P-poll__networl_3_3_RI_0
P-poll__networl_3_3_RI_1
P-poll__networl_3_3_RI_2
P-poll__networl_3_3_RI_3
P-poll__networl_3_3_AI_0
P-poll__networl_3_3_AI_1
P-poll__networl_3_3_AI_2
P-poll__networl_3_3_AI_3
P-poll__networl_3_3_AnnP_0
P-poll__networl_3_3_AnnP_1
P-poll__networl_3_3_AnnP_2
P-poll__networl_3_3_AnnP_3
P-poll__networl_3_3_RP_0
P-poll__networl_3_3_RP_1
P-poll__networl_3_3_RP_2
P-poll__networl_3_3_RP_3
FORMULA NeoElection-COL-3-UpperBounds-9 0 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
verifypn -d -n -r 1 -s BFS -x 11 model.pnml UpperBounds.xml
P-electedPrimary_0
P-electedPrimary_1
P-electedPrimary_2
P-electedPrimary_3
FORMULA NeoElection-COL-3-UpperBounds-10 0 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
verifypn -d -n -r 1 -s BFS -x 12 model.pnml UpperBounds.xml
P-masterList_0_1_0
P-masterList_0_1_1
P-masterList_0_1_2
P-masterList_0_1_3
P-masterList_0_2_0
P-masterList_0_2_1
P-masterList_0_2_2
P-masterList_0_2_3
P-masterList_0_3_0
P-masterList_0_3_1
P-masterList_0_3_2
P-masterList_0_3_3
P-masterList_1_1_0
P-masterList_1_1_1
P-masterList_1_1_2
P-masterList_1_1_3
P-masterList_1_2_0
P-masterList_1_2_1
P-masterList_1_2_2
P-masterList_1_2_3
P-masterList_1_3_0
P-masterList_1_3_1
P-masterList_1_3_2
P-masterList_1_3_3
P-masterList_2_1_0
P-masterList_2_1_1
P-masterList_2_1_2
P-masterList_2_1_3
P-masterList_2_2_0
P-masterList_2_2_1
P-masterList_2_2_2
P-masterList_2_2_3
P-masterList_2_3_0
P-masterList_2_3_1
P-masterList_2_3_2
P-masterList_2_3_3
P-masterList_3_1_0
P-masterList_3_1_1
P-masterList_3_1_2
P-masterList_3_1_3
P-masterList_3_2_0
P-masterList_3_2_1
P-masterList_3_2_2
P-masterList_3_2_3
P-masterList_3_3_0
P-masterList_3_3_1
P-masterList_3_3_2
P-masterList_3_3_3
FORMULA NeoElection-COL-3-UpperBounds-11 6 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
verifypn -d -n -r 1 -s BFS -x 13 model.pnml UpperBounds.xml
P-sendAnnPs__broadcasting_0_1
P-sendAnnPs__broadcasting_0_2
P-sendAnnPs__broadcasting_0_3
P-sendAnnPs__broadcasting_1_1
P-sendAnnPs__broadcasting_1_2
P-sendAnnPs__broadcasting_1_3
P-sendAnnPs__broadcasting_2_1
P-sendAnnPs__broadcasting_2_2
P-sendAnnPs__broadcasting_2_3
P-sendAnnPs__broadcasting_3_1
P-sendAnnPs__broadcasting_3_2
P-sendAnnPs__broadcasting_3_3
FORMULA NeoElection-COL-3-UpperBounds-12 0 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
verifypn -d -n -r 1 -s BFS -x 14 model.pnml UpperBounds.xml
P-poll__networl_0_0_AskP_0
P-poll__networl_0_0_AskP_1
P-poll__networl_0_0_AskP_2
P-poll__networl_0_0_AskP_3
P-poll__networl_0_0_AnsP_0
P-poll__networl_0_0_AnsP_1
P-poll__networl_0_0_AnsP_2
P-poll__networl_0_0_AnsP_3
P-poll__networl_0_0_RI_0
P-poll__networl_0_0_RI_1
P-poll__networl_0_0_RI_2
P-poll__networl_0_0_RI_3
P-poll__networl_0_0_AI_0
P-poll__networl_0_0_AI_1
P-poll__networl_0_0_AI_2
P-poll__networl_0_0_AI_3
P-poll__networl_0_0_AnnP_0
P-poll__networl_0_0_AnnP_1
P-poll__networl_0_0_AnnP_2
P-poll__networl_0_0_AnnP_3
P-poll__networl_0_0_RP_0
P-poll__networl_0_0_RP_1
P-poll__networl_0_0_RP_2
P-poll__networl_0_0_RP_3
P-poll__networl_0_1_AskP_0
P-poll__networl_0_1_AskP_1
P-poll__networl_0_1_AskP_2
P-poll__networl_0_1_AskP_3
P-poll__networl_0_1_AnsP_0
P-poll__networl_0_1_AnsP_1
P-poll__networl_0_1_AnsP_2
P-poll__networl_0_1_AnsP_3
P-poll__networl_0_1_RI_0
P-poll__networl_0_1_RI_1
P-poll__networl_0_1_RI_2
P-poll__networl_0_1_RI_3
P-poll__networl_0_1_AI_0
P-poll__networl_0_1_AI_1
P-poll__networl_0_1_AI_2
P-poll__networl_0_1_AI_3
P-poll__networl_0_1_AnnP_0
P-poll__networl_0_1_AnnP_1
P-poll__networl_0_1_AnnP_2
P-poll__networl_0_1_AnnP_3
P-poll__networl_0_1_RP_0
P-poll__networl_0_1_RP_1
P-poll__networl_0_1_RP_2
P-poll__networl_0_1_RP_3
P-poll__networl_0_2_AskP_0
P-poll__networl_0_2_AskP_1
P-poll__networl_0_2_AskP_2
P-poll__networl_0_2_AskP_3
P-poll__networl_0_2_AnsP_0
P-poll__networl_0_2_AnsP_1
P-poll__networl_0_2_AnsP_2
P-poll__networl_0_2_AnsP_3
P-poll__networl_0_2_RI_0
P-poll__networl_0_2_RI_1
P-poll__networl_0_2_RI_2
P-poll__networl_0_2_RI_3
P-poll__networl_0_2_AI_0
P-poll__networl_0_2_AI_1
P-poll__networl_0_2_AI_2
P-poll__networl_0_2_AI_3
P-poll__networl_0_2_AnnP_0
P-poll__networl_0_2_AnnP_1
P-poll__networl_0_2_AnnP_2
P-poll__networl_0_2_AnnP_3
P-poll__networl_0_2_RP_0
P-poll__networl_0_2_RP_1
P-poll__networl_0_2_RP_2
P-poll__networl_0_2_RP_3
P-poll__networl_0_3_AskP_0
P-poll__networl_0_3_AskP_1
P-poll__networl_0_3_AskP_2
P-poll__networl_0_3_AskP_3
P-poll__networl_0_3_AnsP_0
P-poll__networl_0_3_AnsP_1
P-poll__networl_0_3_AnsP_2
P-poll__networl_0_3_AnsP_3
P-poll__networl_0_3_RI_0
P-poll__networl_0_3_RI_1
P-poll__networl_0_3_RI_2
P-poll__networl_0_3_RI_3
P-poll__networl_0_3_AI_0
P-poll__networl_0_3_AI_1
P-poll__networl_0_3_AI_2
P-poll__networl_0_3_AI_3
P-poll__networl_0_3_AnnP_0
P-poll__networl_0_3_AnnP_1
P-poll__networl_0_3_AnnP_2
P-poll__networl_0_3_AnnP_3
P-poll__networl_0_3_RP_0
P-poll__networl_0_3_RP_1
P-poll__networl_0_3_RP_2
P-poll__networl_0_3_RP_3
P-poll__networl_1_0_AskP_0
P-poll__networl_1_0_AskP_1
P-poll__networl_1_0_AskP_2
P-poll__networl_1_0_AskP_3
P-poll__networl_1_0_AnsP_0
P-poll__networl_1_0_AnsP_1
P-poll__networl_1_0_AnsP_2
P-poll__networl_1_0_AnsP_3
P-poll__networl_1_0_RI_0
P-poll__networl_1_0_RI_1
P-poll__networl_1_0_RI_2
P-poll__networl_1_0_RI_3
P-poll__networl_1_0_AI_0
P-poll__networl_1_0_AI_1
P-poll__networl_1_0_AI_2
P-poll__networl_1_0_AI_3
P-poll__networl_1_0_AnnP_0
P-poll__networl_1_0_AnnP_1
P-poll__networl_1_0_AnnP_2
P-poll__networl_1_0_AnnP_3
P-poll__networl_1_0_RP_0
P-poll__networl_1_0_RP_1
P-poll__networl_1_0_RP_2
P-poll__networl_1_0_RP_3
P-poll__networl_1_1_AskP_0
P-poll__networl_1_1_AskP_1
P-poll__networl_1_1_AskP_2
P-poll__networl_1_1_AskP_3
P-poll__networl_1_1_AnsP_0
P-poll__networl_1_1_AnsP_1
P-poll__networl_1_1_AnsP_2
P-poll__networl_1_1_AnsP_3
P-poll__networl_1_1_RI_0
P-poll__networl_1_1_RI_1
P-poll__networl_1_1_RI_2
P-poll__networl_1_1_RI_3
P-poll__networl_1_1_AI_0
P-poll__networl_1_1_AI_1
P-poll__networl_1_1_AI_2
P-poll__networl_1_1_AI_3
P-poll__networl_1_1_AnnP_0
P-poll__networl_1_1_AnnP_1
P-poll__networl_1_1_AnnP_2
P-poll__networl_1_1_AnnP_3
P-poll__networl_1_1_RP_0
P-poll__networl_1_1_RP_1
P-poll__networl_1_1_RP_2
P-poll__networl_1_1_RP_3
P-poll__networl_1_2_AskP_0
P-poll__networl_1_2_AskP_1
P-poll__networl_1_2_AskP_2
P-poll__networl_1_2_AskP_3
P-poll__networl_1_2_AnsP_0
P-poll__networl_1_2_AnsP_1
P-poll__networl_1_2_AnsP_2
P-poll__networl_1_2_AnsP_3
P-poll__networl_1_2_RI_0
P-poll__networl_1_2_RI_1
P-poll__networl_1_2_RI_2
P-poll__networl_1_2_RI_3
P-poll__networl_1_2_AI_0
P-poll__networl_1_2_AI_1
P-poll__networl_1_2_AI_2
P-poll__networl_1_2_AI_3
P-poll__networl_1_2_AnnP_0
P-poll__networl_1_2_AnnP_1
P-poll__networl_1_2_AnnP_2
P-poll__networl_1_2_AnnP_3
P-poll__networl_1_2_RP_0
P-poll__networl_1_2_RP_1
P-poll__networl_1_2_RP_2
P-poll__networl_1_2_RP_3
P-poll__networl_1_3_AskP_0
P-poll__networl_1_3_AskP_1
P-poll__networl_1_3_AskP_2
P-poll__networl_1_3_AskP_3
P-poll__networl_1_3_AnsP_0
P-poll__networl_1_3_AnsP_1
P-poll__networl_1_3_AnsP_2
P-poll__networl_1_3_AnsP_3
P-poll__networl_1_3_RI_0
P-poll__networl_1_3_RI_1
P-poll__networl_1_3_RI_2
P-poll__networl_1_3_RI_3
P-poll__networl_1_3_AI_0
P-poll__networl_1_3_AI_1
P-poll__networl_1_3_AI_2
P-poll__networl_1_3_AI_3
P-poll__networl_1_3_AnnP_0
P-poll__networl_1_3_AnnP_1
P-poll__networl_1_3_AnnP_2
P-poll__networl_1_3_AnnP_3
P-poll__networl_1_3_RP_0
P-poll__networl_1_3_RP_1
P-poll__networl_1_3_RP_2
P-poll__networl_1_3_RP_3
P-poll__networl_2_0_AskP_0
P-poll__networl_2_0_AskP_1
P-poll__networl_2_0_AskP_2
P-poll__networl_2_0_AskP_3
P-poll__networl_2_0_AnsP_0
P-poll__networl_2_0_AnsP_1
P-poll__networl_2_0_AnsP_2
P-poll__networl_2_0_AnsP_3
P-poll__networl_2_0_RI_0
P-poll__networl_2_0_RI_1
P-poll__networl_2_0_RI_2
P-poll__networl_2_0_RI_3
P-poll__networl_2_0_AI_0
P-poll__networl_2_0_AI_1
P-poll__networl_2_0_AI_2
P-poll__networl_2_0_AI_3
P-poll__networl_2_0_AnnP_0
P-poll__networl_2_0_AnnP_1
P-poll__networl_2_0_AnnP_2
P-poll__networl_2_0_AnnP_3
P-poll__networl_2_0_RP_0
P-poll__networl_2_0_RP_1
P-poll__networl_2_0_RP_2
P-poll__networl_2_0_RP_3
P-poll__networl_2_1_AskP_0
P-poll__networl_2_1_AskP_1
P-poll__networl_2_1_AskP_2
P-poll__networl_2_1_AskP_3
P-poll__networl_2_1_AnsP_0
P-poll__networl_2_1_AnsP_1
P-poll__networl_2_1_AnsP_2
P-poll__networl_2_1_AnsP_3
P-poll__networl_2_1_RI_0
P-poll__networl_2_1_RI_1
P-poll__networl_2_1_RI_2
P-poll__networl_2_1_RI_3
P-poll__networl_2_1_AI_0
P-poll__networl_2_1_AI_1
P-poll__networl_2_1_AI_2
P-poll__networl_2_1_AI_3
P-poll__networl_2_1_AnnP_0
P-poll__networl_2_1_AnnP_1
P-poll__networl_2_1_AnnP_2
P-poll__networl_2_1_AnnP_3
P-poll__networl_2_1_RP_0
P-poll__networl_2_1_RP_1
P-poll__networl_2_1_RP_2
P-poll__networl_2_1_RP_3
P-poll__networl_2_2_AskP_0
P-poll__networl_2_2_AskP_1
P-poll__networl_2_2_AskP_2
P-poll__networl_2_2_AskP_3
P-poll__networl_2_2_AnsP_0
P-poll__networl_2_2_AnsP_1
P-poll__networl_2_2_AnsP_2
P-poll__networl_2_2_AnsP_3
P-poll__networl_2_2_RI_0
P-poll__networl_2_2_RI_1
P-poll__networl_2_2_RI_2
P-poll__networl_2_2_RI_3
P-poll__networl_2_2_AI_0
P-poll__networl_2_2_AI_1
P-poll__networl_2_2_AI_2
P-poll__networl_2_2_AI_3
P-poll__networl_2_2_AnnP_0
P-poll__networl_2_2_AnnP_1
P-poll__networl_2_2_AnnP_2
P-poll__networl_2_2_AnnP_3
P-poll__networl_2_2_RP_0
P-poll__networl_2_2_RP_1
P-poll__networl_2_2_RP_2
P-poll__networl_2_2_RP_3
P-poll__networl_2_3_AskP_0
P-poll__networl_2_3_AskP_1
P-poll__networl_2_3_AskP_2
P-poll__networl_2_3_AskP_3
P-poll__networl_2_3_AnsP_0
P-poll__networl_2_3_AnsP_1
P-poll__networl_2_3_AnsP_2
P-poll__networl_2_3_AnsP_3
P-poll__networl_2_3_RI_0
P-poll__networl_2_3_RI_1
P-poll__networl_2_3_RI_2
P-poll__networl_2_3_RI_3
P-poll__networl_2_3_AI_0
P-poll__networl_2_3_AI_1
P-poll__networl_2_3_AI_2
P-poll__networl_2_3_AI_3
P-poll__networl_2_3_AnnP_0
P-poll__networl_2_3_AnnP_1
P-poll__networl_2_3_AnnP_2
P-poll__networl_2_3_AnnP_3
P-poll__networl_2_3_RP_0
P-poll__networl_2_3_RP_1
P-poll__networl_2_3_RP_2
P-poll__networl_2_3_RP_3
P-poll__networl_3_0_AskP_0
P-poll__networl_3_0_AskP_1
P-poll__networl_3_0_AskP_2
P-poll__networl_3_0_AskP_3
P-poll__networl_3_0_AnsP_0
P-poll__networl_3_0_AnsP_1
P-poll__networl_3_0_AnsP_2
P-poll__networl_3_0_AnsP_3
P-poll__networl_3_0_RI_0
P-poll__networl_3_0_RI_1
P-poll__networl_3_0_RI_2
P-poll__networl_3_0_RI_3
P-poll__networl_3_0_AI_0
P-poll__networl_3_0_AI_1
P-poll__networl_3_0_AI_2
P-poll__networl_3_0_AI_3
P-poll__networl_3_0_AnnP_0
P-poll__networl_3_0_AnnP_1
P-poll__networl_3_0_AnnP_2
P-poll__networl_3_0_AnnP_3
P-poll__networl_3_0_RP_0
P-poll__networl_3_0_RP_1
P-poll__networl_3_0_RP_2
P-poll__networl_3_0_RP_3
P-poll__networl_3_1_AskP_0
P-poll__networl_3_1_AskP_1
P-poll__networl_3_1_AskP_2
P-poll__networl_3_1_AskP_3
P-poll__networl_3_1_AnsP_0
P-poll__networl_3_1_AnsP_1
P-poll__networl_3_1_AnsP_2
P-poll__networl_3_1_AnsP_3
P-poll__networl_3_1_RI_0
P-poll__networl_3_1_RI_1
P-poll__networl_3_1_RI_2
P-poll__networl_3_1_RI_3
P-poll__networl_3_1_AI_0
P-poll__networl_3_1_AI_1
P-poll__networl_3_1_AI_2
P-poll__networl_3_1_AI_3
P-poll__networl_3_1_AnnP_0
P-poll__networl_3_1_AnnP_1
P-poll__networl_3_1_AnnP_2
P-poll__networl_3_1_AnnP_3
P-poll__networl_3_1_RP_0
P-poll__networl_3_1_RP_1
P-poll__networl_3_1_RP_2
P-poll__networl_3_1_RP_3
P-poll__networl_3_2_AskP_0
P-poll__networl_3_2_AskP_1
P-poll__networl_3_2_AskP_2
P-poll__networl_3_2_AskP_3
P-poll__networl_3_2_AnsP_0
P-poll__networl_3_2_AnsP_1
P-poll__networl_3_2_AnsP_2
P-poll__networl_3_2_AnsP_3
P-poll__networl_3_2_RI_0
P-poll__networl_3_2_RI_1
P-poll__networl_3_2_RI_2
P-poll__networl_3_2_RI_3
P-poll__networl_3_2_AI_0
P-poll__networl_3_2_AI_1
P-poll__networl_3_2_AI_2
P-poll__networl_3_2_AI_3
P-poll__networl_3_2_AnnP_0
P-poll__networl_3_2_AnnP_1
P-poll__networl_3_2_AnnP_2
P-poll__networl_3_2_AnnP_3
P-poll__networl_3_2_RP_0
P-poll__networl_3_2_RP_1
P-poll__networl_3_2_RP_2
P-poll__networl_3_2_RP_3
P-poll__networl_3_3_AskP_0
P-poll__networl_3_3_AskP_1
P-poll__networl_3_3_AskP_2
P-poll__networl_3_3_AskP_3
P-poll__networl_3_3_AnsP_0
P-poll__networl_3_3_AnsP_1
P-poll__networl_3_3_AnsP_2
P-poll__networl_3_3_AnsP_3
P-poll__networl_3_3_RI_0
P-poll__networl_3_3_RI_1
P-poll__networl_3_3_RI_2
P-poll__networl_3_3_RI_3
P-poll__networl_3_3_AI_0
P-poll__networl_3_3_AI_1
P-poll__networl_3_3_AI_2
P-poll__networl_3_3_AI_3
P-poll__networl_3_3_AnnP_0
P-poll__networl_3_3_AnnP_1
P-poll__networl_3_3_AnnP_2
P-poll__networl_3_3_AnnP_3
P-poll__networl_3_3_RP_0
P-poll__networl_3_3_RP_1
P-poll__networl_3_3_RP_2
P-poll__networl_3_3_RP_3
FORMULA NeoElection-COL-3-UpperBounds-13 0 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
verifypn -d -n -r 1 -s BFS -x 15 model.pnml UpperBounds.xml
P-masterState_0_F_0
P-masterState_0_F_1
P-masterState_0_F_2
P-masterState_0_F_3
P-masterState_0_T_0
P-masterState_0_T_1
P-masterState_0_T_2
P-masterState_0_T_3
P-masterState_1_F_0
P-masterState_1_F_1
P-masterState_1_F_2
P-masterState_1_F_3
P-masterState_1_T_0
P-masterState_1_T_1
P-masterState_1_T_2
P-masterState_1_T_3
P-masterState_2_F_0
P-masterState_2_F_1
P-masterState_2_F_2
P-masterState_2_F_3
P-masterState_2_T_0
P-masterState_2_T_1
P-masterState_2_T_2
P-masterState_2_T_3
P-masterState_3_F_0
P-masterState_3_F_1
P-masterState_3_F_2
P-masterState_3_F_3
P-masterState_3_T_0
P-masterState_3_T_1
P-masterState_3_T_2
P-masterState_3_T_3
FORMULA NeoElection-COL-3-UpperBounds-14 3 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
verifypn -d -n -r 1 -s BFS -x 16 model.pnml UpperBounds.xml
P-masterList_0_1_0
P-masterList_0_1_1
P-masterList_0_1_2
P-masterList_0_1_3
P-masterList_0_2_0
P-masterList_0_2_1
P-masterList_0_2_2
P-masterList_0_2_3
P-masterList_0_3_0
P-masterList_0_3_1
P-masterList_0_3_2
P-masterList_0_3_3
P-masterList_1_1_0
P-masterList_1_1_1
P-masterList_1_1_2
P-masterList_1_1_3
P-masterList_1_2_0
P-masterList_1_2_1
P-masterList_1_2_2
P-masterList_1_2_3
P-masterList_1_3_0
P-masterList_1_3_1
P-masterList_1_3_2
P-masterList_1_3_3
P-masterList_2_1_0
P-masterList_2_1_1
P-masterList_2_1_2
P-masterList_2_1_3
P-masterList_2_2_0
P-masterList_2_2_1
P-masterList_2_2_2
P-masterList_2_2_3
P-masterList_2_3_0
P-masterList_2_3_1
P-masterList_2_3_2
P-masterList_2_3_3
P-masterList_3_1_0
P-masterList_3_1_1
P-masterList_3_1_2
P-masterList_3_1_3
P-masterList_3_2_0
P-masterList_3_2_1
P-masterList_3_2_2
P-masterList_3_2_3
P-masterList_3_3_0
P-masterList_3_3_1
P-masterList_3_3_2
P-masterList_3_3_3
FORMULA NeoElection-COL-3-UpperBounds-15 6 TECHNIQUES SEQUENTIAL_PROCESSING EXPLICIT STRUCTURAL_REDUCTION STATE_COMPRESSION
No more queries
BK_STOP 1463661709330
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-3"
export BK_EXAMINATION="UpperBounds"
export BK_TOOL="tapaalEXP"
export BK_RESULT_DIR="/root/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-3.tgz
mv NeoElection-PT-3 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool tapaalEXP"
echo " Input is NeoElection-PT-3, examination is UpperBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r079kn-smll-146363818200083"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "UpperBounds" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "UpperBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "UpperBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property UpperBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "UpperBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;