fond
Model Checking Contest @ Petri Nets 2016
6th edition, Toruń, Poland, June 21, 2016
Execution of r077kn-smll-146363816200304
Last Updated
June 30, 2016

About the Execution of Marcie for PermAdmissibility-PT-01

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
9337.710 366566.00 366020.00 29.70 TTFFTTFFFTFTFFTF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
...............
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is PermAdmissibility-PT-01, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r077kn-smll-146363816200304
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-0
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-1
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-10
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-11
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-12
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-13
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-14
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-15
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-2
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-3
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-4
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-5
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-6
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-7
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-8
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-9

=== Now, execution of the tool begins

BK_START 1463800714928


Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --mcc-mode --memory=6 --suppress

parse successfull
net created successfully

Net: PermAdmissibility_PT_01
(NrP: 168 NrTr: 592 NrArc: 3456)

net check time: 0m 0.001sec

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.021sec

init dd package: 0m 4.056sec


RS generation: 0m29.328sec


-> reachability set: #nodes 57487 (5.7e+04) #states 52,537 (4)



starting MCC model checker
--------------------------

checking: EF [[3<=c17 | 3<=sum(in3_4, in3_5)]]
normalized: E [true U [3<=c17 | 3<=sum(in3_4, in3_5)]]

abstracting: (3<=sum(in3_4, in3_5)) states: 0
abstracting: (3<=c17) states: 0
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.056sec

checking: AG [c15<=sum(in4_7, in4_6)]
normalized: ~ [E [true U ~ [c15<=sum(in4_7, in4_6)]]]

abstracting: (c15<=sum(in4_7, in4_6)) states: 51,801 (4)
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 3.664sec

checking: EF [[[1<=sum(in4_7, in4_6) & [sum(in1_0, in1_1)<=c18 & 1<=sum(in1_0, in1_1)]] & 2<=c12]]
normalized: E [true U [2<=c12 & [1<=sum(in4_7, in4_6) & [sum(in1_0, in1_1)<=c18 & 1<=sum(in1_0, in1_1)]]]]

abstracting: (1<=sum(in1_0, in1_1)) states: 5
abstracting: (sum(in1_0, in1_1)<=c18) states: 52,532 (4)
abstracting: (1<=sum(in4_7, in4_6)) states: 25
abstracting: (2<=c12) states: 0
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.245sec

checking: EF [~ [c20<=sum(aux13_6, aux13_5, aux13_4, aux13_3, aux13_7, aux13_0, aux13_1, aux13_2)]]
normalized: E [true U ~ [c20<=sum(aux13_6, aux13_5, aux13_4, aux13_3, aux13_7, aux13_0, aux13_1, aux13_2)]]

abstracting: (c20<=sum(aux13_6, aux13_5, aux13_4, aux13_3, aux13_7, aux13_0, aux13_1, aux13_2)) states: 33,849 (4)
-> the formula is TRUE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 1m22.033sec

checking: AG [sum(out5_7, out5_4, out5_3, out5_6, out5_5, out5_0, out5_2, out5_1)<=c17]
normalized: ~ [E [true U ~ [sum(out5_7, out5_4, out5_3, out5_6, out5_5, out5_0, out5_2, out5_1)<=c17]]]

abstracting: (sum(out5_7, out5_4, out5_3, out5_6, out5_5, out5_0, out5_2, out5_1)<=c17) states: 15,161 (4)
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m37.295sec

checking: AG [c15<=sum(out5_7, out5_4, out5_3, out5_6, out5_5, out5_0, out5_2, out5_1)]
normalized: ~ [E [true U ~ [c15<=sum(out5_7, out5_4, out5_3, out5_6, out5_5, out5_0, out5_2, out5_1)]]]

abstracting: (c15<=sum(out5_7, out5_4, out5_3, out5_6, out5_5, out5_0, out5_2, out5_1)) states: 51,801 (4)
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.357sec

checking: EF [[c11<=c16 & 2<=sum(out8_5, out8_4, out8_7, out8_6, out8_2, out8_3, out8_0, out8_1)]]
normalized: E [true U [c11<=c16 & 2<=sum(out8_5, out8_4, out8_7, out8_6, out8_2, out8_3, out8_0, out8_1)]]

abstracting: (2<=sum(out8_5, out8_4, out8_7, out8_6, out8_2, out8_3, out8_0, out8_1)) states: 0
abstracting: (c11<=c16) states: 52,473 (4)
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.093sec

checking: EF [[2<=c8 & ~ [[3<=c5 & sum(aux16_7, aux16_6, aux16_5, aux16_4, aux16_3, aux16_2, aux16_1, aux16_0)<=c7]]]]
normalized: E [true U [2<=c8 & ~ [[3<=c5 & sum(aux16_7, aux16_6, aux16_5, aux16_4, aux16_3, aux16_2, aux16_1, aux16_0)<=c7]]]]

abstracting: (sum(aux16_7, aux16_6, aux16_5, aux16_4, aux16_3, aux16_2, aux16_1, aux16_0)<=c7) states: 23,337 (4)
abstracting: (3<=c5) states: 0
abstracting: (2<=c8) states: 0
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.134sec

checking: AG [~ [[[c17<=sum(out2_2, out2_1, out2_4, out2_3, out2_6, out2_5, out2_7, out2_0) & 2<=c8] & 3<=c18]]]
normalized: ~ [E [true U [3<=c18 & [c17<=sum(out2_2, out2_1, out2_4, out2_3, out2_6, out2_5, out2_7, out2_0) & 2<=c8]]]]

abstracting: (2<=c8) states: 0
abstracting: (c17<=sum(out2_2, out2_1, out2_4, out2_3, out2_6, out2_5, out2_7, out2_0)) states: 51,369 (4)
abstracting: (3<=c18) states: 0
-> the formula is TRUE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.089sec

checking: AG [[[~ [3<=sum(out4_4, out4_5, out4_2, out4_3, out4_6, out4_7, out4_1, out4_0)] | [c14<=c13 & 1<=c13]] | 3<=c6]]
normalized: ~ [E [true U ~ [[3<=c6 | [[c14<=c13 & 1<=c13] | ~ [3<=sum(out4_4, out4_5, out4_2, out4_3, out4_6, out4_7, out4_1, out4_0)]]]]]]

abstracting: (3<=sum(out4_4, out4_5, out4_2, out4_3, out4_6, out4_7, out4_1, out4_0)) states: 0
abstracting: (1<=c13) states: 256
abstracting: (c14<=c13) states: 51,641 (4)
abstracting: (3<=c6) states: 0
-> the formula is TRUE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.179sec

checking: EF [[1<=sum(out8_5, out8_4, out8_7, out8_6, out8_2, out8_3, out8_0, out8_1) | 3<=sum(aux8_2, aux8_6, aux8_3, aux8_7)]]
normalized: E [true U [1<=sum(out8_5, out8_4, out8_7, out8_6, out8_2, out8_3, out8_0, out8_1) | 3<=sum(aux8_2, aux8_6, aux8_3, aux8_7)]]

abstracting: (3<=sum(aux8_2, aux8_6, aux8_3, aux8_7)) states: 0
abstracting: (1<=sum(out8_5, out8_4, out8_7, out8_6, out8_2, out8_3, out8_0, out8_1)) states: 18,688 (4)
-> the formula is TRUE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 3m 4.729sec

checking: EF [[[sum(out6_7, out6_3, out6_4, out6_5, out6_6, out6_0, out6_2, out6_1)<=c9 | ~ [2<=c5]] & [2<=c7 | [3<=c8 & c11<=c13]]]]
normalized: E [true U [[2<=c7 | [3<=c8 & c11<=c13]] & [sum(out6_7, out6_3, out6_4, out6_5, out6_6, out6_0, out6_2, out6_1)<=c9 | ~ [2<=c5]]]]

abstracting: (2<=c5) states: 0
abstracting: (sum(out6_7, out6_3, out6_4, out6_5, out6_6, out6_0, out6_2, out6_1)<=c9) states: 15,161 (4)
abstracting: (c11<=c13) states: 52,473 (4)
abstracting: (3<=c8) states: 0
abstracting: (2<=c7) states: 0
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.280sec

checking: AG [[sum(out7_6, out7_7, out7_4, out7_5, out7_2, out7_3, out7_0, out7_1)<=sum(aux10_7, aux10_6, aux10_5, aux10_3, aux10_4, aux10_1, aux10_2, aux10_0) | c110<=c8]]
normalized: ~ [E [true U ~ [[sum(out7_6, out7_7, out7_4, out7_5, out7_2, out7_3, out7_0, out7_1)<=sum(aux10_7, aux10_6, aux10_5, aux10_3, aux10_4, aux10_1, aux10_2, aux10_0) | c110<=c8]]]]

abstracting: (c110<=c8) states: 52,473 (4)
abstracting: (sum(out7_6, out7_7, out7_4, out7_5, out7_2, out7_3, out7_0, out7_1)<=sum(aux10_7, aux10_6, aux10_5, aux10_3, aux10_4, aux10_1, aux10_2, aux10_0)) states: 33,849 (4)
-> the formula is TRUE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.187sec

checking: EF [[[[3<=c9 & 3<=c9] & ~ [sum(out3_5, out3_4, out3_3, out3_2, out3_7, out3_6, out3_1, out3_0)<=c15]] | [~ [c12<=c13] & [sum(aux6_4, aux6_1, aux6_5, aux6_0)<=c6 & 1<=sum(aux7_2, aux7_3, aux7_6, aux7_7)]]]]
normalized: E [true U [[[sum(aux6_4, aux6_1, aux6_5, aux6_0)<=c6 & 1<=sum(aux7_2, aux7_3, aux7_6, aux7_7)] & ~ [c12<=c13]] | [~ [sum(out3_5, out3_4, out3_3, out3_2, out3_7, out3_6, out3_1, out3_0)<=c15] & [3<=c9 & 3<=c9]]]]

abstracting: (3<=c9) states: 0
abstracting: (3<=c9) states: 0
abstracting: (sum(out3_5, out3_4, out3_3, out3_2, out3_7, out3_6, out3_1, out3_0)<=c15) states: 10,489 (4)
abstracting: (c12<=c13) states: 52,281 (4)
abstracting: (1<=sum(aux7_2, aux7_3, aux7_6, aux7_7)) states: 96
abstracting: (sum(aux6_4, aux6_1, aux6_5, aux6_0)<=c6) states: 52,117 (4)
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.373sec

checking: AG [[[[c110<=sum(out8_5, out8_4, out8_7, out8_6, out8_2, out8_3, out8_0, out8_1) & c13<=sum(out8_5, out8_4, out8_7, out8_6, out8_2, out8_3, out8_0, out8_1)] | c8<=c19] | [sum(aux6_4, aux6_1, aux6_5, aux6_0)<=sum(aux11_6, aux11_7, aux11_0, aux11_1, aux11_2, aux11_3, aux11_4, aux11_5) | c110<=sum(aux10_7, aux10_6, aux10_5, aux10_3, aux10_4, aux10_1, aux10_2, aux10_0)]]]
normalized: ~ [E [true U ~ [[[sum(aux6_4, aux6_1, aux6_5, aux6_0)<=sum(aux11_6, aux11_7, aux11_0, aux11_1, aux11_2, aux11_3, aux11_4, aux11_5) | c110<=sum(aux10_7, aux10_6, aux10_5, aux10_3, aux10_4, aux10_1, aux10_2, aux10_0)] | [c8<=c19 | [c110<=sum(out8_5, out8_4, out8_7, out8_6, out8_2, out8_3, out8_0, out8_1) & c13<=sum(out8_5, out8_4, out8_7, out8_6, out8_2, out8_3, out8_0, out8_1)]]]]]]

abstracting: (c13<=sum(out8_5, out8_4, out8_7, out8_6, out8_2, out8_3, out8_0, out8_1)) states: 52,281 (4)
abstracting: (c110<=sum(out8_5, out8_4, out8_7, out8_6, out8_2, out8_3, out8_0, out8_1)) states: 52,473 (4)
abstracting: (c8<=c19) states: 52,521 (4)
abstracting: (c110<=sum(aux10_7, aux10_6, aux10_5, aux10_3, aux10_4, aux10_1, aux10_2, aux10_0)) states: 52,473 (4)
abstracting: (sum(aux6_4, aux6_1, aux6_5, aux6_0)<=sum(aux11_6, aux11_7, aux11_0, aux11_1, aux11_2, aux11_3, aux11_4, aux11_5)) states: 52,373 (4)
-> the formula is TRUE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.486sec

checking: EF [[[[c5<=sum(aux6_4, aux6_1, aux6_5, aux6_0) & sum(aux6_4, aux6_1, aux6_5, aux6_0)<=sum(out2_2, out2_1, out2_4, out2_3, out2_6, out2_5, out2_7, out2_0)] | [sum(out2_2, out2_1, out2_4, out2_3, out2_6, out2_5, out2_7, out2_0)<=sum(out3_5, out3_4, out3_3, out3_2, out3_7, out3_6, out3_1, out3_0) | sum(aux13_6, aux13_5, aux13_4, aux13_3, aux13_7, aux13_0, aux13_1, aux13_2)<=c11]] & 1<=c16]]
normalized: E [true U [1<=c16 & [[c5<=sum(aux6_4, aux6_1, aux6_5, aux6_0) & sum(aux6_4, aux6_1, aux6_5, aux6_0)<=sum(out2_2, out2_1, out2_4, out2_3, out2_6, out2_5, out2_7, out2_0)] | [sum(out2_2, out2_1, out2_4, out2_3, out2_6, out2_5, out2_7, out2_0)<=sum(out3_5, out3_4, out3_3, out3_2, out3_7, out3_6, out3_1, out3_0) | sum(aux13_6, aux13_5, aux13_4, aux13_3, aux13_7, aux13_0, aux13_1, aux13_2)<=c11]]]]

abstracting: (sum(aux13_6, aux13_5, aux13_4, aux13_3, aux13_7, aux13_0, aux13_1, aux13_2)<=c11) states: 42,729 (4)
abstracting: (sum(out2_2, out2_1, out2_4, out2_3, out2_6, out2_5, out2_7, out2_0)<=sum(out3_5, out3_4, out3_3, out3_2, out3_7, out3_6, out3_1, out3_0)) states: 47,865 (4)
abstracting: (sum(aux6_4, aux6_1, aux6_5, aux6_0)<=sum(out2_2, out2_1, out2_4, out2_3, out2_6, out2_5, out2_7, out2_0)) states: 52,117 (4)
abstracting: (c5<=sum(aux6_4, aux6_1, aux6_5, aux6_0)) states: 52,536 (4)
abstracting: (1<=c16) states: 2,336 (3)
-> the formula is TRUE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m10.274sec


Total processing time: 6m 6.393sec


BK_STOP 1463801081494

--------------------
content from stderr:

check for maximal unmarked siphon
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.002sec

1120 1582 1681 1818 1905 1943 2083 2152 2191 2249 2317 2361 2593 2689 2778 2802 2859 2886 2896 2881 2894 2909 2951 3168 3264 3330 3340 3337 3387 3408 3415 3461 3504 3543 3701 3744 3797 3804 3804 3817 3799 3806 3834 3843 3864 3931 4005 4106 4161 4217 4245 4298 4355 4396 4434 4468 4521 4581 4599 4611 4601 4637 4687 4695 4727 4773 4802 4882 4913 4953 5004 5038 5103 5151 5190 5229 5281 5325 5331 5433 5473 5505 5537 5546 5585 5618 5669 5730 5777 5791 5864 5903 5938 5972 5982 5988 5983 6013 6030 6024 6054 6105 6113 6112 6151 6189 6233 6267 6310 6348 6368 6352 6402 6413 6405 6431 6471 6501 6529 6562 6596 6604 6656 6641 6645 6649 6673 6713 6730 6714 6781 6807 6792 6856 6873 6886 6929 6959 6966 6996 7003 7032 7060 7109 7114 7104 7163 7199 7230 7248 7242 7281 7309 7373 7362 7373 7373 7367 7392 7397 7430 7438 7465 7494 7537 7542 7544 7571 7599 7632 7659 7667 7678 7670 7667 8122 8758 9341 9630 9824 10101 10255 10554 10870 11109 11197 11228 11595 12003 12165 12302 12403 12412 12632 12881 12970 13023 13067 13229 13526 13601 13622 13724 13733 13939 14179 14299 14345 14347 14499 14768 14835 14940 14959 14974 15180 15345 15522 15631 15720 15845 15951 15996 16106 16295 16360 16444 16494 16529 16594 16650 16692 16966 17078 17210 17373 17465 17483 17556 17665 17776 17906 17982 18061 18150 18197 18236 18269 18429 18602 18703 18745 18865 18945 18998 19029 19179 19253 19299 19338 19364 19424 19466 19512 19547 19761 19819 19862 19874 19890 20003 20064 20106 20118 20155 20168 20408 20537 20629 20701 20741 20779 20818 20860 20942 21050 21095 21128 21158 21209 21264 21284 21418 21605 21645 21779 21895 21934 21974 21978 22069 22137 22183 22272 22319 22376 22405 22426 22465 22709 22805 22838 22898 22951 22981 23008 23057 23137 23219 23243 23265 23325 23390 23412 23430 23554 23609 23697 23749 23822 23844 23850 23877 23947 23968 24028 24063 24103 24134 24145 24150 24159 24245 24281 24284 24276 24290 24325 24345 24349 24345 24346 24351 24497 24504 24559 24571 24581 24645 24665 24679 24707 24718 24713 24846 24885 24915 24938 24948 25004 25037 25066 25105 25114 25111 25278 25327 25389 25413 25444 25493 25497 25517 25569 25614 25643 25648 25687 25710 25741 25751 25740 25836 25861 25890 25891 25903 25925 25956 25981 25978 25992 25995 26130 26215 26322 26388 26424 26437 26459 26504 26537 26604 26639 26692 26717 26723 26730 26746 26856 26909 26982 27034 27046 27050 27057 27080 27133 27149 27214 27247 27251 27254 27265 27270 27276 27379 27437 27482 27491 27494 27526 27563 27608 27617 27623 27636 27779 27841 27924 28007 28021 28032 28064 28114 28157 28234 28266 28321 28336 28358 28390 28409 28551 28644 28689 28730 28756 28783 28808 28851 28899 28933 28979 29002 29020 29031 29077 29095 29110 29234 29277 29286 29290 29290 29349 29408 29420 29417 29430 29430 29539 29590 29630 29673 29694 29718 29722 29760 29790 29839 29858 29876 29882 29900 29923 29927 29981 30044 30073 30104 30125 30144 30140 30140 30187 30209 30216 30244 30268 30298 30311 30300 30298 30367 30391 30402 30404 30406 30412 30438 30448 30442 30444 30437 30537 30570 30629 30679 30717 30745 30744 30744 30804 30836 30901 30908 30938 30955 30970 30996 30999 31097 31156 31177 31180 31180 31226 31291 31303 31303 31314 31316 31412 31436 31464 31489 31505 31536 31539 31556 31594 31625 31643 31675 31714 31736 31764 31778 31775 34633 35346 36317 37401 37740 39901 40327 40454 41242 41426 42120 42513 42527 43450 43833 44027 44250 44423 45067 45194 46935 48735 50780 51824 52946 53776 54242 54881 55026 55448 55666 55890 56028 56355 56491 56624 56696 56779 56851 57006 57065 57246 57335 57446
iterations count:624986 (1055), effective:3528 (5)

initing FirstDep: 0m 0.001sec

1869 2218 2564 2814 3102 3312 3561 3777 3968 4221 4450 4638 4815 5001 5160 5349 6195 6528 6672 7030 7347 7582 7645
iterations count:23796 (40), effective:289 (0)
15545 15680 15897 16033 16014 16170 16148 16212 16396 16435 16561 16632 16673 16692 16851 16922 17014 17073 17085 17305 17343 17406 17394 17569 17671 17695 17920 18140 18533 18635 18754 18984 19050 19090 19279 19417 19569 19665 19804 19772 19822 19918 19978 19999 20076 20331 20420 20455 20647 20638 20688 20784 20846 20912 20974 21060 21016 21032 21046 21074 21063 21179 21275 21340 21421 21420 21465 21482 21507 21646 21696 21726 21823 21836 21871 21862 21921 22964 22995 22982 23169 23240 23398 23533 23680 23811 23859 23890 23843 23940 23994 23972 23979 23991 23969 23867 23846 23982 24053 24192 24241 24324 24437 24468 24541 24546 24617 24632 25080 25345 25509 25576 25649 25847 25901 25934 26000 26073 26109 26149 26105 26114 26068 26048 25896 25896 25915 25958 25913 25954 26033 26082 26148 26166 26195 26218 26888 26896 27079 27037 27152 27170 27304 27353 27410 27530 27571 27523 27556 27579 27500 27419 27332 27365 27328 27229 27223 27276 27268 27335 27690 27743 27881 27935 28028 28030 28062 28135 28098 28095 28033 28040 27947 27780 27783 28004 28107 28164 28237 28267 28336 28314 28279 28219 28151 29263 29478 29544 29579 29741 29815 29935 29977 30210 30267 30357 30524 30585 30621 30809 30871 30935 30955 31057 31109 31029 31222 31261 31363 31409 31474 31558 31606 31763 31782 31826 31856 31888 31943 31975 32008 32117 32149 32140 32186 32239 32220 32237 32276 32310 32306 32321 32401 32441 32466 33102 33235 33297 33401 33512 33555 33668 33725 33816 33880 33932 34008 34060 34089 34272 34356 34362 34427 34494 34422 34419 34321 34354 34380 34447 34483 34494 34504 34524 34546 34637 34693 34726 34775 34759 34762 34755 34809 34841 35227 35356 35438 35494 35552 35482 35415 35394 35432 35457 35562 35580 35588 35679 35677 35751 35730 35734 35724 35685 35588 35680 35689 35732 35751 35709 35703 36076 36219 36354 36430 36459 36535 36655 36679 36800 36876 36876 36854 36881 36907 36933 36933 36863 36836 36814 36678 36636 36634 36629 36646 36643 36594 36610 36595 36659 36709 36712 36779 36778 36782 36880 36962 36944 36921 36915 36818 36793 36668 36649 36533 36472 36560 36596 36629 36644 36584 36519 36476 36383 37489 37588 37677 37696 37971 38018 38131 38182 38251 38335 38424 38484 38535 38641 38697 38770 38856 38898 39096 39120 39133 39186 39184 39213 39191 39274 39319 39345 39312 39287 39230 39322 39366 39424 39458 39532 39594 39564 39633 39629 39653 39640 40485 40530 40595 40628 40914 40996 41108 41069 41198 41327 41412 41398 41403 41422 41451 41493 41504 41482 41509 41559 41617 41634 41690 41674 41650 41607 41615 41607 41608 41560 41543 41604 41630 41693 41706 41702 41758 41761 41729 41676 41673 41711 41700 41642 41594 41598 41602 41595 41590 41483 41455 41408 41385 41332 41264 41272 41195 41168 41192 41176 41195 41205 41238 41232 41126 41094 40916 41007 41059 41098 41118 41086 41050 41010 40983 40922 40808 40799 40763 40673 40636 40450 40484 40417 40386 40262 40189 40060 40021 39890 40974 41045 41140 41224 41276 41380 41427 41610 41690 41791 41839 41855 41927 41971 42072 42108 42178 42290 42348 42379 42462 42475 42649 42718 42713 42766 42774 42800 42839 42902 42951 42979 43025 42999 42997 43018 43042 43048 43033 43057 43047 43098 43083 43106 43085 43464 43502 43570 43524 43510 43583 43692 43698 43748 43775 43800 43818 43800 43835 43773 43869 43926 43991 43997 44021 44003 43962 43902 43947 43942 43931 43988 43960 43941 43946 43853 43879 43928 43905 43853 43821 43862 43837 43827 43735 43746 43718 43694 43574 43576 43575 43632 43660 43689 43667 43595 43590 43547 43562 43545 43376 43387 43355 43304 43298 43219 43185 43185 43141 43116 43058 42969 42803 42765 42680 42603 42537 42537 42461 42831 42994 43129 43154 43207 43297 43328 43393 43414 43486 43528 43564 43697 43754 43808 43861 43866 43888 43916 43967 43941 43912 43919 43915 44391 44448 44470 44517 44510 44614 44644 44658 44720 44736 44766 44774 44821 44866 44871 44903 44949 44927 44931 44991 45033 45060 45075 45065 45041 45004 44987 45020 45026 45021 45048 45024 45020 45017 45078 45121 45146 45163 45100 45118 45110 45118 45117 45104 45060 45031 44976 44882 44918 44905 44956 44903 44950 45001 45012 45059 45005 44971 44956 44985 45006 44992 44966 44936 44689 44658 44603 44561 44496 44534 44545 44574 44546 44493 44461 44374 44357 44185 44108 44004 44025 44010 43999 43953 43921 43899 44202 44278 44331 44412 44458 44485 44495 44605 44631 44679 44712 44758 44783 44818 44860 44865 44878 44981 44995 44941 44934 44914 44947 44969 44956 44934 44929 45197 45250 45333 45469 45494 45554 45605 45577 45600 45647 45630 45605 45639 45673 45639 45668 45670 45684 45664 45631 45673 45653 45627 45667 45690 45683 45758 45785 45769 45743 45710 45737 45703 45703 45726 45677 45643 45433 45424 45395 45380 45350 45306 45203 45150 45133 45096 45076 45011 44911 44874 44777 44732 44709 44943 45008 45063 45118 45116 45182 45228 45290 45316 45370 45436 45491 45515 45461 45437 45469 45481 45466 45460 45551 45606 45717 45753 45773 45738 45743 45757 45758 45754 45765 45773 45809 45808 45780 45777 45810 45838 45829 45817 45786 45781 45637 45628 45612 45588 45513 45464 45427 45407 45340 45320 45266 45241
iterations count:849425 (1434), effective:4185 (7)
27805 27940 28157 28293 28274 28430 28408 28472 28656 28695 28821 28892 28933 28952 29111 29182 29274 29333 29345 29565 29603 29666 29654 29829 29931 29955 30180 30400 30793 30895 31014 31244 31310 31350 31539 31677 31829 31925 32064 32032 32082 32178 32238 32259 32336 32591 32680 32715 32907 32898 32948 33044 33106 33172 33234 33320 33276 33292 33306 33334 33323 33439 33535 33600 33681 33680 33725 33742 33767 33906 33956 33986 34083 34096 34131 34122 34181 35224 35255 35242 35429 35500 35658 35793 35940 36071 36119 36150 36103 36200 36254 36232 36239 36251 36229 36127 36106 36242 36313 36452 36501 36584 36697 36728 36801 36806 36877 36892 37340 37605 37769 37836 37909 38107 38161 38194 38260 38333 38369 38409 38365 38374 38328 38308 38156 38156 38175 38218 38173 38214 38293 38342 38408 38426 38455 38478 39148 39156 39339 39297 39412 39430 39564 39613 39670 39790 39831 39783 39816 39839 39760 39679 39592 39625 39588 39489 39483 39536 39528 39595 39950 40003 40141 40195 40288 40290 40322 40395 40358 40355 40293 40300 40207 40040 40043 40264 40367 40424 40497 40527 40596 40574 40539 40479 40411 41523 41738 41804 41839 42001 42075 42195 42237 42470 42527 42617 42784 42845 42881 43069 43131 43195 43215 43317 43369 43289 43482 43521 43623 43669 43734 43818 43866 44023 44042 44086 44116 44148 44203 44235 44268 44377 44409 44400 44446 44499 44480 44497 44536 44570 44566 44581 44661 44701 44726 45362 45495 45557 45661 45772 45815 45928 45985 46076 46140 46192 46268 46320 46349 46532 46616 46622 46687 46754 46682 46679 46581 46614 46640 46707 46743 46754 46764 46784 46806 46897 46953 46986 47035 47019 47022 47015 47069 47101 47487 47616 47698 47754 47812 47742 47675 47654 47692 47717 47822 47840 47848 47939 47937 48011 47990 47994 47984 47945 47848 47940 47949 47992 48011 47969 47963 48336 48479 48614 48690 48719 48795 48915 48939 49060 49136 49136 49114 49141 49167 49193 49193 49123 49096 49074 48938 48896 48894 48889 48906 48903 48854 48870 48855 48919 48969 48972 49039 49038 49042 49140 49222 49204 49181 49175 49078 49053 48928 48909 48793 48732 48820 48856 48889 48904 48844 48779 48736 48643 49749 49848 49937 49956 50231 50278 50391 50442 50511 50595 50684 50744 50795 50901 50957 51030 51116 51158 51356 51380 51393 51446 51444 51473 51451 51534 51579 51605 51572 51547 51490 51582 51626 51684 51718 51792 51854 51824 51893 51889 51913 51900 52745 52790 52855 52888 53174 53256 53368 53329 53458 53587 53672 53658 53663 53682 53711 53753 53764 53742 53769 53819 53877 53894 53950 53934 53910 53867 53875 53867 53868 53820 53803 53864 53890 53953 53966 53962 54018 54021 53989 53936 53933 53971 53960 53902 53854 53858 53862 53855 53850 53743 53715 53668 53645 53592 53524 53532 53455 53428 53452 53436 53455 53465 53498 53492 53386 53354 53176 53267 53319 53358 53378 53346 53310 53270 53243 53182 53068 53059 53023 52933 52896 52710 52744 52677 52646 52522 52449 52320 52281 52150 53234 53305 53400 53484 53536 53640 53687 53870 53950 54051 54099 54115 54187 54231 54332 54368 54438 54550 54608 54639 54722 54735 54909 54978 54973 55026 55034 55060 55099 55162 55211 55239 55285 55259 55257 55278 55302 55308 55293 55317 55307 55358 55343 55366 55345 55724 55762 55830 55784 55770 55843 55952 55958 56008 56035 56060 56078 56060 56095 56033 56129 56186 56251 56257 56281 56263 56222 56162 56207 56202 56191 56248 56220 56201 56206 56113 56139 56188 56165 56113 56081 56122 56097 56087 55995 56006 55978 55954 55834 55836 55835 55892 55920 55949 55927 55855 55850 55807 55822 55805 55636 55647 55615 55564 55558 55479 55445 55445 55401 55376 55318 55229 55063 55025 54940 54863 54797 54797 54721 55091 55254 55389 55414 55467 55557 55588 55653 55674 55746 55788 55824 55957 56014 56068 56121 56126 56148 56176 56227 56201 56172 56179 56175 56651 56708 56730 56777 56770 56874 56904 56918 56980 56996 57026 57034 57081 57126 57131 57163 57209 57187 57191 57251 57293 57320 57335 57325 57301 57264 57247 57280 57286 57281 57308 57284 57280 57277 57338 57381 57406 57423 57360 57378 57370 57378 57377 57364 57320 57291 57236 57142 57178 57165 57216 57163 57210 57261 57272 57319 57265 57231 57216 57245 57266 57252 57226 57196 56949 56918 56863 56821 56756 56794 56805 56834 56806 56753 56721 56634 56617 56445 56368 56264 56285 56270 56259 56213 56181 56159 56462 56538 56591 56672 56718 56745 56755 56865 56891 56939 56972 57018 57043 57078 57120 57125 57138 57241 57255 57201 57194 57174 57207 57229 57216 57194 57189 57457 57510 57593 57729 57754 57814 57865 57837 57860 57907 57890 57865 57899 57933 57899 57928 57930 57944 57924 57891 57933 57913 57887 57927 57950 57943 58018 58045 58029 58003 57970 57997 57963 57963 57986 57937 57903 57693 57684 57655 57640 57610 57566 57463 57410 57393 57356 57336 57271 57171 57134 57037 56992 56969 57203 57268 57323 57378 57376 57442 57488 57550 57576 57630 57696 57751 57775 57721 57697 57729 57741 57726 57720 57811 57866 57977 58013 58033 57998 58003 58017 58018 58014 58025 58033 58069 58068 58040 58037 58070 58098 58089 58077 58046 58041 57897 57888 57872 57848 57773 57724 57687 57667 57600 57580 57526 57501
iterations count:849425 (1434), effective:4185 (7)
1869 2218 2564 2814 3102 3312 3561 3777 3968 4221 4450 4638 4815 5001 5160 5349 6195 6528 6672 7030 7347 7582 7645
iterations count:23796 (40), effective:289 (0)
14280 14464 14563 14661 14920 15233 15308 15549 15724 15811 16009 16108 16133 16285 16448 16615 16667 16660 16751 16836 17042 17124 17190 17193 17199 17315 17360 17446 17546 17607 17606 17599 17775 17862 17942 18067 18142 18280 18430 18504 18591 18596 18741 18843 18841 18997 19030 19154 19231 19290 19324 19360 19456 19456 19452 19536 19506 19653 19705 19781 19786 19796 19854 19879 19898 19893 19878 19879 20042 20111 20213 20258 20277 20403 20423 20472 20513 20601 20609 20674 20688 20701 20784 20780 20767 20770 20720 20628 20579 20775 20807 20874 20927 21031 21100 21177 21244 21316 21328 21354 21362 21343 21308 21359 21345 21331 21306 21272 21182 21134 21295 21368 21427 21463 21621 21641 21667 21608 21588 21638 21685 21773 21790 21786 21787 21838 21811 21925 21942 22010 22020 22036 21941 21929 21922 21896 21895 21855 21816 21758 21736 21826 21896 21939 21919 22048 22067 22128 22141 22185 22239 22200 22183 22183 22145 22139 22088 22071 22057 21936 21878 21824 23134 23210 23289 23380 23499 23542 23617 23645 23661 23664 23682 23710 23749 23785 23827 23860 23837 23880 23901 23867 23912 23902 23906 23898 23854 23953 23979 24063 24069 24166 24178 24205 24187 24401 24490 24555 24625 24738 24831 24846 24841 24878 24877 24928 24948 24969 24991 25095 25136 25204 25205 25187 25216 25242 25255 25312 25310 25283 25268 25306 25293 25274 25283 25275 25439 25529 25588 25656 25729 25828 25844 25858 25906 25905 25953 25957 25954 25913 26006 26065 26073 26055 26066 26087 26082 26152 26180 26179 26154 26142 26117 26090 26099 26068 26014 26153 26211 26291 26360 26392 26420 26528 26546 26596 26647 26672 26690 26641 26636 26591 26537 26483 26444 26548 26550 26576 26604 26565 26574 26538 26533 26527 26523 26498 26476 26443 26304 26256 26235 26148 26333 26387 26445 26494 26555 26628 26593 26544 26736 26779 26807 26823 26860 26888 26870 26923 26928 26910 26889 26867 26837 26840 26861 26867 26825 26763 26743 26690 26651 27602 27720 27776 27825 28107 28240 28278 28296 28316 28437 28493 28621 28668 28739 28742 28763 28823 28824 28962 28970 28996 28995 28990 29157 29275 29331 29351 29539 29602 29631 29657 29688 29773 29824 29870 29913 29959 29941 29933 29977 29963 29930 29940 29952 29924 29874 30050 30116 30176 30232 30261 30299 30370 30398 30469 30501 30473 30505 30579 30609 30616 30630 30708 30749 30749 30785 30743 30691 30682 30624 30665 30723 30747 30760 30753 30811 30855 30887 30892 31105 31185 31270 31323 31370 31412 31498 31510 31520 31566 31605 31647 31628 31645 31639 31646 31634 31564 31556 31538 31489 31619 31681 31717 31762 31768 31790 31804 31789 31770 31777 31764 31725 31698 31574 31540 31501 31452 31558 31598 31679 31681 31705 31730 31751 31741 31758 31770 31731 31699 31671 31640 31674 31685 31641 31621 31555 31489 31467 31823 31977 32039 32107 32161 32252 32257 32285 32291 32296 32317 32289 32311 32305 32288 32271 32247 32341 32359 32433 32477 32517 32553 32592 32600 32636 32680 32627 32603 32615 32589 32575 32506 32501 32718 32776 32764 32851 32896 32918 32919 33009 33077 33114 33142 33145 33132 33204 33270 33275 33346 33343 33334 33360 33374 33362 33366 33339 33330 33323 33374 33467 33532 33554 33570 33573 33606 33636 33642 33665 33683 33747 33741 33639 33623 33596 33585 33558 33503 33493 33445 33423 33480 33506 33541 33540 33578 33631 33578 33548 33537 33508 33498 33455 33427 33407 33302 33234 33189 34496 34588 34640 34704 34766 34823 34887 34953 35027 35015 35028 35057 35038 35056 35076 35115 35158 35187 35183 35188 35211 35213 35185 35170 35189 35192 35352 35390 35434 35468 35482 35516 35551 35544 35619 35639 35685 35706 35764 35751 35759 35844 35850 35861 35903 35862 35874 35873 35842 35803 35792 35776 35737 35880 35959 36046 36097 36112 36145 36190 36196 36221 36261 36266 36321 36318 36365 36371 36377 36431 36332 36304 36279 36220 36167 36259 36296 36284 36320 36218 36213 36222 36163 36292 36388 36423 36497 36560 36573 36563 36539 36523 36491 36623 36622 36647 36675 36689 36615 36635 36621 36567 36578 36556 36597 36645 36630 36628 36615 37818 37924 37965 38114 38178 38314 38363 38400 38411 38499 38526 38532 38770 38825 38873 38956 39045 39170 39202 39259 39310 39367 39391 39416 39440 39456 39464 39506 39526 39576 39592 39732 39828 39894 39876 39885 39996 40049 40108 40126 40171 40202 40277 40242 40238 40234 40214 40175 40119 40139 40134 40122 40074 40051 40045 40301 40398 40489 40542 40590 40657 40711 40809 40826 40852 40848 40838 40814 40834 40822 40784 40756 40695 40653 40609 40571 40531 40543 40586 40622 40635 40645 40660 40654 40654 40617 40548 40489 40474 40620 40683 40763 40804 40815 40797 40867 40921 40942 40915 40904 40934 40833 40838 40828 40781 40718 40662 40613 40592 40554 40509 40808 40900 41005 41059 41120 41133 41113 41147 41180 41183 41178 41182 41187 41213 41221 41316 41370 41409 41396 41427 41435 41448 41387 41374 41324 41314 41413 41472 41537 41589 41615 41593 41566 41559 41559 41614 41616 41599 41646 41735 41741 41729 41686 41609 41562 41601 41650 41714 41735 41729 41688 41661 41615 41565 41536 41550 41524 41491 41576 41593 41642 41663 41711 41679 41664 41673 41677 41686 41662 41548 41536 41471 41411 41378 41453 41488 41537 41568 41570 41653 41673 41674 41720 41745 41784 41716 41684 41672 41670 41678 41677 41635 41537 41482 41478 41450 41520 41545 41592 41581 41604 41575 41546 41526 41492 41485 41463 41445 41453 41447 41490 41502 41509 41476 41525 41488 41482 41484 41466 41414 41283 41246 41172 41110 41023 42108 42226 42285 42414 42427 42577 42621 42631 42641 42833 42937 42992 43033 43112 43149 43288 43311 43375 43418 43430 43455 43463 43497 43499 43494 43549 43555 43617 43626 43710 43783 43814 43795 43793 43883 43960 43966 43971 44013 44058 44043 44031 44020 43970 43966 43979 43937 43877 44121 44205 44277 44352 44424 44483 44482 44499 44454 44495 44485 44434 44389 44317 44321 44278 44296 44340 44354 44353 44341 44317 44330 44255 44216 44305 44377 44449 44441 44421 44444 44383 44384 44376 44352 44320 44294 44258 44199 44149 44132 44132 44422 44465 44571 44624 44622 44644 44624 44672 44700 44698 44666 44663 44701 44696 44695 44810 44828 44822 44857 44836 44832 44809 44790 44730 44776 44788 44825 44837 44849 44890 44954 44934 44961 44942 44937 44936 44888 44905 44921 44901 44870 44855 44784 44796 44336 44478 44501 44547 44568 44602 44582 44557 44566 44567 44572 44550 44434 44424 44336 44300 44265 44272 44296 44288 44326 44316 44313 44264 44297 44319 44341 44331 44180 44156 44155 44123 44087 44076 44078 44102 44095 44042 44031 44007 44019 43989 43994 43978 43918 43808 43771 43718 43631 43542 44854 44937 45000 45002 45072 45092 45132 45153 45127 45221 45236 45247 45251 45302 45279 45269 45238 45258 45250 45278 45279 45405 45462 45523 45588 45627 45762 45800 45887 45893 45881 45875 45866 45882 45875 45921 45945 45960 45999 45973 46015 45984 45975 45980 46008 45983 45933 46138 46188 46288 46333 46366 46402 46403 46505 46546 46549 46611 46628 46649 46696 46653 46680 46633 46584 46643 46650 46712 46745 46752 46722 46695 46708 46710 46708 46682 46811 46880 46920 46971 46988 47022 47048 47059 47043 47084 47060 47057 47025 46988 46969 46993 47028 47018 46980 47668 47728 47746 47756 47772 47814 47864 47900 47906 47919 47919 47913 47950 47929 47876 47825 47795 47786 47891 47913 47925 47978 47979 47986 48004 48034 48044 48054 48080 48141 48136 48137 48083 48083 48091 48083 48077 48131 48146 48120 48126 48109 48241 48289 48289 48290 48311 48324 48278 48275 48269 48254 48227 48185 48150 48131 48133 48088 48040 47716 47818 47841 47853 47868 47926 47932 47937 47971 47949 47926 47912 47848 47785 47770 47734 47736 47788 47804 47811 47809 47800 47811 47809 47806 47765 47768 47659 47640 47589 47556 47543 47453 47464 47460 47368 47318 47271 47206 47165 47121 47057 48034 48093 48186 48236 48370 48434 48519 48541 48664 48790 48914 48945 49024 49015 49054 49137 49200 49220 49241 49251 49275 49305 49326 49298 49293 49308 49446 49547 49615 49678 49733 49725 49721 49749 49792 49807 49827 49847 49850 49800 49765 49737 49770 49720 49792 49860 49921 49931 49968 49965 50016 50072 50057 50056 50015 49980 49945 49943 49921 49858 49897 49961 49995 50039 50017 50024 49965 49946 49995 50016 50037 50017 49986 49970 49910 49883 50394 50474 50506 50541 50556 50567 50577 50588 50666 50721 50742 50736 50716 50682 50748 50783 50838 50846 50796 50814 50811 50780 50767 50835 50847 50824 50847 50854 50856 50872 50831 50803 50812 50751 50829 50885 50913 50905 50927 50921 50928 50957 50894 50831 50775 50771 50796 50833 50878 50935 50951 51000 50951 50930 50903 50938 50941 50926 50889 50790 50723 50734 50669 50691 50714 50695 50670 50602 50570 50501 50496 50497 50451 50410 50332 50294 49763 49790 49816 49771 49738 49664 49656 49629 49643 49640 49633 49554 49504 49493 49481 49371 49295 49236 50584 50657 50706 50748 50766 50777 50890 50967 51013 51010 51081 51119 51098 51050 51072 51078 51077 51152 51164 51218 51237 51250 51260 51209 51203 51213 51193 51189 51312 51378 51415 51476 51502 51511 51682 51743 51833 51888 51929 51991 52043 52093 52172 52193 52210 52190 52201 52217 52184 52197 52196 52170 52117 52087 52076 52039 52027 52700 52772 52799 52839 52874 52903 52914 52976 52956 52946 52958 52934 52930 52922 52927 52933 52925 52898 52870 52837 53052 53096 53186 53236 53259 53289 53307 53323 53343 53377 53374 53378 53470 53490 53485 53545 53534 53489 53458 53423 53401 53476 53486 53527 53562 53485 53490 53497 53475 53426 53505 53546 53595 53633 53622 53616 53599 53566 53561 53537 53574 53558 53548 53550 53545 53511 53504 53496 53395 53490 53452 53503 53536 53560 53567 53562 53583 53595 53551 53524 53549 53551 53539 53542 53544 53443 53430 53394 53373 53351 53300 53270 53278 53246 52483 52498 52498 52505 52563 52569 52561 52595 52563 52522 52471 52497 52491 52504 52547 52516 52497 52468 52403 52418 52339 52284 52122 52101 52067 52016 51988 51939 51879 51826 51800 51794 52901 53058 53136 53197 53283 53326 53493 53529 53593 53624 53622 53785 53858 53948 54011 54085 54117 54182 54203 54273 54239 54249 54272 54329 54380 54435 54436 54453 54422 54448 54403 54415 54464 54464 54445 54524 54560 54583 54593 54522 54484 54466 54422 54439 54474 54453 54441 54760 54814 54880 54930 54953 54918 54888 54906 54873 54968 55021 55060 55131 55174 55160 55145 55157 55157 55143 55075 55057 55007 54989 55023 55005 55054 55061 55074 55042 55019 54970 54901 54818 54808 54792 54401 54458 54455 54472 54532 54577 54475 54440 54407 54386 54370 54322 54284 54279 54268 54267 54284 54320 54323 54308 54174 54137 54130 54066 53995 53959 53910 53273 53143 53072 53011 52992 52941 52907 52873 52862 52841 52801 54226 54279 54297 54344 54407 54425 54415 54568 54625 54658 54682 54726 54721 54704 54687 54783 54849 54874 54898 55994 56057 56128 56168 56236 56351 56392 56443 56459 56483 56498 56507 56517 56529 56539 56519 56480 56538 56605 56651 56679 56681 56696 56705 56720 56735 56797 56828 56845 56913 56932 56943 56902 56934 56935 56917 56885 56840 56841 56841 56841 56834 56794 56765 56746 56750 56754 56713 56743 56868 56882 56936 56952 56987 56961 57043 57071 57056 57050 57065 57127 57146 57144 57152 57154 57152 57115 57114 57106 57056 57085 57045 57043 56992 56976 56965 56943 56922 56879 56835 56441 56476 56495 56508 56519 56508 56526 56523 56523 56510 56491 56491 56461 56376 56324 56223 56140 56046 56054 55234 55236 55225 55230 55220 55172 55083 55021 55008 54940 54964 54901 54833 54758 54717 54677 55867 56041 56059 56244 56308 56324 56358 56396 56411 56464 56464 56442 56482 56444 56426 56400 56950 57056 57082 57146 57145 57176 57228 57272 57272 57230 57185 57158 57192 57164 57617 57616 57598 57596 57640 57674 57613 57655 57625 57620 57568 57616 57597 57579 57525 57285 57252 57252 57234 57102 57053 57049 57030 56926 56344 56278 56229 57031 57217 57315 57369 57397 57428 57446 57548 57576 57592 57639 57681 57669 57669 57650 57668 57704 57754 57747 57739 57739 57796 57840 57881 57903 57925 58436 58572 58644 58683 58715 58729 58795 58805 58848 58838 58828 58826 58815 58877 58858 58886 58877 58862 58811 58805 58807 58823 58791 58581 58620 58574 58531 58546 58565 58476 58481 58461 58386 58362 58318 58281 58285 58244 58227 58225 57787 57774 57756 57685 57658 57657 57643 57634 56694 56679 56629 56589 58171 57727 58198 59481 59354
iterations count:2030964 (3430), effective:8315 (14)
3359 3513 3659 3964 4360 4585 4690 4858 4884 5296 5686 5764 5773 5862 6077 6331 6380 6428 6618 6715 6761 6921 7010 7174 7207 7234 7225 7454 7552 7524 7505 7597 7778 7873 7917 8090 8163 8288 8268 8275 8382 8500 8727 8741 8710 8781 8820 8814 8717 8697 8872 8904 8939 8976 8927 8990 9019 9099 9150 9203 9190 9235 9340 9311 9396 9366 9412 9492 9568 9655 9706 9838 9879 9934 9990 9946 9988 9936 10070 10054 10027 10158 10152 10152 10211 10277 10320 10347 10350 10345
iterations count:90658 (153), effective:856 (1)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="PermAdmissibility-PT-01"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/root/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/PermAdmissibility-PT-01.tgz
mv PermAdmissibility-PT-01 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is PermAdmissibility-PT-01, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r077kn-smll-146363816200304"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;