fond
Model Checking Contest @ Petri Nets 2016
6th edition, Toruń, Poland, June 21, 2016
Execution of r077kn-smll-146363816100250
Last Updated
June 30, 2016

About the Execution of Marcie for PermAdmissibility-COL-01

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
9678.600 698590.00 698040.00 30.00 TTFFTTFFFTFTFFTF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
.................................
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is PermAdmissibility-COL-01, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r077kn-smll-146363816100250
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-0
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-1
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-10
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-11
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-12
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-13
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-14
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-15
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-2
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-3
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-4
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-5
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-6
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-7
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-8
FORMULA_NAME PermAdmissibility-COL-01-ReachabilityCardinality-9

=== Now, execution of the tool begins

BK_START 1463756808372


Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --mcc-mode --memory=6 --suppress

parse successfull
net created successfully

Unfolding complete |P|=208|T|=1024|A|=6080
Time for unfolding: 0m 3.017sec

Net: PermAdmissibility_COL_01
(NrP: 208 NrTr: 1024 NrArc: 5984)

net check time: 0m 0.001sec

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.029sec

init dd package: 0m 3.682sec


RS generation: 0m27.373sec


-> reachability set: #nodes 55694 (5.6e+04) #states 52,537 (4)



starting MCC model checker
--------------------------

checking: EF [[3<=sum(in3_input7, in3_input6, in3_input5, in3_input4, in3_input3, in3_input2, in3_input1, in3_input0) | 3<=c17_dot]]
normalized: E [true U [3<=sum(in3_input7, in3_input6, in3_input5, in3_input4, in3_input3, in3_input2, in3_input1, in3_input0) | 3<=c17_dot]]

abstracting: (3<=c17_dot) states: 0
abstracting: (3<=sum(in3_input7, in3_input6, in3_input5, in3_input4, in3_input3, in3_input2, in3_input1, in3_input0)) states: 0
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.054sec

checking: EF [~ [c20_dot<=sum(aux13_input7, aux13_input6, aux13_input5, aux13_input4, aux13_input3, aux13_input2, aux13_input1, aux13_input0)]]
normalized: E [true U ~ [c20_dot<=sum(aux13_input7, aux13_input6, aux13_input5, aux13_input4, aux13_input3, aux13_input2, aux13_input1, aux13_input0)]]

abstracting: (c20_dot<=sum(aux13_input7, aux13_input6, aux13_input5, aux13_input4, aux13_input3, aux13_input2, aux13_input1, aux13_input0)) states: 33,849 (4)
-> the formula is TRUE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 2m34.682sec

checking: AG [sum(out5_input7, out5_input6, out5_input5, out5_input4, out5_input3, out5_input2, out5_input1, out5_input0)<=c17_dot]
normalized: ~ [E [true U ~ [sum(out5_input7, out5_input6, out5_input5, out5_input4, out5_input3, out5_input2, out5_input1, out5_input0)<=c17_dot]]]

abstracting: (sum(out5_input7, out5_input6, out5_input5, out5_input4, out5_input3, out5_input2, out5_input1, out5_input0)<=c17_dot) states: 15,161 (4)
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 1m22.486sec

checking: AG [c15_dot<=sum(in4_input7, in4_input6, in4_input5, in4_input4, in4_input3, in4_input2, in4_input1, in4_input0)]
normalized: ~ [E [true U ~ [c15_dot<=sum(in4_input7, in4_input6, in4_input5, in4_input4, in4_input3, in4_input2, in4_input1, in4_input0)]]]

abstracting: (c15_dot<=sum(in4_input7, in4_input6, in4_input5, in4_input4, in4_input3, in4_input2, in4_input1, in4_input0)) states: 51,801 (4)
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m17.359sec

checking: AG [c15_dot<=sum(out5_input7, out5_input6, out5_input5, out5_input4, out5_input3, out5_input2, out5_input1, out5_input0)]
normalized: ~ [E [true U ~ [c15_dot<=sum(out5_input7, out5_input6, out5_input5, out5_input4, out5_input3, out5_input2, out5_input1, out5_input0)]]]

abstracting: (c15_dot<=sum(out5_input7, out5_input6, out5_input5, out5_input4, out5_input3, out5_input2, out5_input1, out5_input0)) states: 51,801 (4)
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.465sec

checking: EF [[c11_dot<=c16_dot & 2<=sum(out8_input7, out8_input6, out8_input5, out8_input4, out8_input3, out8_input2, out8_input1, out8_input0)]]
normalized: E [true U [c11_dot<=c16_dot & 2<=sum(out8_input7, out8_input6, out8_input5, out8_input4, out8_input3, out8_input2, out8_input1, out8_input0)]]

abstracting: (2<=sum(out8_input7, out8_input6, out8_input5, out8_input4, out8_input3, out8_input2, out8_input1, out8_input0)) states: 0
abstracting: (c11_dot<=c16_dot) states: 52,473 (4)
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.097sec

checking: EF [[2<=c8_dot & ~ [[3<=c5_dot & sum(aux16_input7, aux16_input6, aux16_input5, aux16_input4, aux16_input3, aux16_input2, aux16_input1, aux16_input0)<=c7_dot]]]]
normalized: E [true U [2<=c8_dot & ~ [[3<=c5_dot & sum(aux16_input7, aux16_input6, aux16_input5, aux16_input4, aux16_input3, aux16_input2, aux16_input1, aux16_input0)<=c7_dot]]]]

abstracting: (sum(aux16_input7, aux16_input6, aux16_input5, aux16_input4, aux16_input3, aux16_input2, aux16_input1, aux16_input0)<=c7_dot) states: 23,337 (4)
abstracting: (3<=c5_dot) states: 0
abstracting: (2<=c8_dot) states: 0
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.138sec

checking: AG [~ [[3<=c18_dot & [2<=c8_dot & c17_dot<=sum(out2_input7, out2_input6, out2_input5, out2_input4, out2_input3, out2_input2, out2_input1, out2_input0)]]]]
normalized: ~ [E [true U [3<=c18_dot & [2<=c8_dot & c17_dot<=sum(out2_input7, out2_input6, out2_input5, out2_input4, out2_input3, out2_input2, out2_input1, out2_input0)]]]]

abstracting: (c17_dot<=sum(out2_input7, out2_input6, out2_input5, out2_input4, out2_input3, out2_input2, out2_input1, out2_input0)) states: 51,369 (4)
abstracting: (2<=c8_dot) states: 0
abstracting: (3<=c18_dot) states: 0
-> the formula is TRUE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.092sec

checking: AG [[[~ [3<=sum(out4_input7, out4_input6, out4_input5, out4_input4, out4_input3, out4_input2, out4_input1, out4_input0)] | [c14_dot<=c13_dot & 1<=c13_dot]] | 3<=c6_dot]]
normalized: ~ [E [true U ~ [[3<=c6_dot | [[c14_dot<=c13_dot & 1<=c13_dot] | ~ [3<=sum(out4_input7, out4_input6, out4_input5, out4_input4, out4_input3, out4_input2, out4_input1, out4_input0)]]]]]]

abstracting: (3<=sum(out4_input7, out4_input6, out4_input5, out4_input4, out4_input3, out4_input2, out4_input1, out4_input0)) states: 0
abstracting: (1<=c13_dot) states: 256
abstracting: (c14_dot<=c13_dot) states: 51,641 (4)
abstracting: (3<=c6_dot) states: 0
-> the formula is TRUE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.168sec

checking: EF [[[sum(out6_input7, out6_input6, out6_input5, out6_input4, out6_input3, out6_input2, out6_input1, out6_input0)<=c9_dot | ~ [2<=c5_dot]] & [2<=c7_dot | [3<=c8_dot & c11_dot<=c13_dot]]]]
normalized: E [true U [[2<=c7_dot | [3<=c8_dot & c11_dot<=c13_dot]] & [sum(out6_input7, out6_input6, out6_input5, out6_input4, out6_input3, out6_input2, out6_input1, out6_input0)<=c9_dot | ~ [2<=c5_dot]]]]

abstracting: (2<=c5_dot) states: 0
abstracting: (sum(out6_input7, out6_input6, out6_input5, out6_input4, out6_input3, out6_input2, out6_input1, out6_input0)<=c9_dot) states: 15,161 (4)
abstracting: (c11_dot<=c13_dot) states: 52,473 (4)
abstracting: (3<=c8_dot) states: 0
abstracting: (2<=c7_dot) states: 0
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.241sec

checking: EF [[1<=sum(out8_input7, out8_input6, out8_input5, out8_input4, out8_input3, out8_input2, out8_input1, out8_input0) | 3<=sum(aux8_input7, aux8_input6, aux8_input5, aux8_input4, aux8_input3, aux8_input2, aux8_input1, aux8_input0)]]
normalized: E [true U [1<=sum(out8_input7, out8_input6, out8_input5, out8_input4, out8_input3, out8_input2, out8_input1, out8_input0) | 3<=sum(aux8_input7, aux8_input6, aux8_input5, aux8_input4, aux8_input3, aux8_input2, aux8_input1, aux8_input0)]]

abstracting: (3<=sum(aux8_input7, aux8_input6, aux8_input5, aux8_input4, aux8_input3, aux8_input2, aux8_input1, aux8_input0)) states: 0
abstracting: (1<=sum(out8_input7, out8_input6, out8_input5, out8_input4, out8_input3, out8_input2, out8_input1, out8_input0)) states: 18,688 (4)

before gc: list nodes free: 2326663

after gc: idd nodes used:73497, unused:63926503; list nodes free:280699467
-> the formula is TRUE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 5m46.880sec

checking: AG [[sum(out7_input7, out7_input6, out7_input5, out7_input4, out7_input3, out7_input2, out7_input1, out7_input0)<=sum(aux10_input7, aux10_input6, aux10_input5, aux10_input4, aux10_input3, aux10_input2, aux10_input1, aux10_input0) | c110_dot<=c8_dot]]
normalized: ~ [E [true U ~ [[sum(out7_input7, out7_input6, out7_input5, out7_input4, out7_input3, out7_input2, out7_input1, out7_input0)<=sum(aux10_input7, aux10_input6, aux10_input5, aux10_input4, aux10_input3, aux10_input2, aux10_input1, aux10_input0) | c110_dot<=c8_dot]]]]

abstracting: (c110_dot<=c8_dot) states: 52,473 (4)
abstracting: (sum(out7_input7, out7_input6, out7_input5, out7_input4, out7_input3, out7_input2, out7_input1, out7_input0)<=sum(aux10_input7, aux10_input6, aux10_input5, aux10_input4, aux10_input3, aux10_input2, aux10_input1, aux10_input0)) states: 33,849 (4)
-> the formula is TRUE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.278sec

checking: EF [[[1<=sum(in4_input7, in4_input6, in4_input5, in4_input4, in4_input3, in4_input2, in4_input1, in4_input0) & [sum(in1_input7, in1_input6, in1_input5, in1_input4, in1_input3, in1_input2, in1_input1, in1_input0)<=c18_dot & 1<=sum(in1_input7, in1_input6, in1_input5, in1_input4, in1_input3, in1_input2, in1_input1, in1_input0)]] & 2<=c12_dot]]
normalized: E [true U [2<=c12_dot & [1<=sum(in4_input7, in4_input6, in4_input5, in4_input4, in4_input3, in4_input2, in4_input1, in4_input0) & [sum(in1_input7, in1_input6, in1_input5, in1_input4, in1_input3, in1_input2, in1_input1, in1_input0)<=c18_dot & 1<=sum(in1_input7, in1_input6, in1_input5, in1_input4, in1_input3, in1_input2, in1_input1, in1_input0)]]]]

abstracting: (1<=sum(in1_input7, in1_input6, in1_input5, in1_input4, in1_input3, in1_input2, in1_input1, in1_input0)) states: 5
abstracting: (sum(in1_input7, in1_input6, in1_input5, in1_input4, in1_input3, in1_input2, in1_input1, in1_input0)<=c18_dot) states: 52,532 (4)
abstracting: (1<=sum(in4_input7, in4_input6, in4_input5, in4_input4, in4_input3, in4_input2, in4_input1, in4_input0)) states: 25
abstracting: (2<=c12_dot) states: 0
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.335sec

checking: EF [[[[3<=c9_dot & 3<=c9_dot] & ~ [sum(out3_input7, out3_input6, out3_input5, out3_input4, out3_input3, out3_input2, out3_input1, out3_input0)<=c15_dot]] | [~ [c12_dot<=c13_dot] & [sum(aux6_input7, aux6_input6, aux6_input5, aux6_input4, aux6_input3, aux6_input2, aux6_input1, aux6_input0)<=c6_dot & 1<=sum(aux7_input7, aux7_input6, aux7_input5, aux7_input4, aux7_input3, aux7_input2, aux7_input1, aux7_input0)]]]]
normalized: E [true U [[~ [c12_dot<=c13_dot] & [sum(aux6_input7, aux6_input6, aux6_input5, aux6_input4, aux6_input3, aux6_input2, aux6_input1, aux6_input0)<=c6_dot & 1<=sum(aux7_input7, aux7_input6, aux7_input5, aux7_input4, aux7_input3, aux7_input2, aux7_input1, aux7_input0)]] | [~ [sum(out3_input7, out3_input6, out3_input5, out3_input4, out3_input3, out3_input2, out3_input1, out3_input0)<=c15_dot] & [3<=c9_dot & 3<=c9_dot]]]]

abstracting: (3<=c9_dot) states: 0
abstracting: (3<=c9_dot) states: 0
abstracting: (sum(out3_input7, out3_input6, out3_input5, out3_input4, out3_input3, out3_input2, out3_input1, out3_input0)<=c15_dot) states: 10,489 (4)
abstracting: (1<=sum(aux7_input7, aux7_input6, aux7_input5, aux7_input4, aux7_input3, aux7_input2, aux7_input1, aux7_input0)) states: 96
abstracting: (sum(aux6_input7, aux6_input6, aux6_input5, aux6_input4, aux6_input3, aux6_input2, aux6_input1, aux6_input0)<=c6_dot) states: 52,117 (4)
abstracting: (c12_dot<=c13_dot) states: 52,281 (4)
-> the formula is FALSE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.413sec

checking: AG [[[sum(aux6_input7, aux6_input6, aux6_input5, aux6_input4, aux6_input3, aux6_input2, aux6_input1, aux6_input0)<=sum(aux11_input7, aux11_input6, aux11_input5, aux11_input4, aux11_input3, aux11_input2, aux11_input1, aux11_input0) | c110_dot<=sum(aux10_input7, aux10_input6, aux10_input5, aux10_input4, aux10_input3, aux10_input2, aux10_input1, aux10_input0)] | [[c13_dot<=sum(out8_input7, out8_input6, out8_input5, out8_input4, out8_input3, out8_input2, out8_input1, out8_input0) & c110_dot<=sum(out8_input7, out8_input6, out8_input5, out8_input4, out8_input3, out8_input2, out8_input1, out8_input0)] | c8_dot<=c19_dot]]]
normalized: ~ [E [true U ~ [[[c8_dot<=c19_dot | [c13_dot<=sum(out8_input7, out8_input6, out8_input5, out8_input4, out8_input3, out8_input2, out8_input1, out8_input0) & c110_dot<=sum(out8_input7, out8_input6, out8_input5, out8_input4, out8_input3, out8_input2, out8_input1, out8_input0)]] | [sum(aux6_input7, aux6_input6, aux6_input5, aux6_input4, aux6_input3, aux6_input2, aux6_input1, aux6_input0)<=sum(aux11_input7, aux11_input6, aux11_input5, aux11_input4, aux11_input3, aux11_input2, aux11_input1, aux11_input0) | c110_dot<=sum(aux10_input7, aux10_input6, aux10_input5, aux10_input4, aux10_input3, aux10_input2, aux10_input1, aux10_input0)]]]]]

abstracting: (c110_dot<=sum(aux10_input7, aux10_input6, aux10_input5, aux10_input4, aux10_input3, aux10_input2, aux10_input1, aux10_input0)) states: 52,473 (4)
abstracting: (sum(aux6_input7, aux6_input6, aux6_input5, aux6_input4, aux6_input3, aux6_input2, aux6_input1, aux6_input0)<=sum(aux11_input7, aux11_input6, aux11_input5, aux11_input4, aux11_input3, aux11_input2, aux11_input1, aux11_input0)) states: 52,373 (4)
abstracting: (c110_dot<=sum(out8_input7, out8_input6, out8_input5, out8_input4, out8_input3, out8_input2, out8_input1, out8_input0)) states: 52,473 (4)
abstracting: (c13_dot<=sum(out8_input7, out8_input6, out8_input5, out8_input4, out8_input3, out8_input2, out8_input1, out8_input0)) states: 52,281 (4)
abstracting: (c8_dot<=c19_dot) states: 52,521 (4)
-> the formula is TRUE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.560sec

checking: EF [[[[c5_dot<=sum(aux6_input7, aux6_input6, aux6_input5, aux6_input4, aux6_input3, aux6_input2, aux6_input1, aux6_input0) & sum(aux6_input7, aux6_input6, aux6_input5, aux6_input4, aux6_input3, aux6_input2, aux6_input1, aux6_input0)<=sum(out2_input7, out2_input6, out2_input5, out2_input4, out2_input3, out2_input2, out2_input1, out2_input0)] | [sum(out2_input7, out2_input6, out2_input5, out2_input4, out2_input3, out2_input2, out2_input1, out2_input0)<=sum(out3_input7, out3_input6, out3_input5, out3_input4, out3_input3, out3_input2, out3_input1, out3_input0) | sum(aux13_input7, aux13_input6, aux13_input5, aux13_input4, aux13_input3, aux13_input2, aux13_input1, aux13_input0)<=c11_dot]] & 1<=c16_dot]]
normalized: E [true U [1<=c16_dot & [[sum(out2_input7, out2_input6, out2_input5, out2_input4, out2_input3, out2_input2, out2_input1, out2_input0)<=sum(out3_input7, out3_input6, out3_input5, out3_input4, out3_input3, out3_input2, out3_input1, out3_input0) | sum(aux13_input7, aux13_input6, aux13_input5, aux13_input4, aux13_input3, aux13_input2, aux13_input1, aux13_input0)<=c11_dot] | [c5_dot<=sum(aux6_input7, aux6_input6, aux6_input5, aux6_input4, aux6_input3, aux6_input2, aux6_input1, aux6_input0) & sum(aux6_input7, aux6_input6, aux6_input5, aux6_input4, aux6_input3, aux6_input2, aux6_input1, aux6_input0)<=sum(out2_input7, out2_input6, out2_input5, out2_input4, out2_input3, out2_input2, out2_input1, out2_input0)]]]]

abstracting: (sum(aux6_input7, aux6_input6, aux6_input5, aux6_input4, aux6_input3, aux6_input2, aux6_input1, aux6_input0)<=sum(out2_input7, out2_input6, out2_input5, out2_input4, out2_input3, out2_input2, out2_input1, out2_input0)) states: 52,117 (4)
abstracting: (c5_dot<=sum(aux6_input7, aux6_input6, aux6_input5, aux6_input4, aux6_input3, aux6_input2, aux6_input1, aux6_input0)) states: 52,536 (4)
abstracting: (sum(aux13_input7, aux13_input6, aux13_input5, aux13_input4, aux13_input3, aux13_input2, aux13_input1, aux13_input0)<=c11_dot) states: 42,729 (4)
abstracting: (sum(out2_input7, out2_input6, out2_input5, out2_input4, out2_input3, out2_input2, out2_input1, out2_input0)<=sum(out3_input7, out3_input6, out3_input5, out3_input4, out3_input3, out3_input2, out3_input1, out3_input0)) states: 47,865 (4)
abstracting: (1<=c16_dot) states: 2,336 (3)
-> the formula is TRUE

FORMULA PermAdmissibility-COL-01-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m36.848sec


Total processing time: 11m38.406sec


BK_STOP 1463757506962

--------------------
content from stderr:

check for maximal unmarked siphon
found
The net has a maximal unmarked siphon:
aux5_input2
aux7_input1
aux7_input0
aux6_input7
aux6_input6
aux6_input3
aux5_input7
aux5_input6
aux5_input3
aux6_input2
aux8_input4
aux8_input5
aux8_input0
aux8_input1
aux7_input4
aux7_input5
in1_input2
in1_input3
in1_input4
in1_input5
in1_input6
in1_input7
in2_input0
in2_input1
in2_input4
in2_input5
in2_input6
in2_input7
in3_input0
in3_input7
in4_input0
in4_input1
in4_input2
in4_input3
in4_input4
in4_input5
in3_input6
in3_input1
in3_input2
in3_input3

The net has transition(s) that can never fire:
switch1_0_2
switch5_0_5
switch1_0_3
switch1_0_6
switch1_0_7
switch1_1_0
switch1_1_1
switch1_1_2
switch1_1_3
switch3_3_0
switch3_3_1
switch3_3_2
switch3_3_4
switch3_3_3
switch1_0_1
switch3_4_6
switch5_0_1
switch3_4_7
switch3_5_0
switch3_5_1
switch3_5_2
switch1_0_0
switch5_0_4
switch5_1_0
switch5_1_1
switch5_2_1
switch5_1_4
switch5_1_5
switch5_2_0
switch5_4_1
switch5_2_2
switch5_2_3
switch5_2_4
switch5_2_5
switch1_1_6
switch1_1_7
switch1_2_0
switch1_2_1
switch1_2_2
switch1_2_3
switch1_2_4
switch1_2_5
switch1_2_6
switch1_2_7
switch1_3_0
switch1_3_1
switch1_3_2
switch1_3_3
switch1_3_4
switch1_3_5
switch1_3_6
switch1_3_7
switch1_4_0
switch1_4_1
switch1_4_2
switch1_4_3
switch1_4_5
switch1_4_4
switch1_4_6
switch1_4_7
switch1_5_0
switch1_5_1
switch1_5_2
switch1_5_3
switch1_5_4
switch1_5_5
switch1_5_6
switch1_5_7
switch1_6_0
switch1_6_1
switch1_6_2
switch1_6_3
switch1_6_4
switch1_6_5
switch1_6_6
switch1_6_7
switch1_7_0
switch1_7_1
switch1_7_2
switch1_7_3
switch1_7_4
switch1_7_5
switch1_7_6
switch1_7_7
switch3_0_0
switch3_0_1
switch3_0_2
switch3_0_3
switch3_0_5
switch3_0_4
switch3_0_6
switch3_0_7
switch3_1_0
switch3_1_1
switch3_1_2
switch3_1_3
switch3_1_4
switch3_1_5
switch3_1_6
switch3_1_7
switch3_2_0
switch3_2_1
switch3_2_2
switch3_2_3
switch3_2_4
switch3_2_5
switch6_5_5
switch6_6_0
switch6_6_1
switch6_6_2
switch6_6_3
switch6_6_4
switch6_6_5
switch6_6_6
switch6_6_7
switch3_3_5
switch3_4_0
switch3_4_1
switch3_4_2
switch3_4_3
switch3_4_5
switch3_4_4
switch7_2_1
switch7_1_4
switch7_1_5
switch7_2_0
switch7_4_1
switch7_2_2
switch7_2_3
switch7_2_5
switch7_2_4
switch3_5_3
switch3_5_4
switch3_5_5
switch3_5_6
switch3_5_7
switch3_6_0
switch3_6_1
switch3_6_2
switch3_6_3
switch3_6_4
switch3_6_5
switch3_6_6
switch3_6_7
switch3_7_0
switch3_7_1
switch3_7_2
switch3_7_3
switch3_7_4
switch3_7_5
switch3_7_6
switch3_7_7
switch2_0_0
switch2_0_1
switch2_0_2
switch2_0_3
switch2_0_6
switch2_0_7
switch2_1_0
switch2_1_1
switch2_1_2
switch2_1_3
switch2_1_6
switch2_1_7
switch2_2_0
switch2_2_1
switch2_2_2
switch2_2_3
switch2_2_4
switch2_2_5
switch2_2_6
switch2_2_7
switch2_3_0
switch2_3_1
switch2_3_2
switch2_3_3
switch2_3_4
switch2_3_5
switch2_3_6
switch2_3_7
switch2_4_0
switch2_4_1
switch2_4_2
switch2_4_3
switch2_4_4
switch2_4_5
switch2_4_6
switch2_4_7
switch2_5_0
switch2_5_1
switch2_5_2
switch2_5_3
switch2_5_4
switch2_5_5
switch2_5_6
switch2_5_7
switch2_6_0
switch2_6_1
switch2_6_2
switch2_6_3
switch2_6_4
switch2_6_5
switch2_6_6
switch2_6_7
switch2_7_0
switch2_7_1
switch2_7_2
switch2_7_3
switch2_7_4
switch2_7_5
switch2_7_6
switch2_7_7
switch4_0_0
switch4_0_1
switch4_0_2
switch4_0_3
switch4_0_5
switch4_0_4
switch4_0_6
switch4_0_7
switch4_1_0
switch4_1_1
switch4_1_2
switch4_1_3
switch4_1_4
switch4_1_5
switch4_1_6
switch4_1_7
switch4_2_0
switch4_2_1
switch4_2_2
switch4_2_3
switch4_2_4
switch4_2_5
switch4_3_0
switch4_3_1
switch4_3_2
switch4_3_3
switch4_3_4
switch4_3_5
switch4_4_0
switch4_4_1
switch4_4_2
switch4_4_3
switch4_4_4
switch4_4_5
switch4_4_6
switch4_4_7
switch4_5_0
switch4_5_1
switch4_5_2
switch4_5_3
switch4_5_4
switch4_5_5
switch4_5_6
switch4_5_7
switch4_6_0
switch4_6_1
switch4_6_2
switch4_6_3
switch4_6_4
switch4_6_5
switch4_6_6
switch4_6_7
switch4_7_0
switch4_7_1
switch4_7_2
switch4_7_3
switch4_7_4
switch4_7_5
switch4_7_6
switch4_7_7
switch5_0_0
switch5_2_6
switch5_2_7
switch5_3_0
switch5_3_1
switch5_3_2
switch5_3_3
switch5_3_4
switch5_3_5
switch5_3_6
switch5_3_7
switch5_4_0
switch5_4_5
switch5_4_4
switch7_1_1
switch5_5_0
switch5_5_1
switch5_5_4
switch5_5_5
switch5_6_0
switch5_6_1
switch5_6_2
switch5_6_3
switch5_6_4
switch5_6_5
switch5_6_6
switch5_6_7
switch5_7_0
switch5_7_1
switch5_7_2
switch5_7_3
switch5_7_4
switch5_7_5
switch5_7_6
switch5_7_7
switch8_0_0
switch8_0_1
switch8_0_5
switch8_0_4
switch8_1_0
switch8_1_1
switch8_2_1
switch8_1_4
switch8_1_5
switch8_2_0
switch8_4_1
switch8_2_2
switch8_2_3
switch8_2_4
switch8_2_5
switch8_2_6
switch8_2_7
switch8_3_0
switch8_3_1
switch8_3_2
switch8_3_3
switch8_3_4
switch8_3_5
switch8_3_6
switch8_3_7
switch8_4_0
switch8_4_5
switch8_4_4
switch8_5_0
switch8_5_1
switch8_5_4
switch8_5_5
switch8_6_0
switch8_6_1
switch8_6_2
switch8_6_3
switch8_6_4
switch8_6_5
switch8_6_6
switch8_6_7
switch8_7_0
switch8_7_1
switch8_7_2
switch8_7_3
switch8_7_4
switch8_7_5
switch8_7_6
switch8_7_7
switch6_0_0
switch6_0_1
switch6_0_5
switch6_0_4
switch6_1_0
switch6_1_1
switch6_2_1
switch6_1_4
switch6_1_5
switch6_2_0
switch6_4_1
switch6_2_2
switch6_2_3
switch6_2_4
switch6_2_5
switch6_2_6
switch6_2_7
switch6_3_0
switch6_3_1
switch6_3_2
switch6_3_3
switch6_3_4
switch6_3_5
switch6_3_6
switch6_3_7
switch6_4_0
switch6_4_4
switch6_4_5
switch6_5_0
switch6_5_1
switch6_5_4
switch6_7_0
switch6_7_1
switch6_7_2
switch6_7_3
switch6_7_4
switch6_7_5
switch6_7_6
switch6_7_7
switch7_0_0
switch7_0_1
switch7_0_5
switch7_0_4
switch7_1_0
switch7_2_6
switch7_2_7
switch7_3_0
switch7_3_1
switch7_3_2
switch7_3_3
switch7_3_4
switch7_3_5
switch7_3_6
switch7_3_7
switch7_4_0
switch7_4_4
switch7_4_5
switch7_5_0
switch7_5_1
switch7_5_4
switch7_5_5
switch7_6_0
switch7_6_1
switch7_6_2
switch7_6_3
switch7_6_4
switch7_6_5
switch7_6_6
switch7_6_7
switch7_7_0
switch7_7_1
switch7_7_2
switch7_7_3
switch7_7_4
switch7_7_5
switch7_7_6
switch7_7_7

check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.011sec

414 665 834 934 1014 1129 1205 1252 1256 1239 1254 1267 1277 1374 1422 1466 1477 2354 3081 3273 3444 3822 4279 4749 4783 4892 4919 4970 4996 5508 5812 5983 6264 6497 6579 6697 6749 6876 7000 7010 7523 7813 7958 8163 8152 8376 8395 8532 8685 8622 8702 8816 8886 8719 9453 9909 10157 10684 10532 10699 11179 11029 11151 10952 11445 11797 11641 11287 11678 11923 11553 12053 12162 11863 11942 12368 12615 12546 12295 12325 12365 12442 12569 12704 12822 12871 13104 13357 13566 13686 13692 13826 14090 14177 14294 14404 14509 14578 14612 14697 14854 14978 15105 15195 15250 15322 15378 15615 15662 15790 15906 15995 16071 16123 16168 16312 16435 16585 16685 16742 16814 16872 17057 17183 17287 17378 17478 17553 17592 17697 17754 17852 17975 18075 18129 18202 18256 18466 18508 18606 18721 18806 18887 18943 18997 19040 19142 19275 19385 19434 19514 19570 19727 19791 19825 19912 19975 20008 20039 20106 20201 20280 20384 20409 20471 20516 20549 20632 20675 20735 20783 20789 20884 21003 21063 21106 21133 21231 21275 21339 21375 21408 21476 21638 21724 21741 21792 21884 21959 22037 22113 22160 22184 22243 22288 22370 22442 22496 22648 22726 22754 22785 22881 22933 23026 23092 23125 23137 23173 23226 23299 23361 23435 23560 23667 23669 23711 23768 23801 23830 23885 23923 23914 23953 23975 24017 24049 24089 24184 24220 24234 24273 24333 24354 24399 24417 24453 24444 24470 24507 24553 24585 24627 24694 24745 24763 24788 24821 24862 24875 24877 24907 24932 25035 25097 25143 25150 25172 25193 25254 25305 25336 25350 25357 25373 25384 25433 25480 25551 25582 25580 25589 25619 25639 25647 25645 25656 25683 25691 25817 25886 25944 25953 26004 26043 26084 26137 26199 26241 26241 26301 26330 26376 26414 26502 26553 26611 26622 26664 26705 26743 26782 26806 26876 26876 26914 26967 27006 27037 27119 27133 27145 27164 27178 27209 27219 27229 27237 27250 27309 27381 27395 27433 27454 27482 27506 27577 27624 27647 27679 27699 27717 27726 27751 27864 27922 27936 27939 27976 28017 28043 28042 28042 28063 28139 28186 28202 28230 28230 28272 28303 28303 28326 28326 28336 28418 28485 28510 28532 28551 28574 28639 28653 28663 28677 28734 28796 28844 28851 28877 28909 28953 28996 29002 29021 29077 29109 29147 29196 29224 29252 29276 29332 29382 29388 29427 29456 29453 29478 29508 29535 29613 29664 29711 29734 29738 29756 29792 29840 29840 29889 29912 29906 29908 29937 29940 30000 30015 30027 30032 30047 30069 30063 30077 30082 30085 30138 30205 30228 30287 30310 30314 30334 30375 30406 30438 30483 30513 30516 30513 30531 30581 30646 30669 30692 30694 30697 30714 30747 30773 30787 30804 30807 30815 30804 30822 33043 34026 34117 35671 35874 37834 38425 39465 40142 40567 41356 41597 41981 42208 42521 42878 43007 43594 43697 45498 48273 49516 51102 51738 52371 52793 53492 53716 54002 54169 54431 54618 54763 55090 55132 55327 55398 55486 55556 55615 55694
iterations count:487864 (476), effective:1864 (1)

initing FirstDep: 0m 0.004sec

14539 14891 14933 15054 15128 15137 15269 15323 15553 15604 15683 15750 15763 15828 15904 15965 16051 16059 16135 16193 16297 16364 16441 16480 16550 16811 16944 17207 17344 17425 17519 17574 17639 17750 17809 17871 18039 18066 18110 18204 18227 18290 18319 18334 18421 18524 18704 18715 18759 18791 18841 18845 18869 18945 19123 19130 19151 19133 19120 19153 19157 19230 19340 19434 19446 19495 19529 19548 19534 19582 19620 19639 19676 19688 19691 19770 19811 19889 20000 20013 20029 20044 20059 20086 20077 20212 20244 20268 20240 20235 20253 20262 20444 20501 20532 20511 20520 20547 20544 20583 20603 20603 20617 20623 20645 20625 20673 20787 20851 20838 20861 20874 20933 20997 21052 21051 21075 21084 21078 21089 21091 21134 21173 21203 21184 21233 21238 21252 21229 21207 21333 21399 21386 21405 21373 21389 21379 21389 21415 21462 21486 21478 21507 21483 21541 21658 21701 21666 21682 21699 21699 21699 21774 22583 22776 23008 23096 23119 23204 23213 23288 23329 23379 23409 23458 23483 23486 23519 23517 23546 23568 23553 23684 23751 23828 23866 23929 23912 23957 23959 24023 24040 24103 24130 24185 24153 24288 24318 24374 24375 24418 24450 24469 24461 24472 24475 24524 24536 24587 24591 24601 24631 24673 24713 24708 24755 24773 24738 24761 24769 24821 24785 24797 24826 24831 24803 24762 24784 24794 24837 24840 24881 24809 24813 24883 24889 25574 25726 25770 25850 25918 25951 26001 26035 26106 26110 26106 26168 26174 26195 26200 26171 26110 26155 26183 26219 26248 26264 26265 26276 26326 26347 26349 26367 26375 26331 26342 26350 26399 26449 26470 26522 26522 26559 26557 26580 26549 26535 26550 26577 26543 26509 26551 26556 27075 27126 27170 27190 27277 27291 27348 27372 27370 27393 27422 27421 27412 27423 27433 27450 27431 27368 27364 27376 27404 27384 27378 27364 27388 27364 27343 27335 27332 27339 27332 27309 27272 27264 27259 27232 27193 27179 27246 27284 27285 27559 27655 27728 27735 27757 27768 27796 27807 27816 27804 27793 27761 27637 27637 27673 27701 27702 27827 27888 27907 27914 27857 27818 27818 29524 29572 29627 29765 29808 29899 29950 30205 30237 30343 30356 30425 30485 30541 30575 30679 30707 30762 30794 30909 30937 31019 31108 31148 31191 31382 31513 31599 31643 31704 31684 31769 31840 31872 31990 32019 32118 32149 32172 32226 32203 32190 32269 32278 32303 32317 32320 32325 32355 32401 32424 32425 32444 32441 32539 32594 32632 32674 32692 32677 32663 32676 32707 32682 32694 32699 32718 32775 32761 32783 32841 32857 32860 32874 32867 32870 32937 32949 32938 32957 32962 33025 33067 33049 33058 33009 33022 33025 33069 33055 33061 33067 33056 33049 33031 33041 33094 33112 33129 33132 33194 33204 33216 33228 33228 33227 33219 33223 33271 33276 33291 33308 33298 33231 33223 33212 33234 33279 33290 33293 33313 33301 33326 33345 33333 33354 33328 33314 33307 33319 33378 33384 33395 33408 33403 33454 33461 33892 33949 33969 34003 34004 34050 34060 34116 34152 34165 34199 34192 34185 34169 34192 34187 34273 34306 34343 34339 34357 34358 34474 34504 34528 34524 34525 34541 34536 34578 34600 34583 34624 34629 34645 34632 34629 34686 34666 34808 34835 34858 34877 34878 34893 34934 34995 34996 34990 35031 35021 35036 34996 34931 34906 34976 35008 35019 35062 35098 35093 35086 35095 35102 35073 35085 35059 35056 35071 35219 35224 35214 35242 35256 35250 35251 35253 35314 35350 35380 35396 35393 35434 35422 35378 35352 35360 35344 35336 35328 35324 35312 35304 35359 35393 35339 35175 35136 35115 35062 35041 35069 35105 35132 35122 35128 35111 35039 35011 35042 35045 35006 34848 34824 34854 34814 34734 34736 34704 35698 35735 35813 35822 35885 35909 35955 36053 36103 36170 36238 36300 36364 36373 36414 36429 36474 36494 36583 36649 36677 36692 36759 36790 36793 36804 36804 36820 36827 36877 36878 36878 36870 36897 36899 36905 36907 36902 36902 36924 36983 36979 37036 37043 37050 37053 37057 37069 37031 37083 37085 37089 37074 37078 37085 37044 37041 37000 36996 37074 37107 37094 37122 37141 37114 37129 37147 37157 37197 37198 37208 37224 37241 37244 37229 37218 37228 37240 37242 37233 37286 37296 37282 37293 37336 37335 37364 37327 37337 37328 37328 37343 37936 37977 38004 38096 38150 38180 38205 38232 38279 38344 38344 38434 38436 38459 38464 38460 38380 38428 38458 38446 38464 38477 38449 38459 38470 38480 38504 38505 38516 38522 38539 38544 38523 38514 38525 38516 38512 38530 38541 38537 38521 38536 38546 38555 38569 38532 38531 38515 38508 38509 38771 38764 38751 38798 38821 38815 38808 38806 38829 38873 38917 38924 38942 38945 38899 38926 38957 38951 38963 38973 39059 39065 39037 39121 39139 39121 39104 39132 39165 39191 39154 39175 39196 39139 39103 39117 39145 39191 39222 39202 39150 39151 39154 39223 39204 39189 39152 39134 39148 39170 39172 39139 39126 39123 39080 39088 39055 39053 39050 39080 38945 38930 38864 38813 38722 38753 38750 38701 38682 39365 39395 39410 39459 39482 39500 39573 39630 39652 39705 39764 39809 39850 39889 39916 39934 39949 39956 40056 40107 40116 40123 40126 40137 40172 40181 40180 40198 40218 40268 40260 40261 40263 40268 40256 40239 40256 40257 40261 40239 40244 40287 40295 40307 40303 40320 40315 40270 40257 40254 40254 40205 40282 40298 40314 40315 40345 40329 40317 40337 40333 40342 40343 40363 40370 40373 40371 40368 40387 40385 40382 40451 40439 40427 40410 40416 40433 40482 40448 40440 40456 40853 40894 40912 40972 40984 41017 41073 41083 41117 41136 41178 41197 41218 41221 41221 41182 41169 41191 41183 41189 41212 41196 41184 41191 41182 41185 41178 41185 41192 41193 41191 41163 41178 41169 41167 41205 41193 41181 41158 41152 41192 41176 41154 41140 41124 41271 41255 41234 41278 41259 41241 41224 41241 41242 41233 41258 41266 41276 41226 41251 41312 41378 41394 41356 41333 41307 41340 41294 41429 41453 41470 41478 41468 41478 41494 41497 41476 41490 41475 41442 41444 41414 41432 41458 41397 41329 41332 41307 41228 41225 41184 41186 41180 41187 41163 41132 41052 41029 40961 40934 40947 40964 40928 40947 40909 41535 41563 41611 41640 41695 41713 41759 41779 41840 41866 41899 41907 41951 41959 42016 42029 42071 42065 42198 42238 42246 42252 42299 42303 42317 42323 42343 42354 42358 42365 42372 42366 42370 42392 42402 42384 42378 42377 42341 42337 42307 42317 42331 42286 42297 42296 42303 42305 42307 42300 42298 42297 42280 42292 42290 42275 42256 42236 42223 42314 42325 42302 42310 42367 42367 42376 42359 42365 42391 42387 42358 42371 42368 42401 42396 42344 42345 42351 42348 42602 42625 42685 42713 42752 42758 42756 42783 42792 42789 42775 42778 42813 42818 42799 42768 42831 42828 42809 42813 42843 42837 42842 42819 42812 42830 42821 42780 42794 42789 42807 42784 42740 42735 42724 42685 42831 42817 42823 42818 42820 42822 42820 42837 42866 42906 42937 42914 42920 42941 42930 42942 42920 42910 42887 42829 42839 42854 42835 42846 42806 42822 42808 42825 42810 42795 42779 42783 42773 42795 42809 42785 42650 42644 42609 42559 42548 42512 42918 42938 42957 42983 43018 43040 43066 43092 43127 43152 43214 43233 43247 43330 43339 43364 43369 43390 43394 43378 43384 43385 43379 43380 43376 43362 43435 43447 43419 43417 43495 43513 43516 43511 43484 43497 43491 43508 43507 43507 43495 43503 43533 43526 43523 43668 43692 43713 43746 43772 43774 43790 43785 43759 43731 43744 43710 43756 43746 43723 43721 43753 43768 43769 43764 43721 43726 43718 43725 43728 43686 43681 43674 43648 43651 43645 43740 43722 43742 43746 43739 43742 43741 43721 43700 43724 43721 43837 43827 43790 43781 43761 43754 43774 43763 43751 43731 43715 43707 43683 43686 43668 43679 43626 43662 43675 43674 43664 43665 43651 43646 43550 43508 43475 43429 43413 43433 43419 43354 43560 43584 43602 43640 43672 43697 43715 43728 43766 43817 43849 43862 43867 43869 43863 43848 43844 43842 43832 43820 43799 43867 43878 43859 43859 43880 43866 43885 43871 43857 43854 43881 43863 43914 43946 43965 43975 43992 43978 43979 43972 43981 43990 43988 43957 43945 43968 43960 43951 43943 43899 43879 43892 43894 43897 43897 43888 43895 43899 43877 43887 43917 43936 43919 43925 43949 43936 43937 43940 43951 43930 43904 43845 43813 43766 43761 43722
iterations count:1345100 (1313), effective:4278 (4)
26511 26863 26905 27026 27100 27109 27241 27295 27525 27576 27655 27722 27735 27800 27876 27937 28023 28031 28107 28165 28269 28336 28413 28452 28522 28783 28916 29179 29316 29397 29491 29546 29611 29722 29781 29843 30011 30038 30082 30176 30199 30262 30291 30306 30393 30496 30676 30687 30731 30763 30813 30817 30841 30917 31095 31102 31123 31105 31092 31125 31129 31202 31312 31406 31418 31467 31501 31520 31506 31554 31592 31611 31648 31660 31663 31742 31783 31861 31972 31985 32001 32016 32031 32058 32049 32184 32216 32240 32212 32207 32225 32234 32416 32473 32504 32483 32492 32519 32516 32555 32575 32575 32589 32595 32617 32597 32645 32759 32823 32810 32833 32846 32905 32969 33024 33023 33047 33056 33050 33061 33063 33106 33145 33175 33156 33205 33210 33224 33201 33179 33305 33371 33358 33377 33345 33361 33351 33361 33387 33434 33458 33450 33479 33455 33513 33630 33673 33638 33654 33671 33671 33671 33746 34555 34748 34980 35068 35091 35176 35185 35260 35301 35351 35381 35430 35455 35458 35491 35489 35518 35540 35525 35656 35723 35800 35838 35901 35884 35929 35931 35995 36012 36075 36102 36157 36125 36260 36290 36346 36347 36390 36422 36441 36433 36444 36447 36496 36508 36559 36563 36573 36603 36645 36685 36680 36727 36745 36710 36733 36741 36793 36757 36769 36798 36803 36775 36734 36756 36766 36809 36812 36853 36781 36785 36855 36861 37546 37698 37742 37822 37890 37923 37973 38007 38078 38082 38078 38140 38146 38167 38172 38143 38082 38127 38155 38191 38220 38236 38237 38248 38298 38319 38321 38339 38347 38303 38314 38322 38371 38421 38442 38494 38494 38531 38529 38552 38521 38507 38522 38549 38515 38481 38523 38528 39047 39098 39142 39162 39249 39263 39320 39344 39342 39365 39394 39393 39384 39395 39405 39422 39403 39340 39336 39348 39376 39356 39350 39336 39360 39336 39315 39307 39304 39311 39304 39281 39244 39236 39231 39204 39165 39151 39218 39256 39257 39531 39627 39700 39707 39729 39740 39768 39779 39788 39776 39765 39733 39609 39609 39645 39673 39674 39799 39860 39879 39886 39829 39790 39790 41496 41544 41599 41737 41780 41871 41922 42177 42209 42315 42328 42397 42457 42513 42547 42651 42679 42734 42766 42881 42909 42991 43080 43120 43163 43354 43485 43571 43615 43676 43656 43741 43812 43844 43962 43991 44090 44121 44144 44198 44175 44162 44241 44250 44275 44289 44292 44297 44327 44373 44396 44397 44416 44413 44511 44566 44604 44646 44664 44649 44635 44648 44679 44654 44666 44671 44690 44747 44733 44755 44813 44829 44832 44846 44839 44842 44909 44921 44910 44929 44934 44997 45039 45021 45030 44981 44994 44997 45041 45027 45033 45039 45028 45021 45003 45013 45066 45084 45101 45104 45166 45176 45188 45200 45200 45199 45191 45195 45243 45248 45263 45280 45270 45203 45195 45184 45206 45251 45262 45265 45285 45273 45298 45317 45305 45326 45300 45286 45279 45291 45350 45356 45367 45380 45375 45426 45433 45864 45921 45941 45975 45976 46022 46032 46088 46124 46137 46171 46164 46157 46141 46164 46159 46245 46278 46315 46311 46329 46330 46446 46476 46500 46496 46497 46513 46508 46550 46572 46555 46596 46601 46617 46604 46601 46658 46638 46780 46807 46830 46849 46850 46865 46906 46967 46968 46962 47003 46993 47008 46968 46903 46878 46948 46980 46991 47034 47070 47065 47058 47067 47074 47045 47057 47031 47028 47043 47191 47196 47186 47214 47228 47222 47223 47225 47286 47322 47352 47368 47365 47406 47394 47350 47324 47332 47316 47308 47300 47296 47284 47276 47331 47365 47311 47147 47108 47087 47034 47013 47041 47077 47104 47094 47100 47083 47011 46983 47014 47017 46978 46820 46796 46826 46786 46706 46708 46676 47670 47707 47785 47794 47857 47881 47927 48025 48075 48142 48210 48272 48336 48345 48386 48401 48446 48466 48555 48621 48649 48664 48731 48762 48765 48776 48776 48792 48799 48849 48850 48850 48842 48869 48871 48877 48879 48874 48874 48896 48955 48951 49008 49015 49022 49025 49029 49041 49003 49055 49057 49061 49046 49050 49057 49016 49013 48972 48968 49046 49079 49066 49094 49113 49086 49101 49119 49129 49169 49170 49180 49196 49213 49216 49201 49190 49200 49212 49214 49205 49258 49268 49254 49265 49308 49307 49336 49299 49309 49300 49300 49315 49908 49949 49976 50068 50122 50152 50177 50204 50251 50316 50316 50406 50408 50431 50436 50432 50352 50400 50430 50418 50436 50449 50421 50431 50442 50452 50476 50477 50488 50494 50511 50516 50495 50486 50497 50488 50484 50502 50513 50509 50493 50508 50518 50527 50541 50504 50503 50487 50480 50481 50743 50736 50723 50770 50793 50787 50780 50778 50801 50845 50889 50896 50914 50917 50871 50898 50929 50923 50935 50945 51031 51037 51009 51093 51111 51093 51076 51104 51137 51163 51126 51147 51168 51111 51075 51089 51117 51163 51194 51174 51122 51123 51126 51195 51176 51161 51124 51106 51120 51142 51144 51111 51098 51095 51052 51060 51027 51025 51022 51052 50917 50902 50836 50785 50694 50725 50722 50673 50654 51337 51367 51382 51431 51454 51472 51545 51602 51624 51677 51736 51781 51822 51861 51888 51906 51921 51928 52028 52079 52088 52095 52098 52109 52144 52153 52152 52170 52190 52240 52232 52233 52235 52240 52228 52211 52228 52229 52233 52211 52216 52259 52267 52279 52275 52292 52287 52242 52229 52226 52226 52177 52254 52270 52286 52287 52317 52301 52289 52309 52305 52314 52315 52335 52342 52345 52343 52340 52359 52357 52354 52423 52411 52399 52382 52388 52405 52454 52420 52412 52428 52825 52866 52884 52944 52956 52989 53045 53055 53089 53108 53150 53169 53190 53193 53193 53154 53141 53163 53155 53161 53184 53168 53156 53163 53154 53157 53150 53157 53164 53165 53163 53135 53150 53141 53139 53177 53165 53153 53130 53124 53164 53148 53126 53112 53096 53243 53227 53206 53250 53231 53213 53196 53213 53214 53205 53230 53238 53248 53198 53223 53284 53350 53366 53328 53305 53279 53312 53266 53401 53425 53442 53450 53440 53450 53466 53469 53448 53462 53447 53414 53416 53386 53404 53430 53369 53301 53304 53279 53200 53197 53156 53158 53152 53159 53135 53104 53024 53001 52933 52906 52919 52936 52900 52919 52881 53507 53535 53583 53612 53667 53685 53731 53751 53812 53838 53871 53879 53923 53931 53988 54001 54043 54037 54170 54210 54218 54224 54271 54275 54289 54295 54315 54326 54330 54337 54344 54338 54342 54364 54374 54356 54350 54349 54313 54309 54279 54289 54303 54258 54269 54268 54275 54277 54279 54272 54270 54269 54252 54264 54262 54247 54228 54208 54195 54286 54297 54274 54282 54339 54339 54348 54331 54337 54363 54359 54330 54343 54340 54373 54368 54316 54317 54323 54320 54574 54597 54657 54685 54724 54730 54728 54755 54764 54761 54747 54750 54785 54790 54771 54740 54803 54800 54781 54785 54815 54809 54814 54791 54784 54802 54793 54752 54766 54761 54779 54756 54712 54707 54696 54657 54803 54789 54795 54790 54792 54794 54792 54809 54838 54878 54909 54886 54892 54913 54902 54914 54892 54882 54859 54801 54811 54826 54807 54818 54778 54794 54780 54797 54782 54767 54751 54755 54745 54767 54781 54757 54622 54616 54581 54531 54520 54484 54890 54910 54929 54955 54990 55012 55038 55064 55099 55124 55186 55205 55219 55302 55311 55336 55341 55362 55366 55350 55356 55357 55351 55352 55348 55334 55407 55419 55391 55389 55467 55485 55488 55483 55456 55469 55463 55480 55479 55479 55467 55475 55505 55498 55495 55640 55664 55685 55718 55744 55746 55762 55757 55731 55703 55716 55682 55728 55718 55695 55693 55725 55740 55741 55736 55693 55698 55690 55697 55700 55658 55653 55646 55620 55623 55617 55712 55694 55714 55718 55711 55714 55713 55693 55672 55696 55693 55809 55799 55762 55753 55733 55726 55746 55735 55723 55703 55687 55679 55655 55658 55640 55651 55598 55634 55647 55646 55636 55637 55623 55618 55522 55480 55447 55401 55385 55405 55391 55326 55532 55556 55574 55612 55644 55669 55687 55700 55738 55789 55821 55834 55839 55841 55835 55820 55816 55814 55804 55792 55771 55839 55850 55831 55831 55852 55838 55857 55843 55829 55826 55853 55835 55886 55918 55937 55947 55964 55950 55951 55944 55953 55962 55960 55929 55917 55940 55932 55923 55915 55871 55851 55864 55866 55869 55869 55860 55867 55871 55849 55859 55889 55908 55891 55897 55921 55908 55909 55912 55923 55902 55876 55817 55785 55738 55733 55694
iterations count:1345100 (1313), effective:4278 (4)
2894 3125 3233 3271 3415 3479 3463 3639 3662 3665 3684 3727 3777 3874 3812 3835 3878 3805 3847 3904 3853 3849 3960 3988 3929 3914 3916 3981 4139 4111 4164 4276 4260 4248 4340 4396 4333 4352 4367 4361 4462 4366 4379 4451 4349 4373 4420 4364 4355 4461 4514 4464 4378 4374 4576 4700 4743 4803 4877 5018 5109 5148 5233 5261 5487 5568 5639 5640 5752 5832 5835 6013 6061 6039 6114 6163 6152 6274 6317 6347 6397 6428 6525 6544 6581 6604 6630 6782 6823 6927 7033 7048 7068 7168 7221 7225 7322 7369 7334 7386 7424 7387 7397 7510 7508 7591 7590 7617 7619 7638 7689 7685 7704 7702 7708 7847 7838 7839 7867 7892 7876 7954 7981 8013 8036 8103 8113 8142 8126 8134 8108 8100 8038 8052 8104 8095 8053 8050 8050 8038 8111 8107 8125 8203 8206 8322 8361 8284 8270 8224 8319 8394 8425 8476 8455 8422 8422 8527 8578 8570 8570 8564 8610 8606 8677 8691 8691 8740 8756 8756 8686 8612 8715 8737 8747 8786 8756 8710 8721 8746 8739 8742 8736 8735 8849 8719 8767 8719
iterations count:188288 (183), effective:625 (0)
2894 3125 3233 3271 3415 3479 3463 3639 3662 3665 3684 3727 3777 3874 3812 3835 3878 3805 3847 3904 3853 3849 3960 3988 3929 3914 3916 3981 4139 4111 4164 4276 4260 4248 4340 4396 4333 4352 4367 4361 4462 4366 4379 4451 4349 4373 4420 4364 4355 4461 4514 4464 4378 4374 4576 4700 4743 4803 4877 5018 5109 5148 5233 5261 5487 5568 5639 5640 5752 5832 5835 6013 6061 6039 6114 6163 6152 6274 6317 6347 6397 6428 6525 6544 6581 6604 6630 6782 6823 6927 7033 7048 7068 7168 7221 7225 7322 7369 7334 7386 7424 7387 7397 7510 7508 7591 7590 7617 7619 7638 7689 7685 7704 7702 7708 7847 7838 7839 7867 7892 7876 7954 7981 8013 8036 8103 8113 8142 8126 8134 8108 8100 8038 8052 8104 8095 8053 8050 8050 8038 8111 8107 8125 8203 8206 8322 8361 8284 8270 8224 8319 8394 8425 8476 8455 8422 8422 8527 8578 8570 8570 8564 8610 8606 8677 8691 8691 8740 8756 8756 8686 8612 8715 8737 8747 8786 8756 8710 8721 8746 8739 8742 8736 8735 8849 8719 8767 8719
iterations count:188288 (183), effective:625 (0)
13888 14150 14228 14427 14549 14746 14926 15021 15126 15189 15270 15442 15529 15667 15726 15823 15919 15951 15994 16123 16207 16211 16302 16354 16431 16528 16630 16702 16688 16895 16940 16964 17056 17085 17115 17147 17256 17363 17385 17412 17459 17537 17545 17569 17598 17628 17665 17720 17833 17870 17891 17849 17992 18021 18021 18046 18048 18099 18358 18419 18493 18520 18628 18758 18805 18939 18979 18999 19123 19113 19183 19172 19186 19222 19302 19309 19360 19313 19317 19337 19477 19519 19547 19599 19630 19629 19608 19622 19678 19754 19772 19840 19823 19839 19871 19888 19862 19840 19846 19907 19936 19955 19970 19971 19968 19974 20035 20055 20055 20103 20347 20426 20457 20515 20558 20561 20601 20623 20680 20683 20672 20741 20749 20770 20774 20798 20899 20961 20975 20997 21023 21022 21044 21045 21052 21051 21051 21082 21094 21096 21090 21098 21160 21163 21163 21188 21195 21184 21203 21211 21203 21220 21231 21237 21233 21277 21281 21273 21291 21282 21303 21283 21288 21273 21257 21258 21226 21226 21336 21368 21425 21475 21517 21496 21498 21500 21505 21485 21496 21527 21541 21576 21592 21595 21593 21575 21589 21593 21670 21708 21732 21775 21794 21779 21790 21785 21737 21726 21730 21753 21752 21761 21775 21751 21760 21760 21717 21756 21766 21764 21774 21778 21898 21947 21978 22039 22062 22151 22216 22205 22240 22251 22257 22244 22281 22276 22298 22309 22389 22442 22452 22469 22518 22520 22502 22508 22476 22487 22472 22469 22498 22487 22461 22421 22423 22422 22413 22444 22471 22448 22426 22327 22305 22267 22246 22393 22453 22484 22555 22591 22626 22628 22624 22619 22613 22674 22712 22723 22740 22761 22772 22758 22756 22745 22751 22771 22771 22768 22778 22845 22855 22869 22870 22879 22888 22871 22877 22882 22878 22876 22891 22888 22913 22908 22901 22801 22769 22734 22669 22643 24114 24244 24314 24404 24552 24626 24680 24730 24738 24876 24901 24962 25087 25148 25169 25253 25347 25350 25429 25435 25457 25553 25619 25618 25808 25850 25874 25928 25933 25958 25975 25989 26080 26102 26117 26161 26237 26243 26267 26296 26290 26300 26304 26362 26399 26411 26369 26508 26537 26539 26562 26564 26569 26816 26875 26949 26991 27041 27169 27267 27329 27365 27443 27461 27528 27517 27531 27554 27575 27626 27617 27621 27635 27775 27817 27832 27879 27890 27898 27887 27880 27891 27939 27985 28036 28025 28044 28073 28078 28063 28052 28039 28047 28090 28072 28091 28116 28104 28082 28170 28190 28190 28193 28415 28492 28536 28579 28614 28590 28631 28619 28652 28610 28599 28668 28668 28677 28691 28782 28809 28855 28857 28879 28856 28864 28872 28858 28870 28866 28859 28898 28888 28899 28903 28935 28935 28938 28932 28934 28908 28915 28908 28909 28919 28921 28932 28922 28930 28970 28970 28959 28962 28969 28970 28978 28968 28955 28928 28917 28917 29005 29039 29077 29136 29179 29158 29146 29155 29137 29144 29180 29166 29197 29214 29199 29198 29186 29190 29184 29267 29302 29316 29333 29380 29389 29375 29383 29347 29340 29316 29324 29356 29352 29349 29314 29327 29323 29284 29313 29348 29330 29354 29331 29316 29490 29533 29556 29608 29677 29709 29700 29730 29686 29695 29689 29697 29714 29724 29733 29731 29825 29870 29886 29924 29933 29933 29917 29921 29890 29883 29865 29894 29882 29891 29865 29824 29828 29815 29824 29856 29846 29844 29822 29703 29689 29672 29642 29818 29875 29900 29948 29970 30007 29984 29983 29986 30043 30056 30090 30080 30099 30124 30133 30109 30109 30099 30120 30130 30151 30137 30129 30178 30185 30169 30156 30173 30144 30150 30155 30149 30154 30143 30164 30167 30182 30197 30175 30075 30029 29995 29954 29917 30916 30978 31026 31106 31125 31132 31206 31211 31228 31200 31221 31271 31285 31291 31348 31354 31331 31489 31548 31592 31627 31681 31700 31706 31703 31678 31690 31741 31747 31797 31803 31922 31966 31964 31992 32003 31983 31978 31977 31927 31934 31991 31965 32009 31984 32046 32055 32069 32125 32127 32140 32306 32352 32415 32501 32518 32542 32554 32558 32576 32706 32748 32752 32786 32810 32871 32882 32895 32891 32886 32910 32898 32940 32949 32933 32934 32899 32921 32923 32917 33001 33035 33042 33077 33070 33087 33107 33123 33096 33090 33091 33044 33028 33023 33121 33172 33187 33251 33258 33283 33294 33298 33307 33394 33429 33450 33429 33449 33512 33498 33497 33439 33423 33396 33379 33434 33437 33400 33374 33341 33342 33333 33341 33439 33486 33518 33542 33556 33533 33539 33550 33551 33572 33571 33573 33545 33539 33529 33590 33613 33634 33705 33695 33599 33618 33612 33613 33596 33677 33701 33692 33688 33686 33684 33733 33710 33693 33711 33702 33574 33561 33542 33870 33916 33973 34036 34053 34070 34068 34085 34100 34197 34226 34238 34254 34331 34355 34344 34357 34293 34273 34262 34240 34276 34269 34274 34194 34172 34167 34159 34141 34236 34277 34268 34274 34276 34286 34330 34308 34298 34318 34309 34236 34215 34200 34328 34365 34388 34441 34458 34475 34471 34476 34489 34584 34622 34620 34605 34632 34692 34674 34674 34596 34559 34526 34509 34550 34553 34509 34436 34397 34395 34386 34366 34449 34500 34535 34551 34561 34540 34539 34527 34500 34519 34528 34532 34504 34495 34482 34552 34541 34564 34611 34512 34470 34475 34427 34419 34484 34518 34528 34536 34526 34518 34524 34545 34534 34546 34547 34450 34387 34379 35217 35431 35494 35589 35596 35628 35675 35676 35738 35703 35765 35727 35803 35800 35821 35862 35879 35895 35883 35917 35987 36005 36017 36019 36037 35979 35994 35998 35988 35990 35993 35992 35990 36015 36181 36241 36274 36384 36405 36447 36457 36505 36496 36532 36557 36561 36565 36553 36557 36533 36548 36585 36576 36576 36533 36530 36487 36526 36532 36582 36569 36636 36679 36701 36705 36720 36728 36746 36734 36746 36757 36755 36881 36907 36903 36923 36927 36948 36863 36843 36862 36836 36820 36803 36907 36972 37009 37062 37117 37100 37078 37067 37034 37091 37092 37121 37164 37176 37137 37150 37164 37243 37248 37255 37243 37213 37184 37188 37172 37179 37162 37149 37121 37160 37143 37232 37277 37303 37340 37347 37373 37369 37353 37353 37305 37295 37247 37323 37348 37368 37369 37372 37367 37355 37340 37325 37349 37333 37317 37297 37291 37288 37359 37364 37372 37398 37366 37255 37222 37175 37203 37266 37305 37328 37361 37418 37424 37440 37462 37455 37456 37440 37435 37435 37442 37420 37408 37436 37455 37460 37472 37530 37557 37601 37593 37602 37608 37633 37616 37621 37618 37605 37680 37736 37723 37732 37735 37776 37587 37572 37519 37493 37440 37427 37808 37897 37906 37923 37973 37990 37988 38003 38020 38109 38133 38153 38149 38131 38120 38135 38130 38135 38136 38125 38133 38160 38150 38218 38257 38311 38298 38390 38437 38455 38473 38486 38490 38505 38493 38497 38501 38500 38630 38652 38668 38678 38729 38707 38612 38605 38611 38571 38584 38568 38615 38620 38626 38650 38657 38617 38631 38646 38735 38755 38774 38763 38736 38715 38721 38705 38698 38683 38669 38640 38682 38664 38761 38778 38790 38792 38780 38770 38762 38744 38771 38793 38777 38742 38741 38725 38751 38783 38803 38787 38779 38686 38660 38614 38602 38560 38596 38617 38627 38639 38705 38747 38776 38769 38780 38783 38803 38786 38788 38779 38771 38832 38888 38874 38880 38878 38868 38705 38690 38636 38606 38549 38526 39649 39769 39848 39883 39928 39973 39966 39984 39974 39979 40038 40034 40055 40084 40178 40261 40313 40297 40332 40350 40336 40345 40303 40307 40335 40302 40329 40300 40344 40371 40387 40402 40447 40460 40629 40701 40763 40812 40850 40917 40934 40946 40956 40961 40999 41002 41067 41084 41072 41086 41064 41079 41066 41090 41177 41238 41309 41331 41347 41317 41326 41333 41364 41358 41382 41383 41368 41349 41359 41407 41447 41459 41520 41513 41467 41463 41500 41498 41492 41560 41576 41604 41635 41608 41608 41655 41647 41565 41570 41557 41725 41781 41813 41838 41864 41887 41858 41834 41825 41799 41802 41797 41823 41804 41792 41739 41731 41687 41699 41689 41743 41750 41771 41792 41764 41753 41801 41793 41684 41662 41646 41676 41728 41792 41827 41859 41914 41920 41932 41891 41872 41883 41879 41932 41946 41925 41877 41855 41839 41831 41828 41928 41965 42024 42052 42045 42032 42036 42034 42009 42040 42050 42051 42023 42020 42019 42084 42086 42108 42148 42137 42027 42043 42018 42017 42031 42032 42055 42075 42097 42101 42094 42120 42055 41994 42006 41994 42113 42136 42169 42159 42190 42170 42165 42085 42071 42034 42031 42073 42086 42039 42033 41932 41904 41870 41885 41873 41872 41879 41869 41870 41868 41889 41897 41810 41749 41739 41866 41978 42024 42049 42097 42122 42113 42097 42081 42029 42053 42079 42080 42086 42012 41989 41971 41969 42016 42005 42043 42032 42016 42058 42100 42064 42122 42122 42095 42152 42135 42071 42046 42048 42047 42076 42112 42137 42136 42165 42152 42148 42104 42073 42048 42064 42076 42037 41959 41936 41918 41893 41850 41917 41900 41930 41921 41930 41952 41958 41926 41960 41950 41917 41959 41852 41828 41790 41757 41736 42765 42823 42858 42933 42936 42996 42998 42987 43042 43005 43028 42985 43063 43064 43092 43142 43162 43150 43153 43158 43246 43262 43268 43262 43266 43251 43262 43260 43249 43262 43277 43279 43309 43293 43430 43469 43511 43585 43617 43664 43714 43727 43739 43747 43733 43745 43716 43690 43683 43672 43666 43672 43716 43729 43768 43755 43819 43871 43879 43883 43901 43902 43904 43902 43912 43924 43923 44049 44077 44094 44094 44139 44123 44038 44011 44012 43991 44003 43981 44087 44136 44213 44215 44262 44248 44219 44165 44220 44219 44245 44300 44312 44313 44272 44277 44345 44357 44369 44363 44361 44322 44316 44315 44293 44281 44293 44268 44253 44274 44382 44425 44456 44477 44548 44563 44576 44589 44594 44582 44582 44585 44568 44567 44557 44560 44598 44605 44640 44627 44686 44736 44737 44742 44761 44762 44770 44754 44755 44758 44749 44890 44880 44903 44898 44938 44911 44763 44733 44693 44635 44666 44625 44893 44901 44934 44985 45001 44989 44982 44976 45055 45101 45107 45098 45103 45082 45112 45109 45088 45072 45089 45084 45063 45049 45112 45137 45180 45198 45268 45318 45346 45344 45350 45347 45354 45334 45338 45344 45339 45467 45498 45492 45508 45522 45546 45422 45423 45381 45383 45370 45336 45384 45384 45399 45421 45431 45390 45382 45375 45439 45458 45464 45455 45449 45406 45424 45422 45400 45367 45373 45337 45349 45311 45345 45363 45406 45393 45457 45499 45520 45516 45525 45529 45533 45510 45503 45504 45489 45578 45605 45617 45609 45625 45597 45432 45406 45352 45305 45298 45256 45526 45577 45600 45654 45667 45657 45666 45653 45620 45600 45640 45630 45632 45570 45550 45544 45525 45517 45560 45604 45591 45585 45600 45637 45627 45681 45685 45658 45720 45702 45642 45625 45628 45623 45589 45675 45702 45721 45732 45747 45725 45678 45649 45621 45646 45647 45603 45531 45521 45503 45479 45445 45514 45491 45523 45513 45518 45545 45553 45514 45553 45543 45510 45558 45452 45428 45390 45357 45336 46566 46683 46755 46798 46834 46896 46905 46930 46913 46909 46933 46901 46893 46896 46903 46884 46844 46844 46836 46814 46775 46924 46985 46972 46988 46989 47083 47093 47096 47101 47203 47257 47298 47329 47360 47364 47318 47312 47344 47341 47505 47554 47583 47625 47623 47619 47602 47595 47593 47705 47739 47747 47802 47832 47815 47745 47721 47751 47754 47764 47843 47853 47906 47934 47958 47896 47871 47874 47853 47842 47946 47981 47988 48000 47995 47969 47937 47940 47959 48058 48099 48151 48160 48176 48158 48144 48112 48092 48149 48168 48175 48206 48204 48241 48092 48063 48011 47964 47952 47977 48053 48136 48176 48211 48242 48240 48163 48166 48182 48180 48291 48340 48369 48403 48410 48407 48390 48385 48384 48462 48462 48478 48521 48565 48540 48418 48378 48372 48360 48371 48356 48431 48482 48507 48524 48443 48417 48415 48384 48395 48405 48426 48404 48434 48429 48374 48338 48337 48357 48404 48448 48472 48498 48514 48497 48484 48452 48433 48423 48484 48480 48512 48511 48549 48367 48328 48270 48222 48199 48226 48255 48294 48314 48311 48273 48247 48217 48264 48254 48322 48330 48361 48340 48329 48297 48307 48286 48299 48308 48295 48265 48231 48198 48238 48228 48308 48338 48336 48309 48281 48260 48243 48290 48297 48294 48341 48307 48210 48166 48123 48134 48097 47351 47353 47352 47301 47266 47233 47241 47226 47256 47244 47248 47239 47210 47185 47145 47153 47120 47121 47117 47055 47028 46995 46998 46983 48326 48475 48516 48567 48623 48628 48646 48677 48680 48717 48710 48720 48723 48710 48708 48692 48692 48653 48659 48610 48597 48705 48763 48773 48800 48828 48880 48890 48879 48882 48894 48910 48919 48915 48911 48943 48950 48934 48937 48931 48973 49001 48997 49001 48995 49007 49001 49008 48996 49135 49173 49197 49226 49313 49340 49345 49364 49370 49388 49392 49405 49439 49423 49437 49466 49478 49488 49481 49464 49452 49431 49428 49436 49428 49434 49435 49428 49418 49362 49362 49358 49308 49304 49294 49270 49247 49324 49365 49371 49400 49387 49344 49359 49352 49360 49344 49382 49409 49429 49431 49412 49318 49315 49270 49273 49354 49401 49427 49459 49526 49529 49544 49554 49565 49565 49550 49540 49538 49528 49529 49508 49625 49677 49695 49702 49776 49786 49788 49763 49770 49759 49755 49736 49750 49722 49759 49745 49712 49717 49748 49758 49757 49735 49723 49709 49705 49671 49670 50403 50451 50484 50539 50552 50586 50599 50582 50582 50575 50605 50605 50581 50597 50621 50624 50598 50595 50586 50642 50673 50680 50697 50667 50674 50662 50671 50659 50761 50812 50832 50868 50855 50832 50854 50841 50855 50894 50873 50911 50919 50923 50814 50787 50768 50716 50702 50791 50837 50858 50874 50893 50901 50900 50875 50879 50842 50838 50816 50801 50775 50796 50780 50746 50745 50776 50788 50787 50771 50737 50730 50716 50684 50683 50633 50730 50758 50793 50852 50833 50834 50829 50846 50837 50846 50846 50855 50876 50884 50905 50932 50926 50901 50913 50869 50857 50843 50861 50892 50898 50881 50925 50911 50884 50858 50861 50837 50836 50818 50820 50820 50127 50126 50143 50156 50131 50151 50142 50161 50182 50149 50126 50136 50128 50047 50066 50053 50038 50008 50000 49973 49988 49980 49976 49969 49938 51308 51379 51416 51464 51465 51591 51628 51645 51652 51652 51746 51762 51807 51802 52023 52070 52114 52155 52206 52186 52153 52192 52203 52179 52212 52262 52279 52293 52328 52463 52522 52552 52590 52623 52635 52527 52514 52474 52503 52484 52474 52558 52565 52611 52653 52634 52552 52548 52537 52525 52498 52710 52691 52734 52753 52889 52898 52923 52969 53001 53015 52932 52915 52923 52918 52917 52899 52880 52884 52926 52910 53016 53021 53045 53077 53133 53103 52949 52892 52884 52853 52887 52903 52913 52964 52981 52997 52884 52873 52886 52837 52826 53092 53065 53021 53039 53062 53066 53035 52997 53068 53051 53110 53104 53121 53169 53133 53056 53011 52982 53025 53025 53036 53071 53099 53076 53031 52990 53014 52990 52398 52342 52303 52331 52292 52166 52105 52111 52135 52103 52113 52117 52143 52078 52073 52035 52060 52036 51220 51208 51198 51191 51201 51159 51162 51149 51143 51137 51148 52540 52683 52711 52750 52798 52821 52839 52844 52856 52860 52838 52827 52830 52819 52814 52802 52918 52965 52994 53011 53022 53072 53081 53069 53076 53068 53076 53088 53090 53068 53097 53104 53077 53082 53077 53128 53150 53141 53150 53149 53150 53139 53146 53131 53294 53316 53344 53415 53417 53435 53439 53450 53451 53427 53415 53416 53405 53401 53380 53502 53555 53571 53591 53651 53651 53660 53642 53644 53632 53615 53613 53621 53634 53623 53612 53579 53585 53613 53625 53624 53602 53599 53597 53597 53583 53578 54328 54378 54422 54430 54443 54492 54495 54475 54480 54469 54466 54461 54469 54455 54468 54471 54421 54420 54411 54466 54496 54499 54517 54490 54480 54476 54464 54449 54570 54602 54614 54611 54648 54645 54616 54620 54609 54577 54553 54559 54530 54540 54532 54474 54471 54461 54496 54512 54503 54497 54461 54448 54444 54432 54415 54614 54639 54676 54712 54695 54708 54689 54687 54691 54715 54704 54720 54730 54709 54754 54769 54764 54799 54788 54781 54745 54737 54729 54762 54760 54768 54778 54755 54276 54261 54275 54277 54276 54258 54270 54260 54222 54204 54185 54170 54156 54162 54145 54158 54142 54104 53326 53302 53291 53269 53264 53242 53240 53225 53206 53196 53205 53159 54386 54451 54479 54570 54583 54642 54693 54712 54743 54754 54757 54785 54790 54789 54794 54808 54818 54806 54802 54994 54982 55007 55041 55053 55025 55029 55046 55006 54998 54985 54985 54994 54943 54918 54915 55233 55253 55265 55295 55298 55268 55249 55218 55214 55227 55299 55281 55277 55280 55279 55261 55443 55415 55381 55358 55397 55334 55304 55310 54695 54636 54604 54557 54552 54513 54897 54944 54992 54999 55011 54994 54988 54994 55088 55108 55129 55167 55179 55165 55152 55159 55166 55175 55176 55178 55210 55217 55200 55176 55176 55177 55215 55217 55223 55201 55186 55195 55941 56008 56030 56035 56051 56061 56041 56022 56023 56025 56023 56028 56018 56020 56023 56011 55980 55971 55965 55991 55989 55986 55962 55943 55937 56361 56416 56437 56443 56425 56475 56471 56447 56416 56407 56382 56408 56432 56428 56405 56398 56385 56372 56352 56360 56321 56260 56269 56258 56226 56221 56179 56154 56112 56109 56073 55644 55585 55591 54796 56002 56738 54814 56954 57410 55694
iterations count:2808353 (2742), effective:8365 (8)
4014 4253 4437 4523 4559 4693 4766 4825 4929 5013 5043 5091 5144 5206 5266 5316 5316 5365 5397 5425 5454 5442 5434 5457 5482 5477 5514 5519 5520 5542 5541 5532 5571 5567 5568 5559 5636 5773 5829 6059 6250 6262 6343 6362 6458 6453 6483 6590 6605 6627 6674 6694 6759 6728 6711 6730 6767 6795 6844 6806 6776 6714 6731 6712 6706 6687 6645 6655 6660 6651 6612 6593 6526 6493 6433 6481 6529 6563 6816 6931 6986 7016 7102 7118 7187 7202 7345 7405 7464 7510 7570 7617 7620 7693 7676 7821 7968 8042 8060 8110 8115 8154 8148 8163 8172 8200 8222 8361 8403 8432 8470 8475 8497 8478 8473 8466 8475 8608 8663 8746 8805 8818 8853 8916 8922 8950 9077 9106 9125 9167 9181 9237 9278 9256 9238 9287 9330 9328 9321 9428 9538 9598 9599 9668 9667 9705 9668 9696 9694 9744 9773 9840 9937 9938 10003 9996 10007 9979 9977 9965 9962 9944 9982 9983 9960 9955 10091 10132 10157 10187 10199 10211 10207 10193 10174 10283 10386 10414 10428 10447 10455 10468 10439 10428 10394 10451 10514 10559 10547 10559 10556 10568 10583 10574 10694 10808 10884 10897 10916 10929 10944 10977 10978 10988 10996 10998 11038 11107 11195 11238 11249 11268 11273 11268 11265 11289 11281 11258 11261 11324 11323 11357 11357 11345 11339 11344 11335 11378 11391 11365 11367 11348 11343 11332 11313 11307 11340 11323 11323 11313 11313 11287 11270 11315 11392 11407 11474 11506 11495 11546 11570 11574 11586 11614 11605 11611 11597 11596 11628 11628 11630 11609 11595 11593 11581 11544 11591 11672 11691 11656 11680 11680 11701 11742 11804 11783 11790 11784 11786 11782 11825 11821 11837 11839 11876 11870 11860 11825 11809 11802 11776 11814 11860 11891 11971 12006 12011 12035 12038 12052 12081 12111 12099 12105 12089 12059 12067 12065 12083 12201 12243 12224 12248 12250 12269 12295 12383 12407 12372 12373 12365 12361 12377 12413 12417 12410 12409 12415 12414 12417 12396 12357 12319 12301 12300 12270 12192 12168 12125
iterations count:339905 (331), effective:1171 (1)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="PermAdmissibility-COL-01"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/root/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/PermAdmissibility-COL-01.tgz
mv PermAdmissibility-COL-01 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is PermAdmissibility-COL-01, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r077kn-smll-146363816100250"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;