fond
Model Checking Contest @ Petri Nets 2016
6th edition, Toruń, Poland, June 21, 2016
Execution of r077kn-smll-146363815900084
Last Updated
June 30, 2016

About the Execution of Marcie for NeoElection-PT-3

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
9678.500 1304608.00 1304040.00 171.70 FTFFFFTTFFFFFTTF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
.................
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is NeoElection-PT-3, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r077kn-smll-146363815900084
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-3-CTLCardinality-0
FORMULA_NAME NeoElection-COL-3-CTLCardinality-1
FORMULA_NAME NeoElection-COL-3-CTLCardinality-10
FORMULA_NAME NeoElection-COL-3-CTLCardinality-11
FORMULA_NAME NeoElection-COL-3-CTLCardinality-12
FORMULA_NAME NeoElection-COL-3-CTLCardinality-13
FORMULA_NAME NeoElection-COL-3-CTLCardinality-14
FORMULA_NAME NeoElection-COL-3-CTLCardinality-15
FORMULA_NAME NeoElection-COL-3-CTLCardinality-2
FORMULA_NAME NeoElection-COL-3-CTLCardinality-3
FORMULA_NAME NeoElection-COL-3-CTLCardinality-4
FORMULA_NAME NeoElection-COL-3-CTLCardinality-5
FORMULA_NAME NeoElection-COL-3-CTLCardinality-6
FORMULA_NAME NeoElection-COL-3-CTLCardinality-7
FORMULA_NAME NeoElection-COL-3-CTLCardinality-8
FORMULA_NAME NeoElection-COL-3-CTLCardinality-9

=== Now, execution of the tool begins

BK_START 1463690005710


Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --mcc-mode --memory=6 --suppress

parse successfull
net created successfully

Net: NeoElection_PT_3
(NrP: 972 NrTr: 1016 NrArc: 5840)

net check time: 0m 0.002sec

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.157sec

init dd package: 0m 3.705sec


RS generation: 0m16.649sec


-> reachability set: #nodes 152061 (1.5e+05) #states 974,325 (5)



starting MCC model checker
--------------------------

checking: EF [3<=sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]
normalized: E [true U 3<=sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]

abstracting: (3<=sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)) states: 0
-> the formula is FALSE

FORMULA NeoElection-COL-3-CTLCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.035sec

checking: AF [2<=sum(P_crashed_3, P_crashed_2, P_crashed_1, P_crashed_0)]
normalized: ~ [EG [~ [2<=sum(P_crashed_3, P_crashed_2, P_crashed_1, P_crashed_0)]]]

abstracting: (2<=sum(P_crashed_3, P_crashed_2, P_crashed_1, P_crashed_0)) states: 0

EG iterations: 0
-> the formula is FALSE

FORMULA NeoElection-COL-3-CTLCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.034sec

checking: AG [EF [[2<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0) & 1<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)]]]
normalized: ~ [E [true U ~ [E [true U [2<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0) & 1<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)]]]]]

abstracting: (1<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)) states: 0
abstracting: (2<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 0
-> the formula is FALSE

FORMULA NeoElection-COL-3-CTLCardinality-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m47.407sec

checking: EG [EX [sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)<=sum(P_crashed_3, P_crashed_2, P_crashed_1, P_crashed_0)]]
normalized: EG [EX [sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)<=sum(P_crashed_3, P_crashed_2, P_crashed_1, P_crashed_0)]]

abstracting: (sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)<=sum(P_crashed_3, P_crashed_2, P_crashed_1, P_crashed_0)) states: 291,198 (5)
........................................
before gc: list nodes free: 1026559

after gc: idd nodes used:521906, unused:63478094; list nodes free:278778486
.................................................
EG iterations: 88
-> the formula is FALSE

FORMULA NeoElection-COL-3-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 15m53.041sec

checking: EX [~ [EG [sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]]]
normalized: EX [~ [EG [sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]]]

abstracting: (sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 974,325 (5)

EG iterations: 0
.-> the formula is FALSE

FORMULA NeoElection-COL-3-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.319sec

checking: AF [AG [~ [2<=sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)]]]
normalized: ~ [EG [E [true U 2<=sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)]]]

abstracting: (2<=sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)) states: 974,325 (5)

before gc: list nodes free: 3621154

after gc: idd nodes used:153779, unused:63846221; list nodes free:280365479

EG iterations: 0
-> the formula is FALSE

FORMULA NeoElection-COL-3-CTLCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 1m23.908sec

checking: EG [AF [[3<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0) & sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_electedSecondary_3, P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)]]]
normalized: EG [~ [EG [~ [[3<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0) & sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_electedSecondary_3, P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)]]]]]

abstracting: (sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_electedSecondary_3, P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)) states: 974,325 (5)
abstracting: (3<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 0

EG iterations: 0
.
EG iterations: 1
-> the formula is FALSE

FORMULA NeoElection-COL-3-CTLCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.369sec

checking: AG [AF [[2<=sum(P_sendAnnPs__broadcasting_3_3, P_sendAnnPs__broadcasting_3_2, P_sendAnnPs__broadcasting_3_1, P_sendAnnPs__broadcasting_2_3, P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_3, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_3, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1) & sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)]]]
normalized: ~ [E [true U EG [~ [[2<=sum(P_sendAnnPs__broadcasting_3_3, P_sendAnnPs__broadcasting_3_2, P_sendAnnPs__broadcasting_3_1, P_sendAnnPs__broadcasting_2_3, P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_3, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_3, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1) & sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)]]]]]

abstracting: (sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)) states: 974,325 (5)
abstracting: (2<=sum(P_sendAnnPs__broadcasting_3_3, P_sendAnnPs__broadcasting_3_2, P_sendAnnPs__broadcasting_3_1, P_sendAnnPs__broadcasting_2_3, P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_3, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_3, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)) states: 0

EG iterations: 0
-> the formula is FALSE

FORMULA NeoElection-COL-3-CTLCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 1m 9.719sec

checking: EG [EF [~ [sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)]]]
normalized: EG [E [true U ~ [sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)]]]

abstracting: (sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)) states: 0

EG iterations: 0
-> the formula is TRUE

FORMULA NeoElection-COL-3-CTLCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.268sec

checking: AF [A [3<=sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0) U 1<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]]
normalized: ~ [EG [~ [[~ [E [~ [1<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)] U [~ [1<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)] & ~ [3<=sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)]]]] & ~ [EG [~ [1<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]]]]]]]

abstracting: (1<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 0

EG iterations: 0
abstracting: (3<=sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)) states: 974,325 (5)
abstracting: (1<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 0
abstracting: (1<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 0

EG iterations: 0
-> the formula is FALSE

FORMULA NeoElection-COL-3-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.332sec

checking: EX [[2<=sum(P_electionInit_3, P_electionInit_2, P_electionInit_1, P_electionInit_0) & AG [1<=sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)]]]
normalized: EX [[2<=sum(P_electionInit_3, P_electionInit_2, P_electionInit_1, P_electionInit_0) & ~ [E [true U ~ [1<=sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)]]]]]

abstracting: (1<=sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)) states: 974,325 (5)
abstracting: (2<=sum(P_electionInit_3, P_electionInit_2, P_electionInit_1, P_electionInit_0)) states: 16
.-> the formula is TRUE

FORMULA NeoElection-COL-3-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 1.052sec

checking: ~ [~ [EF [[sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0) & 1<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]]]]
normalized: E [true U [sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0) & 1<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]]

abstracting: (1<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 0
abstracting: (sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 0
-> the formula is FALSE

FORMULA NeoElection-COL-3-CTLCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.188sec

checking: A [sum(P_negotiation_3_3_DONE, P_negotiation_3_3_CO, P_negotiation_3_3_NONE, P_negotiation_3_2_DONE, P_negotiation_3_2_CO, P_negotiation_3_2_NONE, P_negotiation_3_1_DONE, P_negotiation_3_1_CO, P_negotiation_3_1_NONE, P_negotiation_3_0_DONE, P_negotiation_3_0_CO, P_negotiation_3_0_NONE, P_negotiation_2_3_DONE, P_negotiation_2_3_CO, P_negotiation_2_3_NONE, P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_3_DONE, P_negotiation_1_3_CO, P_negotiation_1_3_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_3_DONE, P_negotiation_0_3_CO, P_negotiation_0_3_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0) U EG [sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]]
normalized: [~ [EG [~ [EG [sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]]]] & ~ [E [~ [EG [sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]] U [~ [EG [sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]] & ~ [sum(P_negotiation_3_3_DONE, P_negotiation_3_3_CO, P_negotiation_3_3_NONE, P_negotiation_3_2_DONE, P_negotiation_3_2_CO, P_negotiation_3_2_NONE, P_negotiation_3_1_DONE, P_negotiation_3_1_CO, P_negotiation_3_1_NONE, P_negotiation_3_0_DONE, P_negotiation_3_0_CO, P_negotiation_3_0_NONE, P_negotiation_2_3_DONE, P_negotiation_2_3_CO, P_negotiation_2_3_NONE, P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_3_DONE, P_negotiation_1_3_CO, P_negotiation_1_3_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_3_DONE, P_negotiation_0_3_CO, P_negotiation_0_3_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]]]]]

abstracting: (sum(P_negotiation_3_3_DONE, P_negotiation_3_3_CO, P_negotiation_3_3_NONE, P_negotiation_3_2_DONE, P_negotiation_3_2_CO, P_negotiation_3_2_NONE, P_negotiation_3_1_DONE, P_negotiation_3_1_CO, P_negotiation_3_1_NONE, P_negotiation_3_0_DONE, P_negotiation_3_0_CO, P_negotiation_3_0_NONE, P_negotiation_2_3_DONE, P_negotiation_2_3_CO, P_negotiation_2_3_NONE, P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_3_DONE, P_negotiation_1_3_CO, P_negotiation_1_3_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_3_DONE, P_negotiation_0_3_CO, P_negotiation_0_3_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 0
abstracting: (sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 974,325 (5)

EG iterations: 0
abstracting: (sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 974,325 (5)

EG iterations: 0
abstracting: (sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 974,325 (5)

EG iterations: 0
.
EG iterations: 1
-> the formula is TRUE

FORMULA NeoElection-COL-3-CTLCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m10.407sec

checking: [AF [AX [3<=sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)]] & [[AG [3<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)] | [sum(P_electedSecondary_3, P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_electionInit_3, P_electionInit_2, P_electionInit_1, P_electionInit_0) & [2<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0) & sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)]]] | [EG [3<=sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)] | EF [sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_polling_3, P_polling_2, P_polling_1, P_polling_0)]]]]
normalized: [~ [EG [EX [~ [3<=sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)]]]] & [[~ [E [true U ~ [3<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)]]] | [sum(P_electedSecondary_3, P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_electionInit_3, P_electionInit_2, P_electionInit_1, P_electionInit_0) & [2<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0) & sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)]]] | [EG [3<=sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)] | E [true U sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_polling_3, P_polling_2, P_polling_1, P_polling_0)]]]]

abstracting: (sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_polling_3, P_polling_2, P_polling_1, P_polling_0)) states: 0
abstracting: (3<=sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)) states: 0
.
EG iterations: 1
abstracting: (sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)) states: 35,516 (4)
abstracting: (2<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)) states: 250,244 (5)
abstracting: (sum(P_electedSecondary_3, P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_electionInit_3, P_electionInit_2, P_electionInit_1, P_electionInit_0)) states: 974,325 (5)
abstracting: (3<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)) states: 35,516 (4)
abstracting: (3<=sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)) states: 974,325 (5)
..
EG iterations: 1
-> the formula is FALSE

FORMULA NeoElection-COL-3-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 5.625sec

checking: EX [EG [[sum(P_negotiation_3_3_DONE, P_negotiation_3_3_CO, P_negotiation_3_3_NONE, P_negotiation_3_2_DONE, P_negotiation_3_2_CO, P_negotiation_3_2_NONE, P_negotiation_3_1_DONE, P_negotiation_3_1_CO, P_negotiation_3_1_NONE, P_negotiation_3_0_DONE, P_negotiation_3_0_CO, P_negotiation_3_0_NONE, P_negotiation_2_3_DONE, P_negotiation_2_3_CO, P_negotiation_2_3_NONE, P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_3_DONE, P_negotiation_1_3_CO, P_negotiation_1_3_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_3_DONE, P_negotiation_0_3_CO, P_negotiation_0_3_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_negotiation_3_3_DONE, P_negotiation_3_3_CO, P_negotiation_3_3_NONE, P_negotiation_3_2_DONE, P_negotiation_3_2_CO, P_negotiation_3_2_NONE, P_negotiation_3_1_DONE, P_negotiation_3_1_CO, P_negotiation_3_1_NONE, P_negotiation_3_0_DONE, P_negotiation_3_0_CO, P_negotiation_3_0_NONE, P_negotiation_2_3_DONE, P_negotiation_2_3_CO, P_negotiation_2_3_NONE, P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_3_DONE, P_negotiation_1_3_CO, P_negotiation_1_3_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_3_DONE, P_negotiation_0_3_CO, P_negotiation_0_3_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE) | sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electionInit_3, P_electionInit_2, P_electionInit_1, P_electionInit_0)]]]
normalized: EX [EG [[sum(P_negotiation_3_3_DONE, P_negotiation_3_3_CO, P_negotiation_3_3_NONE, P_negotiation_3_2_DONE, P_negotiation_3_2_CO, P_negotiation_3_2_NONE, P_negotiation_3_1_DONE, P_negotiation_3_1_CO, P_negotiation_3_1_NONE, P_negotiation_3_0_DONE, P_negotiation_3_0_CO, P_negotiation_3_0_NONE, P_negotiation_2_3_DONE, P_negotiation_2_3_CO, P_negotiation_2_3_NONE, P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_3_DONE, P_negotiation_1_3_CO, P_negotiation_1_3_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_3_DONE, P_negotiation_0_3_CO, P_negotiation_0_3_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_negotiation_3_3_DONE, P_negotiation_3_3_CO, P_negotiation_3_3_NONE, P_negotiation_3_2_DONE, P_negotiation_3_2_CO, P_negotiation_3_2_NONE, P_negotiation_3_1_DONE, P_negotiation_3_1_CO, P_negotiation_3_1_NONE, P_negotiation_3_0_DONE, P_negotiation_3_0_CO, P_negotiation_3_0_NONE, P_negotiation_2_3_DONE, P_negotiation_2_3_CO, P_negotiation_2_3_NONE, P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_3_DONE, P_negotiation_1_3_CO, P_negotiation_1_3_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_3_DONE, P_negotiation_0_3_CO, P_negotiation_0_3_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE) | sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electionInit_3, P_electionInit_2, P_electionInit_1, P_electionInit_0)]]]

abstracting: (sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electionInit_3, P_electionInit_2, P_electionInit_1, P_electionInit_0)) states: 974,325 (5)
abstracting: (sum(P_negotiation_3_3_DONE, P_negotiation_3_3_CO, P_negotiation_3_3_NONE, P_negotiation_3_2_DONE, P_negotiation_3_2_CO, P_negotiation_3_2_NONE, P_negotiation_3_1_DONE, P_negotiation_3_1_CO, P_negotiation_3_1_NONE, P_negotiation_3_0_DONE, P_negotiation_3_0_CO, P_negotiation_3_0_NONE, P_negotiation_2_3_DONE, P_negotiation_2_3_CO, P_negotiation_2_3_NONE, P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_3_DONE, P_negotiation_1_3_CO, P_negotiation_1_3_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_3_DONE, P_negotiation_0_3_CO, P_negotiation_0_3_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_negotiation_3_3_DONE, P_negotiation_3_3_CO, P_negotiation_3_3_NONE, P_negotiation_3_2_DONE, P_negotiation_3_2_CO, P_negotiation_3_2_NONE, P_negotiation_3_1_DONE, P_negotiation_3_1_CO, P_negotiation_3_1_NONE, P_negotiation_3_0_DONE, P_negotiation_3_0_CO, P_negotiation_3_0_NONE, P_negotiation_2_3_DONE, P_negotiation_2_3_CO, P_negotiation_2_3_NONE, P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_3_DONE, P_negotiation_1_3_CO, P_negotiation_1_3_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_3_DONE, P_negotiation_0_3_CO, P_negotiation_0_3_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)) states: 974,325 (5)

EG iterations: 0
.-> the formula is TRUE

FORMULA NeoElection-COL-3-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 1m 9.237sec

checking: EG [EF [~ [1<=sum(P_poll__networl_3_3_RP_3, P_poll__networl_3_3_RP_2, P_poll__networl_3_3_RP_1, P_poll__networl_3_3_RP_0, P_poll__networl_3_3_AnnP_3, P_poll__networl_3_3_AnnP_2, P_poll__networl_3_3_AnnP_1, P_poll__networl_3_3_AnnP_0, P_poll__networl_3_3_AI_3, P_poll__networl_3_3_AI_2, P_poll__networl_3_3_AI_1, P_poll__networl_3_3_AI_0, P_poll__networl_3_3_RI_3, P_poll__networl_3_3_RI_2, P_poll__networl_3_3_RI_1, P_poll__networl_3_3_RI_0, P_poll__networl_3_3_AnsP_3, P_poll__networl_3_3_AnsP_2, P_poll__networl_3_3_AnsP_1, P_poll__networl_3_3_AnsP_0, P_poll__networl_3_3_AskP_3, P_poll__networl_3_3_AskP_2, P_poll__networl_3_3_AskP_1, P_poll__networl_3_3_AskP_0, P_poll__networl_3_2_RP_3, P_poll__networl_3_2_RP_2, P_poll__networl_3_2_RP_1, P_poll__networl_3_2_RP_0, P_poll__networl_3_2_AnnP_3, P_poll__networl_3_2_AnnP_2, P_poll__networl_3_2_AnnP_1, P_poll__networl_3_2_AnnP_0, P_poll__networl_3_2_AI_3, P_poll__networl_3_2_AI_2, P_poll__networl_3_2_AI_1, P_poll__networl_3_2_AI_0, P_poll__networl_3_2_RI_3, P_poll__networl_3_2_RI_2, P_poll__networl_3_2_RI_1, P_poll__networl_3_2_RI_0, P_poll__networl_3_2_AnsP_3, P_poll__networl_3_2_AnsP_2, P_poll__networl_3_2_AnsP_1, P_poll__networl_3_2_AnsP_0, P_poll__networl_3_2_AskP_3, P_poll__networl_3_2_AskP_2, P_poll__networl_3_2_AskP_1, P_poll__networl_3_2_AskP_0, P_poll__networl_3_1_RP_3, P_poll__networl_3_1_RP_2, P_poll__networl_3_1_RP_1, P_poll__networl_3_1_RP_0, P_poll__networl_3_1_AnnP_3, P_poll__networl_3_1_AnnP_2, P_poll__networl_3_1_AnnP_1, P_poll__networl_3_1_AnnP_0, P_poll__networl_3_1_AI_3, P_poll__networl_3_1_AI_2, P_poll__networl_3_1_AI_1, P_poll__networl_3_1_AI_0, P_poll__networl_3_1_RI_3, P_poll__networl_3_1_RI_2, P_poll__networl_3_1_RI_1, P_poll__networl_3_1_RI_0, P_poll__networl_3_1_AnsP_3, P_poll__networl_3_1_AnsP_2, P_poll__networl_3_1_AnsP_1, P_poll__networl_3_1_AnsP_0, P_poll__networl_3_1_AskP_3, P_poll__networl_3_1_AskP_2, P_poll__networl_3_1_AskP_1, P_poll__networl_3_1_AskP_0, P_poll__networl_3_0_RP_3, P_poll__networl_3_0_RP_2, P_poll__networl_3_0_RP_1, P_poll__networl_3_0_RP_0, P_poll__networl_3_0_AnnP_3, P_poll__networl_3_0_AnnP_2, P_poll__networl_3_0_AnnP_1, P_poll__networl_3_0_AnnP_0, P_poll__networl_3_0_AI_3, P_poll__networl_3_0_AI_2, P_poll__networl_3_0_AI_1, P_poll__networl_3_0_AI_0, P_poll__networl_3_0_RI_3, P_poll__networl_3_0_RI_2, P_poll__networl_3_0_RI_1, P_poll__networl_3_0_RI_0, P_poll__networl_3_0_AnsP_3, P_poll__networl_3_0_AnsP_2, P_poll__networl_3_0_AnsP_1, P_poll__networl_3_0_AnsP_0, P_poll__networl_3_0_AskP_3, P_poll__networl_3_0_AskP_2, P_poll__networl_3_0_AskP_1, P_poll__networl_3_0_AskP_0, P_poll__networl_2_3_RP_3, P_poll__networl_2_3_RP_2, P_poll__networl_2_3_RP_1, P_poll__networl_2_3_RP_0, P_poll__networl_2_3_AnnP_3, P_poll__networl_2_3_AnnP_2, P_poll__networl_2_3_AnnP_1, P_poll__networl_2_3_AnnP_0, P_poll__networl_2_3_AI_3, P_poll__networl_2_3_AI_2, P_poll__networl_2_3_AI_1, P_poll__networl_2_3_AI_0, P_poll__networl_2_3_RI_3, P_poll__networl_2_3_RI_2, P_poll__networl_2_3_RI_1, P_poll__networl_2_3_RI_0, P_poll__networl_2_3_AnsP_3, P_poll__networl_2_3_AnsP_2, P_poll__networl_2_3_AnsP_1, P_poll__networl_2_3_AnsP_0, P_poll__networl_2_3_AskP_3, P_poll__networl_2_3_AskP_2, P_poll__networl_2_3_AskP_1, P_poll__networl_2_3_AskP_0, P_poll__networl_2_2_RP_3, P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_3, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_3, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_3, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_3, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_3, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_3, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_3, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_3, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_3, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_3, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_3, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_3, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_3, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_3, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_3, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_3, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_3, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_3_RP_3, P_poll__networl_1_3_RP_2, P_poll__networl_1_3_RP_1, P_poll__networl_1_3_RP_0, P_poll__networl_1_3_AnnP_3, P_poll__networl_1_3_AnnP_2, P_poll__networl_1_3_AnnP_1, P_poll__networl_1_3_AnnP_0, P_poll__networl_1_3_AI_3, P_poll__networl_1_3_AI_2, P_poll__networl_1_3_AI_1, P_poll__networl_1_3_AI_0, P_poll__networl_1_3_RI_3, P_poll__networl_1_3_RI_2, P_poll__networl_1_3_RI_1, P_poll__networl_1_3_RI_0, P_poll__networl_1_3_AnsP_3, P_poll__networl_1_3_AnsP_2, P_poll__networl_1_3_AnsP_1, P_poll__networl_1_3_AnsP_0, P_poll__networl_1_3_AskP_3, P_poll__networl_1_3_AskP_2, P_poll__networl_1_3_AskP_1, P_poll__networl_1_3_AskP_0, P_poll__networl_1_2_RP_3, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_3, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_3, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_3, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_3, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_3, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_3, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_3, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_3, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_3, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_3, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_3, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_3, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_3, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_3, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_3, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_3, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_3, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_3_RP_3, P_poll__networl_0_3_RP_2, P_poll__networl_0_3_RP_1, P_poll__networl_0_3_RP_0, P_poll__networl_0_3_AnnP_3, P_poll__networl_0_3_AnnP_2, P_poll__networl_0_3_AnnP_1, P_poll__networl_0_3_AnnP_0, P_poll__networl_0_3_AI_3, P_poll__networl_0_3_AI_2, P_poll__networl_0_3_AI_1, P_poll__networl_0_3_AI_0, P_poll__networl_0_3_RI_3, P_poll__networl_0_3_RI_2, P_poll__networl_0_3_RI_1, P_poll__networl_0_3_RI_0, P_poll__networl_0_3_AnsP_3, P_poll__networl_0_3_AnsP_2, P_poll__networl_0_3_AnsP_1, P_poll__networl_0_3_AnsP_0, P_poll__networl_0_3_AskP_3, P_poll__networl_0_3_AskP_2, P_poll__networl_0_3_AskP_1, P_poll__networl_0_3_AskP_0, P_poll__networl_0_2_RP_3, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_3, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_3, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_3, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_3, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_3, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_3, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_3, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_3, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_3, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_3, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_3, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_3, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_3, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_3, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_3, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_3, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_3, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]]]
normalized: EG [E [true U ~ [1<=sum(P_poll__networl_3_3_RP_3, P_poll__networl_3_3_RP_2, P_poll__networl_3_3_RP_1, P_poll__networl_3_3_RP_0, P_poll__networl_3_3_AnnP_3, P_poll__networl_3_3_AnnP_2, P_poll__networl_3_3_AnnP_1, P_poll__networl_3_3_AnnP_0, P_poll__networl_3_3_AI_3, P_poll__networl_3_3_AI_2, P_poll__networl_3_3_AI_1, P_poll__networl_3_3_AI_0, P_poll__networl_3_3_RI_3, P_poll__networl_3_3_RI_2, P_poll__networl_3_3_RI_1, P_poll__networl_3_3_RI_0, P_poll__networl_3_3_AnsP_3, P_poll__networl_3_3_AnsP_2, P_poll__networl_3_3_AnsP_1, P_poll__networl_3_3_AnsP_0, P_poll__networl_3_3_AskP_3, P_poll__networl_3_3_AskP_2, P_poll__networl_3_3_AskP_1, P_poll__networl_3_3_AskP_0, P_poll__networl_3_2_RP_3, P_poll__networl_3_2_RP_2, P_poll__networl_3_2_RP_1, P_poll__networl_3_2_RP_0, P_poll__networl_3_2_AnnP_3, P_poll__networl_3_2_AnnP_2, P_poll__networl_3_2_AnnP_1, P_poll__networl_3_2_AnnP_0, P_poll__networl_3_2_AI_3, P_poll__networl_3_2_AI_2, P_poll__networl_3_2_AI_1, P_poll__networl_3_2_AI_0, P_poll__networl_3_2_RI_3, P_poll__networl_3_2_RI_2, P_poll__networl_3_2_RI_1, P_poll__networl_3_2_RI_0, P_poll__networl_3_2_AnsP_3, P_poll__networl_3_2_AnsP_2, P_poll__networl_3_2_AnsP_1, P_poll__networl_3_2_AnsP_0, P_poll__networl_3_2_AskP_3, P_poll__networl_3_2_AskP_2, P_poll__networl_3_2_AskP_1, P_poll__networl_3_2_AskP_0, P_poll__networl_3_1_RP_3, P_poll__networl_3_1_RP_2, P_poll__networl_3_1_RP_1, P_poll__networl_3_1_RP_0, P_poll__networl_3_1_AnnP_3, P_poll__networl_3_1_AnnP_2, P_poll__networl_3_1_AnnP_1, P_poll__networl_3_1_AnnP_0, P_poll__networl_3_1_AI_3, P_poll__networl_3_1_AI_2, P_poll__networl_3_1_AI_1, P_poll__networl_3_1_AI_0, P_poll__networl_3_1_RI_3, P_poll__networl_3_1_RI_2, P_poll__networl_3_1_RI_1, P_poll__networl_3_1_RI_0, P_poll__networl_3_1_AnsP_3, P_poll__networl_3_1_AnsP_2, P_poll__networl_3_1_AnsP_1, P_poll__networl_3_1_AnsP_0, P_poll__networl_3_1_AskP_3, P_poll__networl_3_1_AskP_2, P_poll__networl_3_1_AskP_1, P_poll__networl_3_1_AskP_0, P_poll__networl_3_0_RP_3, P_poll__networl_3_0_RP_2, P_poll__networl_3_0_RP_1, P_poll__networl_3_0_RP_0, P_poll__networl_3_0_AnnP_3, P_poll__networl_3_0_AnnP_2, P_poll__networl_3_0_AnnP_1, P_poll__networl_3_0_AnnP_0, P_poll__networl_3_0_AI_3, P_poll__networl_3_0_AI_2, P_poll__networl_3_0_AI_1, P_poll__networl_3_0_AI_0, P_poll__networl_3_0_RI_3, P_poll__networl_3_0_RI_2, P_poll__networl_3_0_RI_1, P_poll__networl_3_0_RI_0, P_poll__networl_3_0_AnsP_3, P_poll__networl_3_0_AnsP_2, P_poll__networl_3_0_AnsP_1, P_poll__networl_3_0_AnsP_0, P_poll__networl_3_0_AskP_3, P_poll__networl_3_0_AskP_2, P_poll__networl_3_0_AskP_1, P_poll__networl_3_0_AskP_0, P_poll__networl_2_3_RP_3, P_poll__networl_2_3_RP_2, P_poll__networl_2_3_RP_1, P_poll__networl_2_3_RP_0, P_poll__networl_2_3_AnnP_3, P_poll__networl_2_3_AnnP_2, P_poll__networl_2_3_AnnP_1, P_poll__networl_2_3_AnnP_0, P_poll__networl_2_3_AI_3, P_poll__networl_2_3_AI_2, P_poll__networl_2_3_AI_1, P_poll__networl_2_3_AI_0, P_poll__networl_2_3_RI_3, P_poll__networl_2_3_RI_2, P_poll__networl_2_3_RI_1, P_poll__networl_2_3_RI_0, P_poll__networl_2_3_AnsP_3, P_poll__networl_2_3_AnsP_2, P_poll__networl_2_3_AnsP_1, P_poll__networl_2_3_AnsP_0, P_poll__networl_2_3_AskP_3, P_poll__networl_2_3_AskP_2, P_poll__networl_2_3_AskP_1, P_poll__networl_2_3_AskP_0, P_poll__networl_2_2_RP_3, P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_3, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_3, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_3, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_3, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_3, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_3, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_3, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_3, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_3, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_3, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_3, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_3, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_3, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_3, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_3, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_3, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_3, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_3_RP_3, P_poll__networl_1_3_RP_2, P_poll__networl_1_3_RP_1, P_poll__networl_1_3_RP_0, P_poll__networl_1_3_AnnP_3, P_poll__networl_1_3_AnnP_2, P_poll__networl_1_3_AnnP_1, P_poll__networl_1_3_AnnP_0, P_poll__networl_1_3_AI_3, P_poll__networl_1_3_AI_2, P_poll__networl_1_3_AI_1, P_poll__networl_1_3_AI_0, P_poll__networl_1_3_RI_3, P_poll__networl_1_3_RI_2, P_poll__networl_1_3_RI_1, P_poll__networl_1_3_RI_0, P_poll__networl_1_3_AnsP_3, P_poll__networl_1_3_AnsP_2, P_poll__networl_1_3_AnsP_1, P_poll__networl_1_3_AnsP_0, P_poll__networl_1_3_AskP_3, P_poll__networl_1_3_AskP_2, P_poll__networl_1_3_AskP_1, P_poll__networl_1_3_AskP_0, P_poll__networl_1_2_RP_3, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_3, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_3, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_3, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_3, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_3, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_3, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_3, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_3, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_3, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_3, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_3, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_3, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_3, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_3, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_3, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_3, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_3, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_3_RP_3, P_poll__networl_0_3_RP_2, P_poll__networl_0_3_RP_1, P_poll__networl_0_3_RP_0, P_poll__networl_0_3_AnnP_3, P_poll__networl_0_3_AnnP_2, P_poll__networl_0_3_AnnP_1, P_poll__networl_0_3_AnnP_0, P_poll__networl_0_3_AI_3, P_poll__networl_0_3_AI_2, P_poll__networl_0_3_AI_1, P_poll__networl_0_3_AI_0, P_poll__networl_0_3_RI_3, P_poll__networl_0_3_RI_2, P_poll__networl_0_3_RI_1, P_poll__networl_0_3_RI_0, P_poll__networl_0_3_AnsP_3, P_poll__networl_0_3_AnsP_2, P_poll__networl_0_3_AnsP_1, P_poll__networl_0_3_AnsP_0, P_poll__networl_0_3_AskP_3, P_poll__networl_0_3_AskP_2, P_poll__networl_0_3_AskP_1, P_poll__networl_0_3_AskP_0, P_poll__networl_0_2_RP_3, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_3, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_3, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_3, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_3, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_3, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_3, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_3, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_3, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_3, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_3, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_3, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_3, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_3, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_3, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_3, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_3, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_3, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]]]

abstracting: (1<=sum(P_poll__networl_3_3_RP_3, P_poll__networl_3_3_RP_2, P_poll__networl_3_3_RP_1, P_poll__networl_3_3_RP_0, P_poll__networl_3_3_AnnP_3, P_poll__networl_3_3_AnnP_2, P_poll__networl_3_3_AnnP_1, P_poll__networl_3_3_AnnP_0, P_poll__networl_3_3_AI_3, P_poll__networl_3_3_AI_2, P_poll__networl_3_3_AI_1, P_poll__networl_3_3_AI_0, P_poll__networl_3_3_RI_3, P_poll__networl_3_3_RI_2, P_poll__networl_3_3_RI_1, P_poll__networl_3_3_RI_0, P_poll__networl_3_3_AnsP_3, P_poll__networl_3_3_AnsP_2, P_poll__networl_3_3_AnsP_1, P_poll__networl_3_3_AnsP_0, P_poll__networl_3_3_AskP_3, P_poll__networl_3_3_AskP_2, P_poll__networl_3_3_AskP_1, P_poll__networl_3_3_AskP_0, P_poll__networl_3_2_RP_3, P_poll__networl_3_2_RP_2, P_poll__networl_3_2_RP_1, P_poll__networl_3_2_RP_0, P_poll__networl_3_2_AnnP_3, P_poll__networl_3_2_AnnP_2, P_poll__networl_3_2_AnnP_1, P_poll__networl_3_2_AnnP_0, P_poll__networl_3_2_AI_3, P_poll__networl_3_2_AI_2, P_poll__networl_3_2_AI_1, P_poll__networl_3_2_AI_0, P_poll__networl_3_2_RI_3, P_poll__networl_3_2_RI_2, P_poll__networl_3_2_RI_1, P_poll__networl_3_2_RI_0, P_poll__networl_3_2_AnsP_3, P_poll__networl_3_2_AnsP_2, P_poll__networl_3_2_AnsP_1, P_poll__networl_3_2_AnsP_0, P_poll__networl_3_2_AskP_3, P_poll__networl_3_2_AskP_2, P_poll__networl_3_2_AskP_1, P_poll__networl_3_2_AskP_0, P_poll__networl_3_1_RP_3, P_poll__networl_3_1_RP_2, P_poll__networl_3_1_RP_1, P_poll__networl_3_1_RP_0, P_poll__networl_3_1_AnnP_3, P_poll__networl_3_1_AnnP_2, P_poll__networl_3_1_AnnP_1, P_poll__networl_3_1_AnnP_0, P_poll__networl_3_1_AI_3, P_poll__networl_3_1_AI_2, P_poll__networl_3_1_AI_1, P_poll__networl_3_1_AI_0, P_poll__networl_3_1_RI_3, P_poll__networl_3_1_RI_2, P_poll__networl_3_1_RI_1, P_poll__networl_3_1_RI_0, P_poll__networl_3_1_AnsP_3, P_poll__networl_3_1_AnsP_2, P_poll__networl_3_1_AnsP_1, P_poll__networl_3_1_AnsP_0, P_poll__networl_3_1_AskP_3, P_poll__networl_3_1_AskP_2, P_poll__networl_3_1_AskP_1, P_poll__networl_3_1_AskP_0, P_poll__networl_3_0_RP_3, P_poll__networl_3_0_RP_2, P_poll__networl_3_0_RP_1, P_poll__networl_3_0_RP_0, P_poll__networl_3_0_AnnP_3, P_poll__networl_3_0_AnnP_2, P_poll__networl_3_0_AnnP_1, P_poll__networl_3_0_AnnP_0, P_poll__networl_3_0_AI_3, P_poll__networl_3_0_AI_2, P_poll__networl_3_0_AI_1, P_poll__networl_3_0_AI_0, P_poll__networl_3_0_RI_3, P_poll__networl_3_0_RI_2, P_poll__networl_3_0_RI_1, P_poll__networl_3_0_RI_0, P_poll__networl_3_0_AnsP_3, P_poll__networl_3_0_AnsP_2, P_poll__networl_3_0_AnsP_1, P_poll__networl_3_0_AnsP_0, P_poll__networl_3_0_AskP_3, P_poll__networl_3_0_AskP_2, P_poll__networl_3_0_AskP_1, P_poll__networl_3_0_AskP_0, P_poll__networl_2_3_RP_3, P_poll__networl_2_3_RP_2, P_poll__networl_2_3_RP_1, P_poll__networl_2_3_RP_0, P_poll__networl_2_3_AnnP_3, P_poll__networl_2_3_AnnP_2, P_poll__networl_2_3_AnnP_1, P_poll__networl_2_3_AnnP_0, P_poll__networl_2_3_AI_3, P_poll__networl_2_3_AI_2, P_poll__networl_2_3_AI_1, P_poll__networl_2_3_AI_0, P_poll__networl_2_3_RI_3, P_poll__networl_2_3_RI_2, P_poll__networl_2_3_RI_1, P_poll__networl_2_3_RI_0, P_poll__networl_2_3_AnsP_3, P_poll__networl_2_3_AnsP_2, P_poll__networl_2_3_AnsP_1, P_poll__networl_2_3_AnsP_0, P_poll__networl_2_3_AskP_3, P_poll__networl_2_3_AskP_2, P_poll__networl_2_3_AskP_1, P_poll__networl_2_3_AskP_0, P_poll__networl_2_2_RP_3, P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_3, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_3, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_3, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_3, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_3, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_3, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_3, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_3, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_3, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_3, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_3, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_3, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_3, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_3, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_3, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_3, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_3, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_3_RP_3, P_poll__networl_1_3_RP_2, P_poll__networl_1_3_RP_1, P_poll__networl_1_3_RP_0, P_poll__networl_1_3_AnnP_3, P_poll__networl_1_3_AnnP_2, P_poll__networl_1_3_AnnP_1, P_poll__networl_1_3_AnnP_0, P_poll__networl_1_3_AI_3, P_poll__networl_1_3_AI_2, P_poll__networl_1_3_AI_1, P_poll__networl_1_3_AI_0, P_poll__networl_1_3_RI_3, P_poll__networl_1_3_RI_2, P_poll__networl_1_3_RI_1, P_poll__networl_1_3_RI_0, P_poll__networl_1_3_AnsP_3, P_poll__networl_1_3_AnsP_2, P_poll__networl_1_3_AnsP_1, P_poll__networl_1_3_AnsP_0, P_poll__networl_1_3_AskP_3, P_poll__networl_1_3_AskP_2, P_poll__networl_1_3_AskP_1, P_poll__networl_1_3_AskP_0, P_poll__networl_1_2_RP_3, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_3, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_3, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_3, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_3, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_3, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_3, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_3, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_3, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_3, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_3, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_3, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_3, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_3, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_3, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_3, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_3, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_3, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_3_RP_3, P_poll__networl_0_3_RP_2, P_poll__networl_0_3_RP_1, P_poll__networl_0_3_RP_0, P_poll__networl_0_3_AnnP_3, P_poll__networl_0_3_AnnP_2, P_poll__networl_0_3_AnnP_1, P_poll__networl_0_3_AnnP_0, P_poll__networl_0_3_AI_3, P_poll__networl_0_3_AI_2, P_poll__networl_0_3_AI_1, P_poll__networl_0_3_AI_0, P_poll__networl_0_3_RI_3, P_poll__networl_0_3_RI_2, P_poll__networl_0_3_RI_1, P_poll__networl_0_3_RI_0, P_poll__networl_0_3_AnsP_3, P_poll__networl_0_3_AnsP_2, P_poll__networl_0_3_AnsP_1, P_poll__networl_0_3_AnsP_0, P_poll__networl_0_3_AskP_3, P_poll__networl_0_3_AskP_2, P_poll__networl_0_3_AskP_1, P_poll__networl_0_3_AskP_0, P_poll__networl_0_2_RP_3, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_3, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_3, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_3, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_3, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_3, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_3, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_3, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_3, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_3, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_3, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_3, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_3, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_3, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_3, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_3, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_3, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_3, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)) states: 0

EG iterations: 0
-> the formula is TRUE

FORMULA NeoElection-COL-3-CTLCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.179sec


Total processing time: 21m44.416sec


BK_STOP 1463691310318

--------------------
content from stderr:

check for maximal unmarked siphon
found
The net has a maximal unmarked siphon:
P_dead_0
P_electedPrimary_1
P_crashed_0
P_poll__networl_1_0_RI_1
P_poll__networl_1_0_RI_0
P_poll__networl_0_3_RP_0
P_poll__networl_0_3_RP_1
P_poll__networl_0_3_AnnP_2
P_poll__networl_0_3_AnnP_3
P_poll__networl_1_0_AskP_2
P_poll__networl_1_0_AskP_3
P_poll__networl_1_0_AskP_0
P_poll__networl_1_0_AskP_1
P_poll__networl_0_3_RP_2
P_poll__networl_0_3_RP_3
P_poll__networl_0_3_AnnP_0
P_poll__networl_0_3_AnnP_1
P_poll__networl_0_3_AI_2
P_poll__networl_0_3_AI_3
P_poll__networl_0_3_RI_0
P_poll__networl_0_3_AnsP_2
P_poll__networl_0_3_AnsP_3
P_poll__networl_0_3_AnsP_0
P_poll__networl_0_3_AnsP_1
P_poll__networl_0_3_AI_0
P_poll__networl_0_3_AI_1
P_poll__networl_0_3_RI_2
P_poll__networl_0_3_RI_3
P_poll__networl_0_3_RI_1
P_poll__networl_0_2_RP_0
P_poll__networl_0_2_RP_1
P_poll__networl_0_2_AnnP_2
P_poll__networl_0_2_AnnP_3
P_poll__networl_0_3_AskP_2
P_poll__networl_0_3_AskP_3
P_poll__networl_0_3_AskP_0
P_poll__networl_0_3_AskP_1
P_poll__networl_0_2_RP_2
P_poll__networl_0_2_RP_3
P_poll__networl_0_2_AnnP_1
P_poll__networl_0_0_AskP_0
P_poll__networl_0_0_AskP_1
P_poll__handlingMessage_0
P_network_3_3_RP_2
P_network_3_3_RP_0
P_network_3_3_RP_1
P_network_3_3_AnnP_2
P_network_3_3_AnnP_3
P_network_3_3_AnnP_0
P_network_3_3_AnnP_1
P_network_3_3_AI_2
P_network_3_3_AI_3
P_network_3_3_AI_0
P_network_3_3_AI_1
P_network_3_3_RI_2
P_network_3_3_RI_3
P_poll__networl_0_2_AnnP_0
P_network_3_3_RI_1
P_poll__networl_0_2_AI_2
P_poll__networl_0_2_AI_3
P_poll__networl_0_2_AI_0
P_poll__networl_0_2_AI_1
P_poll__networl_0_2_RI_2
P_poll__networl_0_2_RI_3
P_poll__networl_0_2_RI_0
P_poll__networl_0_2_RI_1
P_poll__networl_0_2_AnsP_2
P_poll__networl_0_2_AnsP_3
P_poll__networl_0_2_AnsP_0
P_poll__networl_0_2_AnsP_1
P_poll__networl_0_2_AskP_3
P_poll__networl_0_2_AskP_0
P_poll__networl_0_2_AskP_1
P_poll__networl_0_1_RP_2
P_poll__networl_0_1_RP_3
P_poll__networl_0_1_RP_0
P_poll__networl_0_1_RP_1
P_poll__networl_0_1_AnnP_2
P_poll__networl_0_1_AnnP_0
P_poll__networl_0_1_AnnP_1
P_poll__networl_0_1_AI_2
P_poll__networl_0_1_AI_3
P_poll__networl_0_1_AI_0
P_poll__networl_0_1_AI_1
P_poll__networl_0_1_RI_2
P_poll__networl_0_1_RI_3
P_poll__networl_0_1_RI_0
P_poll__networl_0_1_RI_1
P_poll__networl_0_1_AnsP_2
P_poll__networl_0_1_AnsP_3
P_poll__networl_0_1_AnsP_1
P_poll__networl_0_1_AskP_2
P_poll__networl_0_1_AskP_3
P_poll__networl_0_1_AskP_0
P_poll__networl_0_1_AskP_1
P_poll__networl_0_0_RP_2
P_poll__networl_0_0_RP_3
P_poll__networl_0_0_RP_0
P_poll__networl_0_0_AnnP_2
P_poll__networl_0_0_AnnP_3
P_poll__networl_0_0_AnnP_0
P_poll__networl_0_0_AnnP_1
P_poll__networl_0_0_AI_2
P_poll__networl_0_0_AI_3
P_poll__networl_0_0_AI_0
P_poll__networl_0_0_AI_1
P_poll__networl_0_0_RI_2
P_poll__networl_0_0_RI_3
P_poll__networl_0_0_RI_0
P_poll__networl_0_0_RI_1
P_poll__networl_0_0_AnsP_3
P_poll__networl_0_0_AnsP_0
P_poll__networl_0_0_AnsP_1
P_poll__networl_0_0_AskP_2
P_poll__networl_0_0_AskP_3
P_network_3_3_RP_3
P_network_3_3_RI_0
P_poll__networl_0_2_AskP_2
P_poll__networl_0_1_AnnP_3
P_poll__networl_0_1_AnsP_0
P_poll__networl_0_0_RP_1
P_poll__networl_0_0_AnsP_2
P_network_3_1_AnsP_3
P_network_3_1_AnsP_1
P_network_3_1_AnsP_2
P_network_3_1_AskP_1
P_network_3_1_AskP_2
P_network_3_0_RP_3
P_network_3_0_RP_2
P_network_3_0_AnnP_3
P_network_3_0_RP_0
P_network_3_0_AnnP_1
P_network_3_0_AnnP_2
P_network_3_0_AnnP_0
P_network_3_3_AnsP_2
P_network_3_3_AnsP_3
P_network_3_3_AnsP_0
P_network_3_3_AnsP_1
P_network_3_3_AskP_2
P_network_3_3_AskP_3
P_network_3_3_AskP_1
P_network_3_2_RP_3
P_network_3_3_AskP_0
P_network_3_2_RP_1
P_network_3_2_AnnP_3
P_network_3_2_RP_0
P_network_3_2_AnnP_1
P_network_3_2_AnnP_2
P_network_3_2_AI_3
P_network_3_2_AI_1
P_network_3_2_AI_2
P_network_3_2_RI_3
P_network_3_2_RI_1
P_network_3_2_AnsP_3
P_network_3_2_AnsP_1
P_network_3_2_AnsP_2
P_network_3_2_AskP_3
P_network_3_2_AskP_1
P_network_3_2_AskP_2
P_network_3_1_RP_1
P_network_3_1_RP_2
P_network_3_1_AnnP_3
P_network_3_1_RP_0
P_network_3_1_AnnP_2
P_network_3_1_AI_3
P_network_3_1_AnnP_0
P_network_3_1_AI_1
P_network_3_1_AI_2
P_network_3_1_RI_3
P_network_3_1_RI_1
P_network_3_1_RI_2
P_network_3_1_AskP_3
P_network_3_0_RP_1
P_network_3_2_RP_2
P_network_3_2_AnnP_0
P_network_3_2_RI_2
P_network_3_1_RP_3
P_network_3_1_AnnP_1
P_network_3_0_AskP_1
P_network_3_0_AskP_2
P_network_2_3_RP_3
P_network_3_0_AskP_0
P_network_2_3_RP_1
P_network_2_3_AnnP_3
P_network_2_3_RP_0
P_network_2_3_AnnP_1
P_network_2_3_AI_3
P_network_2_3_AnnP_0
P_network_2_3_AI_2
P_network_2_3_RI_3
P_network_2_3_RI_1
P_network_2_3_RI_2
P_network_2_3_AnsP_3
P_network_2_3_AnsP_2
P_network_2_3_AskP_3
P_network_2_3_AskP_2
P_network_2_2_RP_3
P_network_2_2_RP_1
P_network_2_2_RP_2
P_network_2_2_AnnP_3
P_network_2_2_RP_0
P_network_2_2_AnnP_1
P_network_2_2_AnnP_2
P_network_2_2_AI_3
P_network_2_2_AnnP_0
P_network_2_2_AI_1
P_network_2_2_AI_2
P_network_2_2_RI_3
P_network_2_2_AI_0
P_network_2_2_RI_1
P_network_2_2_RI_2
P_network_2_2_AnsP_3
P_network_2_2_RI_0
P_network_2_2_AnsP_1
P_network_2_2_AnsP_2
P_network_2_2_AskP_3
P_network_2_2_AnsP_0
P_network_2_2_AskP_1
P_network_2_2_AskP_2
P_network_2_1_RP_3
P_network_2_2_AskP_0
P_network_2_1_RP_1
P_network_2_1_RP_2
P_network_2_1_RP_0
P_network_2_1_AnnP_1
P_network_2_1_AnnP_2
P_network_2_1_AnnP_0
P_network_2_1_AI_1
P_network_2_1_AI_2
P_network_2_1_RI_3
P_network_2_1_RI_1
P_network_2_1_RI_2
P_network_2_1_AnsP_2
P_network_2_1_AskP_3
P_network_2_1_AskP_1
P_network_2_1_AskP_2
P_network_2_0_RP_3
P_network_2_0_RP_1
P_network_2_0_RP_2
P_network_2_0_AnnP_3
P_network_2_0_RP_0
P_network_2_0_AnnP_1
P_network_2_0_AnnP_2
P_network_2_0_AI_3
P_network_2_0_AnnP_0
P_network_2_0_AI_1
P_network_2_0_AI_2
P_network_2_0_AI_0
P_network_2_0_RI_1
P_network_2_0_RI_2
P_network_2_0_AnsP_3
P_network_2_0_RI_0
P_network_2_0_AnsP_1
P_network_2_0_AskP_3
P_network_2_0_AnsP_0
P_network_2_0_AskP_1
P_network_1_3_RP_3
P_network_2_0_AskP_0
P_network_1_3_RP_2
P_network_1_3_AnnP_3
P_network_1_3_RP_0
P_network_1_3_AnnP_1
P_network_1_3_AnnP_2
P_network_1_3_AI_3
P_network_1_3_AnnP_0
P_network_1_3_AI_2
P_network_1_3_RI_3
P_network_1_3_RI_2
P_network_3_0_AI_3
P_network_3_0_AI_1
P_network_3_0_AI_2
P_network_3_0_RI_3
P_network_3_0_AI_0
P_network_3_0_RI_1
P_network_3_0_RI_2
P_network_3_0_AnsP_3
P_network_3_0_RI_0
P_network_3_0_AnsP_1
P_network_3_0_AnsP_2
P_network_3_0_AskP_3
P_network_3_0_AnsP_0
P_network_2_3_RP_2
P_network_2_3_AI_1
P_network_2_3_AnnP_2
P_network_2_3_AnsP_1
P_network_2_3_AskP_1
P_network_2_1_AnnP_3
P_network_2_1_AI_3
P_network_2_1_AnsP_3
P_network_2_1_AnsP_1
P_network_2_0_RI_3
P_network_2_0_AnsP_2
P_network_1_3_RP_1
P_network_2_0_AskP_2
P_network_1_3_AI_1
P_network_1_3_RI_1
P_network_1_1_AnsP_3
P_network_1_1_RI_0
P_network_1_1_AnsP_1
P_network_1_1_AnsP_2
P_network_1_1_AnsP_0
P_network_1_1_AskP_1
P_network_1_1_AskP_2
P_network_1_0_RP_3
P_network_1_1_AskP_0
P_network_1_0_RP_2
P_network_1_0_AnnP_3
P_network_1_0_RP_0
P_network_1_0_AnnP_1
P_network_1_0_AnnP_2
P_network_1_3_AnsP_3
P_network_1_0_AnnP_0
P_network_1_3_AnsP_1
P_network_1_3_AnsP_2
P_network_1_3_AskP_3
P_network_1_3_AskP_1
P_network_1_3_AskP_2
P_network_1_2_RP_3
P_network_1_2_RP_1
P_network_1_2_AnnP_3
P_network_1_2_RP_0
P_network_1_2_AnnP_1
P_network_1_2_AnnP_2
P_network_1_2_AI_3
P_network_1_2_AI_1
P_network_1_2_AI_2
P_network_1_2_RI_3
P_network_1_2_RI_1
P_network_1_2_AnsP_3
P_network_1_2_AnsP_1
P_network_1_2_AnsP_2
P_network_1_2_AskP_3
P_network_1_2_AskP_1
P_network_1_2_AskP_2
P_network_1_1_RP_1
P_network_1_1_RP_2
P_network_1_1_AnnP_3
P_network_1_1_RP_0
P_network_1_1_AnnP_2
P_network_1_1_AI_3
P_network_1_1_AnnP_0
P_network_1_1_AI_1
P_network_1_1_AI_2
P_network_1_1_RI_3
P_network_1_1_AI_0
P_network_1_1_RI_1
P_network_1_1_RI_2
P_network_1_1_AskP_3
P_network_1_0_RP_1
P_network_1_2_RP_2
P_network_1_2_AnnP_0
P_network_1_2_RI_2
P_network_1_1_RP_3
P_network_1_1_AnnP_1
P_network_1_0_RI_1
P_network_1_0_RI_2
P_network_1_0_RI_0
P_network_1_0_AnsP_2
P_network_1_0_AnsP_3
P_network_1_0_AI_3
P_network_1_0_AI_1
P_network_1_0_AI_2
P_network_1_0_RI_3
P_network_1_0_AI_0
P_network_0_3_RP_2
P_network_0_3_RP_3
P_network_0_3_RP_0
P_network_0_3_RP_1
P_network_1_0_AnsP_0
P_network_1_0_AnsP_1
P_network_1_0_AskP_2
P_network_1_0_AskP_3
P_network_1_0_AskP_0
P_network_1_0_AskP_1
P_network_0_1_AnnP_2
P_network_0_3_AnnP_3
P_network_0_1_AnnP_0
P_network_0_1_AnnP_1
P_network_0_1_AI_3
P_network_0_1_AI_0
P_network_0_1_AI_1
P_network_0_1_RI_2
P_network_0_1_RI_3
P_network_0_1_RI_1
P_network_0_1_AnsP_2
P_network_0_1_AnsP_3
P_network_0_1_AnsP_0
P_network_0_1_AnsP_1
P_network_0_3_AnnP_2
P_network_0_3_AnnP_0
P_network_0_3_AnnP_1
P_network_0_3_AI_2
P_network_0_3_AI_3
P_network_0_3_AI_0
P_network_0_3_AI_1
P_network_0_3_RI_2
P_network_0_3_RI_3
P_network_0_3_RI_0
P_network_0_3_RI_1
P_network_0_3_AnsP_2
P_network_0_3_AnsP_3
P_network_0_3_AnsP_0
P_network_0_3_AnsP_1
P_network_0_3_AskP_3
P_network_0_3_AskP_0
P_network_0_3_AskP_1
P_network_0_2_RP_2
P_network_0_2_RP_3
P_network_0_2_RP_1
P_network_0_2_AnnP_2
P_network_0_2_AnnP_3
P_network_0_2_AnnP_0
P_network_0_2_AnnP_1
P_network_0_2_AI_2
P_network_0_2_AI_3
P_network_0_2_AI_0
P_network_0_2_AI_1
P_network_0_2_RI_2
P_network_0_2_RI_3
P_network_0_2_RI_0
P_network_0_2_RI_1
P_network_0_2_AnsP_2
P_network_0_2_AnsP_3
P_network_0_2_AnsP_0
P_network_0_2_AnsP_1
P_network_0_2_AskP_2
P_network_0_2_AskP_3
P_network_0_2_AskP_0
P_network_0_2_AskP_1
P_network_0_1_RP_3
P_network_0_1_RP_0
P_network_0_1_RP_1
P_network_0_1_AI_2
P_network_0_1_AnnP_3
P_network_0_1_RI_0
P_network_0_1_AskP_3
P_network_0_3_AskP_2
P_network_0_2_RP_0
P_network_0_1_RP_2
P_negotiation_3_0_DONE
P_negotiation_3_0_NONE
P_negotiation_3_0_CO
P_negotiation_2_2_CO
P_negotiation_2_0_DONE
P_negotiation_1_1_NONE
P_negotiation_1_1_CO
P_negotiation_1_0_CO
P_negotiation_1_0_DONE
P_negotiation_1_0_NONE
P_negotiation_0_3_NONE
P_negotiation_0_3_CO
P_negotiation_0_2_CO
P_negotiation_0_2_DONE
P_negotiation_0_1_DONE
P_negotiation_0_2_NONE
P_negotiation_0_1_NONE
P_negotiation_0_0_CO
P_negotiation_0_0_DONE
P_masterState_3_T_3
P_masterState_3_T_1
P_masterState_3_T_2
P_masterState_3_F_3
P_masterState_3_F_1
P_masterState_3_F_2
P_masterState_3_F_0
P_masterState_2_T_1
P_masterState_2_T_2
P_masterState_2_F_3
P_masterState_2_F_1
P_masterState_2_F_2
P_masterState_1_T_3
P_masterState_1_T_2
P_masterState_1_F_3
P_masterState_1_F_2
P_masterState_0_T_3
P_masterState_0_T_1
P_masterState_0_T_2
P_masterState_0_F_3
P_masterState_0_T_0
P_masterState_0_F_1
P_masterList_3_3_3
P_masterState_0_F_0
P_masterList_3_3_0
P_masterList_3_2_1
P_network_0_1_AskP_2
P_network_0_1_AskP_0
P_network_0_1_AskP_1
P_network_0_0_RP_2
P_network_0_0_RP_3
P_network_0_0_RP_0
P_network_0_0_RP_1
P_network_0_0_AnnP_2
P_network_0_0_AnnP_3
P_network_0_0_AnnP_0
P_network_0_0_AnnP_1
P_network_0_0_AI_2
P_network_0_0_AI_3
P_network_0_0_AI_0
P_network_0_0_AI_1
P_network_0_0_RI_2
P_network_0_0_RI_3
P_network_0_0_RI_0
P_network_0_0_RI_1
P_network_0_0_AnsP_2
P_network_0_0_AnsP_3
P_network_0_0_AnsP_0
P_network_0_0_AnsP_1
P_network_0_0_AskP_2
P_network_0_0_AskP_3
P_network_0_0_AskP_0
P_network_0_0_AskP_1
P_negotiation_3_3_CO
P_negotiation_3_3_NONE
P_negotiation_2_2_NONE
P_poll__networl_1_0_AnnP_0
P_negotiation_2_0_CO
P_negotiation_2_0_NONE
P_negotiation_0_3_DONE
P_negotiation_0_1_CO
P_negotiation_0_0_NONE
P_masterState_2_T_3
P_masterState_1_T_1
P_masterState_1_F_1
P_masterState_0_F_2
P_masterList_3_3_1
P_masterList_3_3_2
P_poll__networl_1_0_AnsP_0
P_poll__networl_1_0_AnsP_2
P_poll__networl_1_0_AnsP_1
P_poll__networl_1_0_AnsP_3
P_poll__networl_1_0_RI_3
P_poll__networl_1_0_RI_2
P_poll__networl_1_0_AI_1
P_poll__networl_1_0_AI_0
P_poll__waitingMessage_1
P_masterList_3_2_3
P_poll__waitingMessage_2
P_poll__waitingMessage_3
P_polling_0
P_sendAnnPs__broadcasting_0_1
P_sendAnnPs__broadcasting_0_2
P_sendAnnPs__broadcasting_0_3
P_sendAnnPs__broadcasting_1_1
P_sendAnnPs__broadcasting_1_2
P_sendAnnPs__broadcasting_1_3
P_sendAnnPs__broadcasting_2_1
P_stage_0_NEG
P_stage_1_SEC
P_startNeg__broadcasting_0_3
P_startNeg__broadcasting_0_2
P_sendAnnPs__broadcasting_2_2
P_sendAnnPs__broadcasting_2_3
P_sendAnnPs__broadcasting_3_1
P_sendAnnPs__broadcasting_3_2
P_startNeg__broadcasting_0_1
P_sendAnnPs__broadcasting_3_3
P_stage_3_SEC
P_stage_0_PRIM
P_stage_0_SEC
P_stage_1_PRIM
P_stage_3_PRIM
P_stage_2_SEC
P_stage_2_PRIM
P_crashed_1
P_crashed_2
P_electedPrimary_2
P_poll__networl_1_0_AI_2
P_crashed_3
P_poll__networl_1_0_AnnP_1
P_poll__networl_1_0_AnnP_2
P_poll__networl_1_0_AI_3
P_dead_1
P_dead_2
P_poll__networl_1_0_RP_2
P_poll__networl_1_0_RP_3
P_poll__networl_1_1_AskP_0
P_poll__networl_1_1_AskP_1
P_electedPrimary_3
P_electedSecondary_0
P_electedSecondary_1
P_electedSecondary_2
P_electedSecondary_3
P_electionFailed_0
P_electionFailed_1
P_dead_3
P_electedPrimary_0
P_electionFailed_2
P_electionFailed_3
P_electionInit_0
P_masterList_0_1_0
P_masterList_0_1_1
P_masterList_0_1_2
P_masterList_0_1_3
P_masterList_0_2_0
P_masterList_0_2_1
P_masterList_0_2_2
P_masterList_0_2_3
P_masterList_0_3_0
P_poll__networl_1_0_AnnP_3
P_poll__networl_1_0_RP_0
P_poll__networl_1_0_RP_1
P_masterList_0_3_1
P_masterList_0_3_2
P_masterList_0_3_3
P_masterList_1_1_0
P_masterList_1_1_1
P_masterList_1_1_3
P_masterList_1_2_0
P_masterList_1_2_1
P_masterList_1_2_2
P_masterList_1_3_0
P_masterList_1_3_1
P_masterList_1_3_2
P_masterList_1_3_3
P_masterList_2_1_0
P_masterList_2_1_2
P_masterList_2_1_3
P_masterList_2_2_0
P_masterList_2_2_1
P_masterList_2_2_2
P_masterList_2_3_0
P_masterList_2_3_1
P_masterList_2_3_2
P_masterList_2_3_3
P_masterList_3_1_0
P_masterList_3_1_2
P_masterList_3_1_3
P_masterList_3_2_0
P_poll__networl_1_1_AskP_2
P_poll__networl_1_1_AskP_3
P_poll__networl_1_1_AnsP_0
P_poll__networl_1_1_AnsP_1
P_poll__networl_1_1_AnsP_2
P_poll__networl_1_1_AnsP_3
P_poll__networl_1_1_RI_0
P_poll__networl_1_1_RI_1
P_poll__networl_1_1_RI_2
P_poll__networl_1_1_RI_3
P_poll__networl_1_1_AI_0
P_poll__networl_1_1_AI_1
P_poll__networl_1_1_AI_2
P_poll__networl_1_1_AI_3
P_poll__networl_1_1_AnnP_0
P_poll__networl_1_1_AnnP_1
P_poll__networl_1_1_AnnP_2
P_poll__networl_1_1_AnnP_3
P_poll__networl_1_1_RP_0
P_poll__networl_1_1_RP_1
P_poll__networl_1_1_RP_2
P_poll__networl_1_1_RP_3
P_poll__networl_1_2_AskP_0
P_poll__networl_1_2_AskP_1
P_poll__networl_1_2_AskP_2
P_poll__networl_1_2_AskP_3
P_poll__networl_1_2_AnsP_0
P_poll__networl_1_2_AnsP_1
P_poll__networl_1_2_AnsP_2
P_poll__networl_1_2_AnsP_3
P_poll__networl_1_2_RI_0
P_poll__networl_1_2_RI_1
P_poll__networl_1_2_RI_2
P_poll__networl_1_2_RI_3
P_poll__networl_1_2_AI_0
P_poll__networl_1_2_AI_1
P_poll__networl_1_2_AI_2
P_poll__networl_1_2_AI_3
P_poll__networl_1_2_AnnP_0
P_poll__networl_1_2_AnnP_1
P_poll__networl_1_2_AnnP_2
P_poll__networl_1_2_AnnP_3
P_poll__networl_1_2_RP_0
P_poll__networl_1_2_RP_1
P_poll__networl_1_2_RP_2
P_poll__networl_1_2_RP_3
P_poll__networl_1_3_AskP_0
P_poll__networl_1_3_AskP_1
P_poll__networl_1_3_AskP_2
P_poll__networl_1_3_AskP_3
P_poll__networl_1_3_AnsP_0
P_poll__networl_1_3_AnsP_1
P_poll__networl_1_3_AnsP_2
P_poll__networl_1_3_AnsP_3
P_poll__networl_1_3_RI_0
P_poll__networl_1_3_RI_1
P_poll__networl_1_3_RI_2
P_poll__networl_1_3_RI_3
P_poll__networl_1_3_AI_0
P_poll__networl_1_3_AI_1
P_poll__networl_1_3_AI_2
P_poll__networl_1_3_AI_3
P_poll__networl_1_3_AnnP_0
P_poll__networl_1_3_AnnP_1
P_poll__networl_1_3_AnnP_2
P_poll__networl_1_3_AnnP_3
P_poll__networl_1_3_RP_0
P_poll__networl_1_3_RP_1
P_poll__networl_1_3_RP_2
P_poll__networl_1_3_RP_3
P_poll__networl_2_0_AskP_0
P_poll__networl_2_0_AskP_1
P_poll__networl_2_0_AskP_2
P_poll__networl_2_0_AskP_3
P_poll__networl_2_0_AnsP_0
P_poll__networl_2_0_AnsP_1
P_poll__networl_2_0_AnsP_2
P_poll__networl_2_0_AnsP_3
P_poll__networl_2_0_RI_0
P_poll__networl_2_0_RI_1
P_poll__networl_2_0_RI_2
P_poll__networl_2_0_RI_3
P_poll__networl_2_0_AI_0
P_poll__networl_2_0_AI_1
P_poll__networl_2_0_AI_2
P_poll__networl_2_0_AI_3
P_poll__networl_2_0_AnnP_0
P_poll__networl_2_0_AnnP_1
P_poll__networl_2_0_AnnP_2
P_poll__networl_2_0_AnnP_3
P_poll__networl_2_0_RP_0
P_poll__networl_2_0_RP_1
P_poll__networl_2_0_RP_2
P_poll__networl_2_0_RP_3
P_poll__networl_2_1_AskP_0
P_poll__networl_2_1_AskP_1
P_poll__networl_2_1_AskP_2
P_poll__networl_2_1_AskP_3
P_poll__networl_2_1_AnsP_0
P_poll__networl_2_1_AnsP_1
P_poll__networl_2_1_AnsP_2
P_poll__networl_2_1_AnsP_3
P_poll__networl_2_1_RI_0
P_poll__networl_2_1_RI_1
P_poll__networl_2_1_RI_2
P_poll__networl_2_1_RI_3
P_poll__networl_2_1_AI_0
P_poll__networl_2_1_AI_1
P_poll__networl_2_1_AI_2
P_poll__networl_2_1_AI_3
P_poll__networl_2_1_AnnP_0
P_poll__networl_2_1_AnnP_1
P_poll__networl_2_1_AnnP_2
P_poll__networl_2_1_AnnP_3
P_poll__networl_2_1_RP_0
P_poll__networl_2_1_RP_1
P_poll__networl_2_1_RP_2
P_poll__networl_2_1_RP_3
P_poll__networl_2_2_AskP_0
P_poll__networl_2_2_AskP_1
P_poll__networl_2_2_AskP_2
P_poll__networl_2_2_AskP_3
P_poll__networl_2_2_AnsP_0
P_poll__networl_2_2_AnsP_1
P_poll__networl_2_2_AnsP_2
P_poll__networl_2_2_AnsP_3
P_poll__networl_2_2_RI_0
P_poll__networl_2_2_RI_1
P_poll__networl_2_2_RI_2
P_poll__networl_2_2_RI_3
P_poll__networl_2_2_AI_0
P_poll__networl_2_2_AI_1
P_poll__networl_2_2_AI_2
P_poll__networl_2_2_AI_3
P_poll__networl_2_2_AnnP_0
P_poll__networl_2_2_AnnP_1
P_poll__networl_2_2_AnnP_2
P_poll__networl_2_2_AnnP_3
P_poll__networl_2_2_RP_0
P_poll__networl_2_2_RP_1
P_poll__networl_2_2_RP_2
P_poll__networl_2_2_RP_3
P_poll__networl_2_3_AskP_0
P_poll__networl_2_3_AskP_1
P_poll__networl_2_3_AskP_2
P_poll__networl_2_3_AskP_3
P_poll__networl_2_3_AnsP_0
P_poll__networl_2_3_AnsP_1
P_poll__networl_2_3_AnsP_2
P_poll__networl_2_3_AnsP_3
P_poll__networl_2_3_RI_0
P_poll__networl_2_3_RI_1
P_poll__networl_2_3_RI_2
P_poll__networl_2_3_RI_3
P_poll__networl_2_3_AI_0
P_poll__networl_2_3_AI_1
P_poll__networl_2_3_AI_2
P_poll__networl_2_3_AI_3
P_poll__networl_2_3_AnnP_0
P_poll__networl_2_3_AnnP_1
P_poll__networl_2_3_AnnP_2
P_poll__networl_2_3_AnnP_3
P_poll__networl_2_3_RP_0
P_poll__networl_2_3_RP_1
P_poll__networl_2_3_RP_2
P_poll__networl_2_3_RP_3
P_poll__networl_3_0_AskP_0
P_poll__networl_3_0_AskP_1
P_poll__networl_3_0_AskP_2
P_poll__networl_3_0_AskP_3
P_poll__networl_3_0_AnsP_0
P_poll__networl_3_0_AnsP_1
P_poll__networl_3_0_AnsP_2
P_poll__networl_3_0_AnsP_3
P_poll__networl_3_0_RI_0
P_poll__networl_3_0_RI_1
P_poll__networl_3_0_RI_2
P_poll__networl_3_0_RI_3
P_poll__networl_3_0_AI_0
P_poll__networl_3_0_AI_1
P_poll__networl_3_0_AI_2
P_poll__networl_3_0_AI_3
P_poll__networl_3_0_AnnP_0
P_poll__networl_3_0_AnnP_1
P_poll__networl_3_0_AnnP_2
P_poll__networl_3_0_AnnP_3
P_poll__networl_3_0_RP_0
P_poll__networl_3_0_RP_1
P_poll__networl_3_0_RP_2
P_poll__networl_3_0_RP_3
P_poll__networl_3_1_AskP_0
P_poll__networl_3_1_AskP_1
P_poll__networl_3_1_AskP_2
P_poll__networl_3_1_AskP_3
P_poll__networl_3_1_AnsP_0
P_poll__networl_3_1_AnsP_1
P_poll__networl_3_1_AnsP_2
P_poll__networl_3_1_AnsP_3
P_poll__networl_3_1_RI_0
P_poll__networl_3_1_RI_1
P_poll__networl_3_1_RI_2
P_poll__networl_3_1_RI_3
P_poll__networl_3_1_AI_0
P_poll__networl_3_1_AI_1
P_poll__networl_3_1_AI_2
P_poll__networl_3_1_AI_3
P_poll__networl_3_1_AnnP_0
P_poll__networl_3_1_AnnP_1
P_poll__networl_3_1_AnnP_2
P_poll__networl_3_1_AnnP_3
P_poll__networl_3_1_RP_0
P_poll__networl_3_1_RP_1
P_poll__networl_3_1_RP_2
P_poll__networl_3_1_RP_3
P_poll__networl_3_2_AskP_0
P_poll__networl_3_2_AskP_1
P_poll__networl_3_2_AskP_2
P_poll__networl_3_2_AskP_3
P_poll__networl_3_2_AnsP_0
P_poll__networl_3_2_AnsP_1
P_poll__networl_3_2_AnsP_2
P_poll__networl_3_2_AnsP_3
P_poll__networl_3_2_RI_0
P_poll__networl_3_2_RI_1
P_poll__networl_3_2_RI_2
P_poll__networl_3_2_RI_3
P_poll__networl_3_2_AI_0
P_poll__networl_3_2_AI_1
P_poll__networl_3_2_AI_2
P_poll__networl_3_2_AI_3
P_poll__networl_3_2_AnnP_0
P_poll__networl_3_2_AnnP_1
P_poll__networl_3_2_AnnP_2
P_poll__networl_3_2_AnnP_3
P_poll__networl_3_2_RP_0
P_poll__networl_3_2_RP_1
P_poll__networl_3_2_RP_2
P_poll__networl_3_2_RP_3
P_poll__networl_3_3_AskP_0
P_poll__networl_3_3_AskP_1
P_poll__networl_3_3_AskP_2
P_poll__networl_3_3_AskP_3
P_poll__networl_3_3_AnsP_0
P_poll__networl_3_3_AnsP_1
P_poll__networl_3_3_AnsP_2
P_poll__networl_3_3_AnsP_3
P_poll__networl_3_3_RI_0
P_poll__networl_3_3_RI_1
P_poll__networl_3_3_RI_2
P_poll__networl_3_3_RI_3
P_poll__networl_3_3_AI_0
P_poll__networl_3_3_AI_1
P_poll__networl_3_3_AI_2
P_poll__networl_3_3_AI_3
P_poll__networl_3_3_AnnP_0
P_poll__networl_3_3_AnnP_1
P_poll__networl_3_3_AnnP_2
P_poll__networl_3_3_AnnP_3
P_poll__networl_3_3_RP_0
P_poll__networl_3_3_RP_1
P_poll__networl_3_3_RP_2
P_poll__networl_3_3_RP_3
P_poll__pollEnd_0
P_poll__waitingMessage_0

The net has transition(s) that can never fire:
T_poll__end_1
T_poll__handleAI1_18
T_poll__handleAI1_1
T_poll__handleAI1_2
T_poll__handleAI1_19
T_poll__handleAI1_3
T_poll__handleAI1_4
T_poll__handleAI1_20
T_poll__handleAI2_10
T_poll__handleAI1_17
T_poll__handleAI1_34
T_poll__handleAI1_21
T_poll__handleAI1_22
T_poll__handleAI1_23
T_poll__handleAI1_24
T_poll__handleAI1_33
T_poll__handleAI1_35
T_poll__handleAI1_36
T_poll__handleAI1_56
T_poll__handleAI1_37
T_poll__handleAI1_39
T_poll__handleAI1_41
T_poll__handleAI1_42
T_poll__handleAI2_11
T_poll__handleAI2_286
T_poll__handleAI1_43
T_poll__handleAI1_44
T_poll__handleAI1_49
T_poll__handleAI1_50
T_poll__handleAI1_51
T_poll__handleAI1_52
T_poll__handleAI1_53
T_poll__handleAI2_51
T_poll__handleAI2_30
T_poll__handleAI2_31
T_poll__handleAI2_25
T_poll__handleAI1_57
T_poll__iAmSecondary_13
T_poll__handleAnnP1_98
T_poll__iAmSecondary_2
T_poll__handleAI1_60
T_poll__iAmSecondary_1
T_poll__handleAI1_61
T_poll__handleAI1_62
T_poll__handleAI1_63
T_poll__handleAI1_64
T_poll__handleAI2_9
T_poll__handleAI2_24
T_poll__handleAI2_52
T_poll__handleAI2_12
T_poll__handleAI2_13
T_poll__handleAI2_14
T_poll__handleAI2_22
T_poll__handleAI2_15
T_poll__handleAI2_16
T_poll__handleAI2_17
T_poll__handleAI2_18
T_poll__handleAI2_19
T_poll__handleAI2_20
T_poll__handleAI2_21
T_poll__handleAI2_46
T_poll__handleAI2_23
T_poll__handleAI2_84
T_poll__handleAI2_26
T_poll__handleAI2_27
T_poll__handleAI2_28
T_poll__handleAI2_29
T_poll__handleAI2_118
T_poll__handleAI2_119
T_poll__handleAI2_120
T_poll__handleAI2_121
T_poll__handleAI2_122
T_poll__handleAI2_32
T_poll__handleAI2_41
T_poll__handleAI2_42
T_poll__handleAI2_43
T_poll__handleAI2_44
T_poll__handleAI2_45
T_poll__handleAI2_47
T_poll__handleAI2_87
T_poll__handleAI2_48
T_poll__handleAI2_49
T_poll__handleAI2_50
T_poll__handleAI2_53
T_poll__handleAI2_148
T_poll__handleAI2_149
T_poll__handleAI2_54
T_poll__handleAI2_55
T_poll__handleAI2_56
T_poll__handleAI2_57
T_poll__handleAI2_58
T_poll__handleAI2_59
T_poll__handleAI2_60
T_poll__handleAI2_61
T_poll__handleAI2_62
T_poll__handleAI2_63
T_poll__handleAI2_64
T_poll__handleAI2_73
T_poll__handleAI2_74
T_poll__handleAI2_75
T_poll__handleAI2_77
T_poll__handleAI2_76
T_poll__handleAI2_78
T_poll__handleAI2_79
T_poll__handleAI2_80
T_poll__handleAI2_81
T_poll__handleAI2_82
T_poll__handleAI2_83
T_poll__handleAI2_243
T_poll__handleAI2_242
T_poll__handleAI2_85
T_poll__handleAI2_86
T_poll__handleAnsP1_3
T_poll__handleAnsP1_4
T_poll__handleAnsP1_5
T_poll__handleAI2_88
T_poll__handleAI2_89
T_poll__handleAI2_90
T_poll__handleAskP_4
T_poll__handleAI2_91
T_poll__handleAI2_92
T_poll__handleAI2_93
T_poll__handleAI2_94
T_poll__handleAI2_95
T_poll__handleAI2_96
T_poll__handleAI2_105
T_poll__handleAI2_106
T_poll__handleAI2_107
T_poll__handleAI2_108
T_poll__handleAI2_109
T_poll__handleAI2_110
T_poll__handleAI2_111
T_poll__handleAI2_112
T_poll__handleAI2_113
T_poll__handleAI2_114
T_poll__handleAI2_115
T_poll__handleAI2_116
T_poll__handleAI2_117
T_poll__handleAnsP3_150
T_poll__handleAnsP3_148
T_poll__handleAnnP1_31
T_poll__handleAnnP1_32
T_poll__handleAnnP1_33
T_poll__handleAnnP1_35
T_poll__handleAnnP1_36
T_poll__handleAnnP1_37
T_poll__handleAnnP1_39
T_poll__handleAnnP1_40
T_poll__handleAnnP1_41
T_poll__handleAnnP1_44
T_poll__handleAnnP1_43
T_poll__handleAI2_123
T_poll__handleAI2_124
T_poll__handleAI2_125
T_poll__handleAI2_126
T_poll__handleAI2_127
T_poll__handleAI2_128
T_poll__handleAI2_145
T_poll__handleAI2_146
T_poll__handleAI2_154
T_poll__handleAI2_147
T_poll__handleAnnP1_63
T_poll__handleAnnP1_64
T_poll__handleAnnP1_65
T_poll__handleAnnP1_66
T_poll__handleAnnP1_68
T_poll__handleAnnP1_69
T_poll__handleAnnP1_70
T_poll__handleAI2_150
T_poll__handleAI2_151
T_poll__handleAI2_152
T_poll__handleAI2_153
T_poll__handleAI2_186
T_poll__handleAI2_155
T_poll__handleAI2_212
T_poll__handleAI2_156
T_poll__handleAI2_157
T_poll__handleAI2_158
T_poll__handleAI2_159
T_poll__handleAI2_160
T_poll__handleAI2_177
T_poll__handleAI2_178
T_poll__handleAI2_179
T_poll__handleAI2_180
T_poll__handleAI2_181
T_poll__handleAI2_182
T_poll__handleAI2_183
T_poll__handleAI2_184
T_poll__handleAI2_185
T_poll__handleAI2_251
T_poll__handleAI2_187
T_poll__handleAI2_188
T_poll__handleAI2_189
T_poll__handleAI2_190
T_poll__handleAI2_191
T_poll__handleAI2_192
T_poll__handleAI2_211
T_poll__handleAI2_210
T_poll__handleAI2_214
T_poll__handleAI2_215
T_poll__handleAI2_216
T_poll__handleAI2_218
T_poll__handleAI2_219
T_poll__handleAI2_220
T_poll__handleAI2_222
T_poll__handleAI2_223
T_poll__handleAI2_224
T_poll__handleAI2_250
T_poll__handleAnsP2_53
T_poll__handleAnsP2_54
T_poll__handleAnsP2_55
T_poll__handleAnsP2_56
T_poll__handleAnsP2_59
T_poll__handleAI2_244
T_poll__handleAI2_246
T_poll__handleAI2_247
T_poll__handleAI2_248
T_poll__handleAnsP3_144
T_poll__handleAnsP3_143
T_poll__handleAI2_252
T_poll__handleAI2_254
T_poll__handleAI2_255
T_poll__handleAI2_256
T_poll__handleAI2_281
T_poll__handleAI2_282
T_poll__handleAI2_283
T_poll__handleAI2_284
T_poll__handleAI2_285
T_poll__handleAI2_350
T_poll__handleAI2_287
T_poll__handleAI2_288
T_poll__handleAI2_314
T_poll__handleAI2_315
T_poll__handleAI2_316
T_poll__handleAI2_318
T_poll__handleAI2_319
T_poll__handleAI2_320
T_poll__handleAI2_345
T_poll__handleAI2_346
T_poll__handleAI2_347
T_poll__handleAI2_348
T_poll__handleAI2_349
T_poll__handleAnnP1_72
T_poll__handleAnnP1_94
T_poll__handleAI2_351
T_poll__handleAI2_352
T_poll__handleAI2_379
T_poll__handleAI2_378
T_poll__handleAI2_380
T_poll__handleAI2_382
T_poll__handleAI2_383
T_poll__handleAI2_384
T_poll__handleAnnP1_2
T_poll__handleAnnP1_3
T_poll__handleAnnP1_4
T_poll__handleAnnP1_6
T_poll__handleAnnP1_8
T_poll__handleAnnP1_7
T_poll__handleAnnP1_10
T_poll__handleAnnP1_11
T_poll__handleAnnP1_12
T_poll__handleAnnP1_14
T_poll__handleAnnP1_16
T_poll__handleAnnP1_15
T_poll__handleAnnP1_18
T_poll__handleAnnP1_19
T_poll__handleAnnP1_20
T_poll__handleAnnP1_22
T_poll__handleAnnP1_24
T_poll__handleAnnP1_23
T_poll__handleAnnP1_26
T_poll__handleAnnP1_27
T_poll__handleAnnP1_61
T_poll__handleAnnP1_28
T_poll__handleAnnP1_30
T_poll__handleAnsP3_152
T_poll__handleAnsP3_154
T_poll__handleAnsP3_155
T_poll__handleAnsP3_158
T_poll__handleAnsP3_159
T_poll__handleAnsP3_171
T_poll__handleAnsP3_172
T_poll__handleAnsP3_175
T_poll__handleAnsP3_176
T_poll__handleAnsP3_178
T_poll__handleAnsP3_180
T_poll__handleAnsP3_182
T_poll__handleAnsP3_184
T_poll__handleAnsP3_186
T_poll__handleAnsP3_187
T_poll__handleAnsP3_190
T_poll__handleAnsP3_191
T_poll__handleAnsP3_203
T_poll__handleAnsP3_204
T_poll__handleAnsP3_207
T_poll__handleAnsP3_208
T_poll__handleAnnP1_45
T_poll__handleAnnP1_47
T_poll__handleAnnP1_48
T_poll__handleAnnP1_49
T_poll__handleAnnP1_51
T_poll__handleAnnP1_52
T_poll__handleAnnP1_53
T_poll__handleAnnP1_55
T_poll__handleAnnP1_56
T_poll__handleAnnP1_57
T_poll__handleAnnP1_59
T_poll__handleAnnP1_60
T_poll__handleAnnP1_93
T_poll__handleAnsP3_459
T_poll__handleAnsP3_460
T_poll__handleAnsP3_463
T_poll__handleAnsP3_464
T_poll__handleAnsP3_466
T_poll__handleAnsP3_468
T_poll__handleAnsP3_470
T_poll__handleAnsP3_472
T_poll__handleAnsP3_474
T_poll__handleAnsP3_475
T_poll__handleAnsP3_478
T_poll__handleAnsP3_479
T_poll__handleAnsP3_491
T_poll__handleAnnP1_73
T_poll__handleAnnP1_74
T_poll__handleAnnP1_76
T_poll__handleAnnP1_77
T_poll__handleAnnP1_78
T_poll__handleAnnP1_80
T_poll__handleAnnP1_81
T_poll__handleAnnP1_82
T_poll__handleAnnP1_84
T_poll__handleAnnP1_85
T_poll__handleAnnP1_86
T_poll__handleAnnP1_88
T_poll__handleAnnP1_89
T_poll__handleAnnP1_90
T_poll__handleAnnP1_92
T_poll__handleAnsP3_344
T_poll__handleAnsP3_342
T_poll__handleAnnP1_96
T_poll__handleAnnP1_97
T_poll__handleAnnP1_103
T_poll__handleAnnP1_119
T_poll__handleAnnP1_99
T_poll__handleAnnP1_101
T_poll__handleAnnP1_102
T_poll__handleAnnP1_105
T_poll__handleAnnP1_106
T_poll__handleAnnP1_111
T_poll__handleAnnP1_107
T_poll__handleAnnP1_109
T_poll__handleAnnP1_110
T_poll__handleAnnP1_113
T_poll__handleAnnP1_114
T_poll__handleAnnP1_115
T_poll__handleAnnP1_117
T_poll__handleAnnP1_118
T_poll__handleAnsP2_103
T_poll__handleAnsP2_123
T_poll__handleAnnP1_121
T_poll__handleAnnP1_122
T_poll__handleAnnP1_123
T_poll__handleAnnP1_125
T_poll__handleAnnP1_127
T_poll__handleAnnP1_126
T_poll__handleAnnP2_1
T_poll__handleAnnP2_2
T_poll__handleAnnP2_3
T_poll__handleAnnP2_4
T_poll__handleAnnP2_5
T_poll__handleAnnP2_6
T_poll__handleAnnP2_7
T_poll__handleAnnP2_8
T_poll__handleAnnP2_9
T_poll__handleAnnP2_10
T_poll__handleAnnP2_11
T_poll__handleAnnP2_12
T_poll__handleAnnP2_13
T_poll__handleAnnP2_14
T_poll__handleAnnP2_15
T_poll__handleAnnP2_16
T_poll__handleAnsP1_1
T_poll__handleAnsP1_2
T_poll__handleAskP_31
T_poll__handleAskP_32
T_poll__handleAskP_33
T_poll__handleAnsP1_6
T_poll__handleAnsP1_9
T_poll__handleAnsP1_11
T_poll__handleAnsP1_13
T_poll__handleAnsP4_30
T_poll__handleAnsP1_16
T_poll__handleAnsP2_3
T_poll__handleAnsP2_4
T_poll__handleAnsP2_5
T_poll__handleAnsP2_6
T_poll__iAmSecondary_4
T_poll__handleAnsP2_7
T_poll__handleAnsP2_8
T_poll__handleAnsP2_11
T_poll__handleAnsP2_12
T_poll__handleAnsP2_13
T_poll__handleAnsP2_14
T_poll__handleAnsP2_15
T_poll__handleAnsP2_16
T_poll__handleAnsP2_19
T_poll__handleAnsP2_20
T_poll__handleAnsP2_21
T_poll__handleAnsP2_22
T_poll__handleAnsP2_23
T_poll__handleAnsP2_24
T_poll__handleAnsP2_27
T_poll__handleAnsP2_28
T_poll__handleAnsP2_29
T_poll__handleAnsP2_30
T_poll__handleAnsP2_31
T_poll__handleAnsP2_32
T_poll__handleAnsP2_35
T_poll__handleAnsP2_36
T_poll__handleAnsP2_37
T_poll__handleAnsP2_38
T_poll__handleAnsP2_39
T_poll__handleAnsP2_40
T_poll__handleAnsP2_43
T_poll__handleAnsP2_44
T_poll__handleAnsP2_45
T_poll__handleAnsP2_46
T_poll__handleAnsP2_47
T_poll__handleAnsP2_48
T_poll__handleAnsP2_51
T_poll__handleAnsP2_52
T_poll__handleAskP_60
T_poll__handleAskP_61
T_poll__handleAskP_62
T_poll__handleAskP_63
T_poll__handleAskP_64
T_poll__handleAskP_65
T_poll__handleAskP_67
T_poll__handleAskP_69
T_poll__handleAskP_70
T_poll__handleAnsP2_60
T_poll__handleAnsP2_61
T_poll__handleAnsP2_62
T_poll__handleAnsP2_63
T_poll__handleAnsP2_64
T_poll__handleAnsP2_67
T_poll__handleAnsP2_68
T_poll__handleAnsP2_69
T_poll__handleAnsP2_70
T_poll__handleAnsP2_71
T_poll__handleAnsP2_72
T_poll__handleAnsP2_75
T_poll__handleAnsP2_76
T_poll__handleAnsP2_77
T_poll__handleAnsP2_78
T_poll__handleAnsP2_79
T_poll__handleAnsP2_80
T_poll__handleAnsP2_83
T_poll__handleAnsP2_84
T_poll__handleAnsP2_85
T_poll__handleAnsP2_86
T_poll__handleAnsP2_87
T_poll__handleAnsP2_88
T_poll__handleAnsP2_91
T_poll__handleAnsP2_92
T_poll__handleAnsP2_93
T_poll__handleAnsP2_94
T_poll__handleAnsP2_95
T_poll__handleAnsP2_96
T_poll__handleAnsP2_99
T_poll__handleAnsP2_100
T_poll__handleAnsP2_101
T_poll__handleAnsP2_102
T_poll__handleAnsP2_104
T_poll__handleAnsP2_107
T_poll__handleAnsP2_108
T_poll__handleAnsP2_109
T_poll__handleAnsP2_110
T_poll__handleAnsP2_111
T_poll__handleAnsP2_112
T_poll__handleAnsP2_115
T_poll__handleAnsP2_116
T_poll__handleAnsP2_117
T_poll__handleAnsP2_118
T_poll__handleAnsP2_119
T_poll__handleAnsP2_120
T_poll__handleAnsP4_112
T_poll__handleAnsP4_111
T_poll__handleAnsP2_124
T_poll__handleAnsP2_125
T_poll__handleAnsP2_126
T_poll__handleAnsP2_127
T_poll__handleAnsP2_128
T_poll__handleAnsP3_11
T_poll__handleAnsP3_12
T_poll__handleAnsP3_15
T_poll__handleAnsP3_16
T_poll__handleAnsP3_18
T_poll__handleAnsP3_20
T_poll__handleAnsP3_22
T_poll__handleAnsP3_24
T_poll__handleAnsP3_26
T_poll__handleAnsP3_27
T_poll__handleAnsP3_30
T_poll__handleAnsP3_31
T_poll__handleAnsP3_43
T_poll__handleAnsP3_44
T_poll__handleAnsP3_47
T_poll__handleAnsP3_48
T_poll__handleAnsP3_50
T_poll__handleAnsP3_52
T_poll__handleAnsP3_54
T_poll__handleAnsP3_56
T_poll__handleAnsP3_58
T_poll__handleAnsP3_59
T_poll__handleAnsP3_62
T_poll__handleAnsP3_63
T_poll__handleAnsP3_75
T_poll__handleAnsP3_76
T_poll__handleAnsP3_79
T_poll__handleAnsP3_80
T_poll__handleAnsP3_82
T_poll__handleAnsP3_84
T_poll__handleAnsP3_86
T_poll__handleAnsP3_88
T_poll__handleAnsP3_90
T_poll__handleAnsP3_91
T_poll__handleAnsP3_94
T_poll__handleAnsP3_95
T_poll__handleAnsP3_107
T_poll__handleAnsP3_108
T_poll__handleAnsP3_111
T_poll__handleAnsP3_112
T_poll__handleAnsP3_114
T_poll__handleAnsP3_116
T_poll__handleAnsP3_118
T_poll__handleAnsP3_120
T_poll__handleAnsP3_122
T_poll__handleAnsP3_123
T_poll__handleAnsP3_127
T_poll__handleAnsP3_126
T_poll__handleAnsP3_140
T_poll__handleAnsP3_139
T_poll__handleAnsP3_146
T_poll__handleAnsP3_210
T_poll__handleAnsP3_212
T_poll__handleAnsP3_214
T_poll__handleAnsP3_216
T_poll__handleAnsP3_218
T_poll__handleAnsP3_219
T_poll__handleAnsP3_222
T_poll__handleAnsP3_223
T_poll__handleAnsP3_235
T_poll__handleAnsP3_236
T_poll__handleAnsP3_239
T_poll__handleAnsP3_240
T_poll__handleAnsP3_242
T_poll__handleAnsP3_244
T_poll__handleAnsP3_246
T_poll__handleAnsP3_248
T_poll__handleAnsP3_250
T_poll__handleAnsP3_251
T_poll__handleAnsP3_254
T_poll__handleAnsP3_255
T_poll__handleAnsP3_267
T_poll__handleAnsP3_268
T_poll__handleAnsP3_271
T_poll__handleAnsP3_272
T_poll__handleAnsP3_274
T_poll__handleAnsP3_276
T_poll__handleAnsP3_278
T_poll__handleAnsP3_280
T_poll__handleAnsP3_282
T_poll__handleAnsP3_283
T_poll__handleAnsP3_286
T_poll__handleAnsP3_287
T_poll__handleAnsP3_299
T_poll__handleAnsP3_300
T_poll__handleAnsP3_303
T_poll__handleAnsP3_304
T_poll__handleAnsP3_306
T_poll__handleAnsP3_308
T_poll__handleAnsP3_310
T_poll__handleAnsP3_312
T_poll__handleAnsP3_314
T_poll__handleAnsP3_315
T_poll__handleAnsP3_318
T_poll__handleAnsP3_319
T_poll__handleAnsP3_331
T_poll__handleAnsP3_332
T_poll__handleAnsP3_335
T_poll__handleAnsP3_336
T_poll__handleAnsP3_338
T_poll__handleAnsP3_340
T_poll__handleAnsP3_346
T_poll__handleAnsP3_347
T_poll__handleAnsP3_350
T_poll__handleAnsP3_351
T_poll__handleAnsP3_363
T_poll__handleAnsP3_364
T_poll__handleAnsP3_367
T_poll__handleAnsP3_368
T_poll__handleAnsP3_370
T_poll__handleAnsP3_372
T_poll__handleAnsP3_374
T_poll__handleAnsP3_376
T_poll__handleAnsP3_378
T_poll__handleAnsP3_379
T_poll__handleAnsP3_382
T_poll__handleAnsP3_383
T_poll__handleAnsP3_395
T_poll__handleAnsP3_399
T_poll__handleAnsP3_396
T_poll__handleAnsP3_400
T_poll__handleAnsP3_402
T_poll__handleAnsP3_404
T_poll__handleAnsP3_406
T_poll__handleAnsP3_408
T_poll__handleAnsP3_410
T_poll__handleAnsP3_411
T_poll__handleAnsP3_414
T_poll__handleAnsP3_415
T_poll__handleAnsP3_427
T_poll__handleAnsP3_428
T_poll__handleAnsP3_431
T_poll__handleAnsP3_432
T_poll__handleAnsP3_434
T_poll__handleAnsP3_436
T_poll__handleAnsP3_438
T_poll__handleAnsP3_440
T_poll__handleAnsP3_442
T_poll__handleAnsP3_443
T_poll__handleAnsP3_446
T_poll__handleAnsP3_447
T_poll__handleAnsP3_492
T_poll__handleAnsP3_495
T_poll__handleAnsP3_496
T_poll__handleAnsP3_498
T_poll__handleAnsP3_500
T_poll__handleAnsP3_502
T_poll__handleAnsP3_504
T_poll__handleAnsP3_506
T_poll__handleAnsP3_507
T_poll__handleAnsP3_510
T_poll__handleAnsP3_511
T_poll__handleAnsP4_3
T_poll__handleAnsP4_4
T_poll__handleAnsP4_5
T_poll__iAmPrimary_3
T_poll__handleAnsP4_6
T_poll__handleAnsP4_7
T_poll__handleAnsP4_8
T_poll__handleAnsP4_11
T_poll__handleAnsP4_12
T_poll__handleAnsP4_13
T_poll__handleAnsP4_14
T_poll__handleAnsP4_15
T_poll__handleAnsP4_16
T_poll__handleAnsP4_19
T_poll__handleAnsP4_20
T_poll__handleAnsP4_21
T_poll__handleAnsP4_22
T_poll__handleAnsP4_23
T_poll__handleAnsP4_24
T_poll__handleAnsP4_27
T_poll__handleAnsP4_28
T_poll__handleAnsP4_29
T_poll__handleAnsP4_31
T_poll__handleAnsP4_32
T_poll__handleAnsP4_35
T_poll__handleAnsP4_36
T_poll__handleAnsP4_37
T_poll__handleAnsP4_38
T_poll__handleAnsP4_39
T_poll__handleAnsP4_40
T_poll__handleAnsP4_43
T_poll__handleAnsP4_44
T_poll__handleAnsP4_45
T_poll__handleAnsP4_46
T_poll__handleAnsP4_47
T_poll__handleAnsP4_48
T_poll__handleAnsP4_51
T_poll__handleAnsP4_52
T_poll__handleAnsP4_53
T_poll__handleAnsP4_54
T_poll__handleAnsP4_55
T_poll__handleAnsP4_56
T_poll__handleAnsP4_59
T_poll__handleAnsP4_60
T_poll__handleAnsP4_61
T_poll__handleAnsP4_62
T_poll__handleAnsP4_63
T_poll__handleAnsP4_64
T_poll__handleAnsP4_67
T_poll__handleAnsP4_68
T_poll__handleAnsP4_69
T_poll__handleAnsP4_70
T_poll__handleAnsP4_71
T_poll__handleAnsP4_72
T_poll__handleAnsP4_75
T_poll__handleAnsP4_76
T_poll__handleAnsP4_77
T_poll__handleAnsP4_78
T_poll__handleAnsP4_79
T_poll__handleAnsP4_80
T_poll__handleAnsP4_83
T_poll__handleAnsP4_84
T_poll__handleAnsP4_85
T_poll__handleAnsP4_86
T_poll__handleAnsP4_87
T_poll__handleAnsP4_88
T_poll__handleAnsP4_91
T_poll__handleAnsP4_92
T_poll__handleAnsP4_93
T_poll__handleAnsP4_110
T_poll__handleAnsP4_94
T_poll__handleAnsP4_95
T_poll__handleAnsP4_96
T_poll__handleAnsP4_99
T_poll__handleAnsP4_100
T_poll__handleAnsP4_101
T_poll__handleAnsP4_102
T_poll__handleAnsP4_103
T_poll__handleAnsP4_104
T_poll__handleAnsP4_107
T_poll__handleAnsP4_108
T_poll__handleAnsP4_109
T_poll__handleAnsP4_115
T_poll__handleAnsP4_116
T_poll__handleAnsP4_117
T_poll__handleAnsP4_118
T_poll__handleAnsP4_119
T_poll__handleAnsP4_120
T_poll__handleAnsP4_123
T_poll__handleAnsP4_124
T_poll__handleAnsP4_125
T_poll__handleAnsP4_126
T_poll__handleAnsP4_127
T_poll__handleAnsP4_128
T_poll__handleAskP_1
T_poll__handleAskP_2
T_poll__handleAskP_3
T_poll__handleAskP_5
T_poll__handleAskP_6
T_poll__handleAskP_7
T_poll__handleAskP_8
T_poll__handleAskP_9
T_poll__handleAskP_10
T_poll__handleAskP_11
T_poll__handleAskP_12
T_poll__handleAskP_13
T_poll__handleAskP_14
T_poll__handleAskP_15
T_poll__handleAskP_16
T_poll__handleAskP_17
T_poll__handleAskP_18
T_poll__handleAskP_19
T_poll__handleAskP_20
T_poll__handleAskP_21
T_poll__handleAskP_22
T_poll__handleAskP_23
T_poll__handleAskP_24
T_poll__handleAskP_25
T_poll__handleAskP_26
T_poll__handleAskP_27
T_poll__handleAskP_28
T_poll__handleAskP_29
T_poll__handleAskP_30
T_poll__handleAskP_34
T_poll__handleAskP_37
T_poll__handleAskP_38
T_poll__handleAskP_39
T_poll__handleAskP_40
T_poll__handleAskP_41
T_poll__handleAskP_42
T_poll__handleAskP_43
T_poll__handleAskP_44
T_poll__handleAskP_45
T_poll__handleAskP_46
T_poll__handleAskP_47
T_poll__handleAskP_48
T_poll__handleAskP_49
T_poll__handleAskP_50
T_poll__handleAskP_53
T_poll__handleAskP_54
T_poll__handleAskP_55
T_poll__iAmPrimary_4
T_poll__handleAskP_56
T_poll__handleAskP_57
T_poll__handleAskP_58
T_poll__handleAskP_59
T_poll__start_1
T_poll__handleAskP_71
T_poll__handleAskP_72
T_poll__handleAskP_73
T_poll__handleAskP_74
T_poll__handleAskP_75
T_poll__handleAskP_76
T_poll__handleAskP_77
T_poll__handleAskP_78
T_poll__handleAskP_79
T_poll__handleAskP_80
T_poll__handleAskP_81
T_poll__handleAskP_83
T_poll__handleAskP_85
T_poll__handleAskP_86
T_poll__handleAskP_87
T_poll__handleAskP_88
T_poll__handleAskP_89
T_poll__handleAskP_90
T_poll__handleAskP_91
T_poll__handleAskP_92
T_poll__handleAskP_93
T_poll__handleAskP_94
T_poll__handleAskP_95
T_poll__handleAskP_96
T_poll__handleAskP_97
T_poll__handleAskP_98
T_poll__handleAskP_99
T_poll__handleAskP_100
T_poll__handleAskP_101
T_poll__handleAskP_102
T_poll__handleAskP_103
T_poll__handleAskP_104
T_poll__handleAskP_105
T_poll__handleAskP_106
T_poll__handleAskP_107
T_poll__handleAskP_108
T_poll__handleAskP_109
T_poll__handleAskP_110
T_poll__handleAskP_111
T_poll__handleAskP_112
T_poll__handleAskP_113
T_poll__handleAskP_116
T_poll__handleAskP_117
T_poll__handleAskP_118
T_poll__handleAskP_119
T_poll__handleAskP_120
T_poll__handleAskP_121
T_poll__handleAskP_122
T_poll__handleAskP_123
T_poll__handleAskP_124
T_poll__handleAskP_125
T_poll__handleAskP_126
T_poll__handleAskP_127
T_poll__iAmSecondary_9
T_poll__handleAskP_128
T_poll__handleRI_2
T_poll__handleRI_1
T_poll__handleRI_3
T_poll__handleRI_4
T_poll__handleRI_5
T_poll__handleRI_6
T_poll__handleRI_9
T_poll__handleRI_11
T_poll__handleRI_13
T_poll__handleRI_16
T_poll__handleRP_1
T_poll__handleRP_2
T_poll__handleRP_3
T_poll__handleRP_4
T_poll__handleRP_5
T_poll__handleRP_6
T_poll__handleRP_7
T_poll__handleRP_8
T_poll__handleRP_9
T_poll__handleRP_10
T_poll__handleRP_11
T_poll__handleRP_12
T_poll__handleRP_13
T_poll__handleRP_14
T_poll__handleRP_15
T_poll__handleRP_16
T_poll__iAmPrimary_1
T_sendAnnPs__end_2
T_poll__iAmPrimary_2
T_poll__iAmSecondary_5
T_poll__iAmSecondary_3
T_poll__iAmSecondary_6
T_poll__iAmSecondary_7
T_poll__iAmSecondary_10
T_poll__iAmSecondary_8
T_poll__iAmSecondary_11
T_poll__iAmSecondary_14
T_poll__iAmSecondary_12
T_poll__iAmSecondary_15
T_poll__iAmSecondary_16
T_sendAnnPs__end_1
T_sendAnnPs__end_3
T_sendAnnPs__end_4
T_sendAnnPs__send_1
T_sendAnnPs__send_2
T_sendAnnPs__send_3
T_sendAnnPs__send_4
T_sendAnnPs__send_5
T_sendAnnPs__send_6
T_sendAnnPs__send_7
T_sendAnnPs__send_8
T_sendAnnPs__send_13
T_sendAnnPs__send_14
T_sendAnnPs__send_15
T_sendAnnPs__send_16
T_sendAnnPs__send_17
T_sendAnnPs__send_18
T_sendAnnPs__send_19
T_sendAnnPs__send_20
T_sendAnnPs__send_25
T_sendAnnPs__send_26
T_sendAnnPs__send_27
T_sendAnnPs__send_28
T_sendAnnPs__send_29
T_sendAnnPs__send_30
T_sendAnnPs__send_31
T_sendAnnPs__send_32
T_sendAnnPs__send_37
T_sendAnnPs__send_38
T_sendAnnPs__send_39
T_sendAnnPs__send_40
T_sendAnnPs__send_41
T_sendAnnPs__send_42
T_sendAnnPs__send_43
T_sendAnnPs__send_44
T_sendAnnPs__start_1
T_sendAnnPs__start_2
T_sendAnnPs__start_3
T_sendAnnPs__start_4
T_startNeg__end_1
T_startNeg__send_1
T_startNeg__send_2
T_startNeg__send_3
T_startNeg__send_4
T_startNeg__send_5
T_startNeg__send_6
T_startNeg__send_7
T_startNeg__send_8
T_startNeg__send_13
T_startNeg__send_14
T_startNeg__send_16
T_startNeg__send_17
T_startNeg__send_18
T_startNeg__send_19
T_startNeg__send_25
T_startNeg__send_27
T_startNeg__send_28
T_startNeg__send_29
T_startNeg__send_30
T_startNeg__send_31
T_startNeg__send_37
T_startNeg__send_39
T_startNeg__send_40
T_startNeg__send_41
T_startNeg__send_42
T_startNeg__send_44
T_startNeg__start_1
T_startSec_1
T_startSec_2
T_startSec_3
T_startSec_4

check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.008sec

1848 2767 3409 3674 4186 4641 8645 10863 19702 34624 41454 48712 64913 80436 87198 90732 101028 104489 124146 124160 124177 124233 152050 152057 152088 152116
iterations count:26689 (26), effective:107 (0)

initing FirstDep: 0m 0.008sec

152061
iterations count:1016 (1), effective:0 (0)
152061
iterations count:1016 (1), effective:0 (0)
152061
iterations count:1016 (1), effective:0 (0)
152061
iterations count:1016 (1), effective:0 (0)
152061
iterations count:1056 (1), effective:1 (0)
152061
iterations count:1016 (1), effective:0 (0)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-3"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/root/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-3.tgz
mv NeoElection-PT-3 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is NeoElection-PT-3, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r077kn-smll-146363815900084"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;