About the Execution of Marcie for NeoElection-PT-2
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5419.110 | 8372.00 | 7931.00 | 201.30 | FTFTFTFFFTTTFFFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
..........
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is NeoElection-PT-2, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r077kn-smll-146363815900079
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-0
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-1
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-10
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-11
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-12
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-13
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-14
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-15
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-2
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-3
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-4
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-5
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-6
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-7
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-8
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1463689769713
Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --mcc-mode --memory=6 --suppress
parse successfull
net created successfully
Net: NeoElection_PT_2
(NrP: 438 NrTr: 357 NrArc: 1998)
net check time: 0m 0.001sec
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.021sec
init dd package: 0m 3.801sec
RS generation: 0m 0.340sec
-> reachability set: #nodes 2058 (2.1e+03) #states 241
starting MCC model checker
--------------------------
checking: AG [1<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)]
normalized: ~ [E [true U ~ [1<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)]]]
abstracting: (1<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)) states: 0
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.223sec
checking: AG [1<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)]
normalized: ~ [E [true U ~ [1<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)]]]
abstracting: (1<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)) states: 116
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.118sec
checking: EF [~ [1<=sum(P_dead_2, P_dead_1, P_dead_0)]]
normalized: E [true U ~ [1<=sum(P_dead_2, P_dead_1, P_dead_0)]]
abstracting: (1<=sum(P_dead_2, P_dead_1, P_dead_0)) states: 0
-> the formula is TRUE
FORMULA NeoElection-COL-2-ReachabilityCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.044sec
checking: AG [3<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)]
normalized: ~ [E [true U ~ [3<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)]]]
abstracting: (3<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)) states: 0
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.034sec
checking: AG [2<=sum(P_dead_2, P_dead_1, P_dead_0)]
normalized: ~ [E [true U ~ [2<=sum(P_dead_2, P_dead_1, P_dead_0)]]]
abstracting: (2<=sum(P_dead_2, P_dead_1, P_dead_0)) states: 0
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.034sec
checking: AG [sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=sum(P_polling_2, P_polling_1, P_polling_0)]
normalized: ~ [E [true U ~ [sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=sum(P_polling_2, P_polling_1, P_polling_0)]]]
abstracting: (sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=sum(P_polling_2, P_polling_1, P_polling_0)) states: 234
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.124sec
checking: EF [sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)]
normalized: E [true U sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)]
abstracting: (sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)) states: 241
-> the formula is TRUE
FORMULA NeoElection-COL-2-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.037sec
checking: AG [~ [~ [[sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_crashed_2, P_crashed_1, P_crashed_0) | 2<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]]
normalized: ~ [E [true U ~ [[sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_crashed_2, P_crashed_1, P_crashed_0) | 2<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]]
abstracting: (2<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)) states: 0
abstracting: (sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_crashed_2, P_crashed_1, P_crashed_0)) states: 241
-> the formula is TRUE
FORMULA NeoElection-COL-2-ReachabilityCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.070sec
checking: AG [3<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)]
normalized: ~ [E [true U ~ [3<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)]]]
abstracting: (3<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)) states: 241
-> the formula is TRUE
FORMULA NeoElection-COL-2-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.037sec
checking: EF [[sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) & ~ [[sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0) & sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)]]]]
normalized: E [true U [sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) & ~ [[sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0) & sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)]]]]
abstracting: (sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)) states: 241
abstracting: (sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)) states: 219
abstracting: (sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)) states: 241
-> the formula is TRUE
FORMULA NeoElection-COL-2-ReachabilityCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.203sec
checking: EF [[[[sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) | 1<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)] & [sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1) & 3<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)]] | ~ [sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)]]]
normalized: E [true U [[[sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) | 1<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)] & [sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1) & 3<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)]] | ~ [sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)]]]
abstracting: (sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)) states: 112
abstracting: (3<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)) states: 241
abstracting: (sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)) states: 241
abstracting: (1<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 0
abstracting: (sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)) states: 162
-> the formula is TRUE
FORMULA NeoElection-COL-2-ReachabilityCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.180sec
checking: AG [[[2<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1) & ~ [sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)]] & sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]
normalized: ~ [E [true U ~ [[sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0) & [2<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1) & ~ [sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)]]]]]]
abstracting: (sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)) states: 241
abstracting: (2<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)) states: 0
abstracting: (sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)) states: 13
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.113sec
checking: AG [[~ [sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)] & 1<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)]]
normalized: ~ [E [true U ~ [[1<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0) & ~ [sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]]]
abstracting: (sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)) states: 0
abstracting: (1<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)) states: 228
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.556sec
checking: AG [[1<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0) & [[sum(P_dead_2, P_dead_1, P_dead_0)<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG) & 2<=sum(P_polling_2, P_polling_1, P_polling_0)] | [3<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0) & 2<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)]]]]
normalized: ~ [E [true U ~ [[1<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0) & [[3<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0) & 2<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)] | [sum(P_dead_2, P_dead_1, P_dead_0)<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG) & 2<=sum(P_polling_2, P_polling_1, P_polling_0)]]]]]]
abstracting: (2<=sum(P_polling_2, P_polling_1, P_polling_0)) states: 25
abstracting: (sum(P_dead_2, P_dead_1, P_dead_0)<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)) states: 241
abstracting: (2<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)) states: 241
abstracting: (3<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)) states: 0
abstracting: (1<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)) states: 241
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.229sec
checking: EF [[[[3<=sum(P_crashed_2, P_crashed_1, P_crashed_0) & sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)] | [sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0) | sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_polling_2, P_polling_1, P_polling_0)]] | [1<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0) & ~ [sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)<=sum(P_dead_2, P_dead_1, P_dead_0)]]]]
normalized: E [true U [[1<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0) & ~ [sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)<=sum(P_dead_2, P_dead_1, P_dead_0)]] | [[sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0) | sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_polling_2, P_polling_1, P_polling_0)] | [3<=sum(P_crashed_2, P_crashed_1, P_crashed_0) & sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]]]]
abstracting: (sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 241
abstracting: (3<=sum(P_crashed_2, P_crashed_1, P_crashed_0)) states: 0
abstracting: (sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_polling_2, P_polling_1, P_polling_0)) states: 241
abstracting: (sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)) states: 241
abstracting: (sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)<=sum(P_dead_2, P_dead_1, P_dead_0)) states: 241
abstracting: (1<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)) states: 241
-> the formula is TRUE
FORMULA NeoElection-COL-2-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.215sec
checking: AG [[~ [sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)] | [[sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) & sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)] | ~ [sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)]]]]
normalized: ~ [E [true U ~ [[~ [sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)] | [[sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) & sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)] | ~ [sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)]]]]]]
abstracting: (sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)) states: 241
abstracting: (sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)) states: 241
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)) states: 0
abstracting: (sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)) states: 219
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.219sec
Total processing time: 0m 8.337sec
BK_STOP 1463689778085
--------------------
content from stderr:
check for maximal unmarked siphon
found
The net has a maximal unmarked siphon:
P_dead_0
P_dead_1
P_crashed_0
P_poll__networl_0_0_AI_2
P_poll__networl_0_0_AI_1
P_poll__networl_0_0_RI_2
P_poll__networl_0_0_AI_0
P_poll__networl_0_0_AnsP_1
P_poll__networl_0_0_AnsP_0
P_poll__networl_0_0_RI_0
P_poll__networl_0_0_RI_1
P_poll__networl_0_0_AskP_2
P_poll__networl_0_0_AnsP_2
P_poll__networl_0_0_AskP_0
P_poll__networl_0_0_AskP_1
P_network_2_2_RP_0
P_network_2_2_AnnP_2
P_network_2_2_RP_2
P_poll__handlingMessage_0
P_network_2_2_AnnP_1
P_network_2_2_RP_1
P_network_2_2_AnnP_0
P_network_2_2_AI_1
P_network_2_2_AI_2
P_network_2_2_AI_0
P_network_2_2_RI_1
P_network_2_2_RI_2
P_network_2_2_AnsP_2
P_network_2_2_RI_0
P_network_2_2_AnsP_0
P_network_2_2_AnsP_1
P_network_2_2_AskP_1
P_network_2_2_AskP_2
P_network_2_1_RP_2
P_network_2_2_AskP_0
P_network_2_1_RP_0
P_network_2_1_RP_1
P_network_2_1_AnnP_1
P_network_2_1_AnnP_2
P_network_2_1_AI_2
P_network_2_1_AnnP_0
P_network_2_1_AI_1
P_network_2_1_RI_1
P_network_2_1_RI_2
P_network_2_1_AnsP_1
P_network_2_1_AskP_1
P_network_2_1_AskP_2
P_network_2_0_RP_2
P_network_2_0_RP_0
P_network_2_0_RP_1
P_network_2_0_AnnP_1
P_network_2_0_AnnP_2
P_network_2_0_AnnP_0
P_network_2_0_AI_0
P_network_2_0_AI_1
P_network_2_0_RI_1
P_network_2_0_RI_2
P_network_2_0_AnsP_2
P_network_2_0_RI_0
P_network_2_0_AnsP_0
P_network_2_0_AskP_1
P_network_2_0_AskP_2
P_network_1_2_RP_2
P_network_2_0_AskP_0
P_network_1_2_RP_0
P_network_1_2_RP_1
P_network_1_2_AnnP_1
P_network_1_2_AnnP_2
P_network_1_2_AI_2
P_network_1_2_AnnP_0
P_network_1_2_AI_1
P_network_1_2_RI_2
P_network_2_1_AnsP_2
P_network_2_0_AI_2
P_network_2_0_AnsP_1
P_network_1_2_RI_1
P_network_1_2_AnsP_2
P_network_1_2_AnsP_1
P_network_1_2_AskP_1
P_network_1_2_AskP_2
P_network_1_1_RP_2
P_network_1_1_RP_1
P_network_1_1_AnnP_1
P_network_1_1_AnnP_2
P_network_1_1_AI_2
P_network_1_1_AnnP_0
P_network_1_1_AI_0
P_network_1_1_AI_1
P_network_1_1_RI_1
P_network_1_1_RI_2
P_network_1_1_AnsP_2
P_network_1_1_RI_0
P_network_1_1_AnsP_0
P_network_1_1_AnsP_1
P_network_1_1_AskP_1
P_network_1_1_AskP_2
P_network_1_1_RP_0
P_network_1_0_AnsP_2
P_network_1_0_RI_0
P_network_1_0_AnsP_0
P_network_1_0_AnsP_1
P_network_1_0_AskP_1
P_network_0_2_RP_2
P_network_1_0_AskP_0
P_network_0_2_RP_0
P_network_0_2_AnnP_1
P_network_0_2_AnnP_2
P_network_1_0_RP_2
P_network_1_0_RP_0
P_network_1_0_RP_1
P_network_1_0_AnnP_1
P_network_1_0_AnnP_2
P_network_1_0_AI_2
P_network_1_0_AnnP_0
P_network_1_0_AI_0
P_network_1_0_AI_1
P_network_1_0_RI_1
P_network_1_0_RI_2
P_network_1_0_AskP_2
P_network_0_2_RP_1
P_network_1_1_AskP_0
P_network_0_2_AI_2
P_network_0_2_AI_1
P_network_0_2_RI_2
P_network_0_2_RI_1
P_network_0_2_RI_0
P_network_0_2_AnsP_2
P_network_0_2_AnsP_1
P_network_0_2_AnsP_0
P_network_0_2_AskP_2
P_network_0_2_AskP_1
P_network_0_2_AskP_0
P_network_0_1_RP_1
P_network_0_1_RP_0
P_network_0_1_AnnP_2
P_network_0_1_AnnP_1
P_network_0_1_AnnP_0
P_network_0_1_AI_2
P_network_0_1_AI_1
P_network_0_1_AI_0
P_network_0_1_RI_2
P_poll__networl_0_0_AnnP_1
P_network_0_2_AnnP_0
P_network_0_2_AI_0
P_network_0_1_RP_2
P_network_0_1_RI_1
P_network_0_1_RI_0
P_network_0_1_AnsP_2
P_network_0_1_AnsP_1
P_network_0_1_AnsP_0
P_network_0_1_AskP_2
P_network_0_1_AskP_1
P_network_0_1_AskP_0
P_network_0_0_RP_2
P_network_0_0_RP_1
P_network_0_0_RP_0
P_network_0_0_AnnP_2
P_network_0_0_AI_2
P_network_0_0_AI_1
P_network_0_0_RI_2
P_network_0_0_RI_1
P_network_0_0_RI_0
P_network_0_0_AnsP_2
P_network_0_0_AnsP_1
P_network_0_0_AnsP_0
P_network_0_0_AskP_2
P_network_0_0_AskP_1
P_network_0_0_AskP_0
P_negotiation_2_2_CO
P_negotiation_2_2_NONE
P_negotiation_2_0_DONE
P_negotiation_2_0_CO
P_negotiation_2_0_NONE
P_network_0_0_AnnP_1
P_network_0_0_AnnP_0
P_network_0_0_AI_0
P_negotiation_1_1_CO
P_negotiation_1_1_NONE
P_negotiation_1_0_DONE
P_crashed_1
P_crashed_2
P_electedSecondary_1
P_poll__networl_0_0_AnnP_0
P_electedSecondary_0
P_dead_2
P_poll__networl_0_1_AskP_0
P_poll__networl_0_1_AskP_1
P_electedSecondary_2
P_electionFailed_0
P_electionFailed_1
P_electionFailed_2
P_electionInit_0
P_electedPrimary_0
P_electedPrimary_1
P_electedPrimary_2
P_masterList_0_1_0
P_masterList_0_1_1
P_masterList_0_1_2
P_masterList_0_2_0
P_masterList_0_2_1
P_masterList_0_2_2
P_masterList_1_1_0
P_masterList_1_1_1
P_masterList_1_2_0
P_masterList_1_2_1
P_masterList_1_2_2
P_masterList_2_1_0
P_masterList_2_1_2
P_poll__networl_0_0_AnnP_2
P_poll__networl_0_0_RP_0
P_poll__networl_0_0_RP_1
P_poll__networl_0_0_RP_2
P_masterList_2_2_0
P_masterList_2_2_1
P_masterList_2_2_2
P_masterState_0_F_0
P_masterState_0_F_1
P_masterState_0_F_2
P_masterState_0_T_0
P_masterState_0_T_1
P_masterState_0_T_2
P_masterState_1_F_1
P_masterState_1_F_2
P_masterState_1_T_1
P_masterState_1_T_2
P_masterState_2_F_0
P_masterState_2_F_1
P_masterState_2_F_2
P_masterState_2_T_1
P_masterState_2_T_2
P_negotiation_0_0_NONE
P_negotiation_0_0_CO
P_negotiation_0_0_DONE
P_negotiation_0_1_NONE
P_negotiation_0_1_CO
P_negotiation_0_1_DONE
P_negotiation_0_2_NONE
P_negotiation_0_2_CO
P_negotiation_0_2_DONE
P_negotiation_1_0_NONE
P_negotiation_1_0_CO
P_poll__networl_0_1_AskP_2
P_poll__networl_0_1_AnsP_0
P_poll__networl_0_1_AnsP_1
P_poll__networl_0_1_AnsP_2
P_poll__networl_0_1_RI_0
P_poll__networl_0_1_RI_1
P_poll__networl_0_1_RI_2
P_poll__networl_0_1_AI_0
P_poll__networl_0_1_AI_1
P_poll__networl_0_1_AI_2
P_poll__networl_0_1_AnnP_0
P_poll__networl_0_1_AnnP_1
P_poll__networl_0_1_AnnP_2
P_poll__networl_0_1_RP_0
P_poll__networl_0_1_RP_1
P_poll__networl_0_1_RP_2
P_poll__networl_0_2_AskP_0
P_poll__networl_0_2_AskP_1
P_poll__networl_0_2_AskP_2
P_poll__networl_0_2_AnsP_0
P_poll__networl_0_2_AnsP_1
P_poll__networl_0_2_AnsP_2
P_poll__networl_0_2_RI_0
P_poll__networl_0_2_RI_1
P_poll__networl_0_2_RI_2
P_poll__networl_0_2_AI_0
P_poll__networl_0_2_AI_1
P_poll__networl_0_2_AI_2
P_poll__networl_0_2_AnnP_0
P_poll__networl_0_2_AnnP_1
P_poll__networl_0_2_AnnP_2
P_poll__networl_0_2_RP_0
P_poll__networl_0_2_RP_1
P_poll__networl_0_2_RP_2
P_poll__networl_1_0_AskP_0
P_poll__networl_1_0_AskP_1
P_poll__networl_1_0_AskP_2
P_poll__networl_1_0_AnsP_0
P_poll__networl_1_0_AnsP_1
P_poll__networl_1_0_AnsP_2
P_poll__networl_1_0_RI_0
P_poll__networl_1_0_RI_1
P_poll__networl_1_0_RI_2
P_poll__networl_1_0_AI_0
P_poll__networl_1_0_AI_1
P_poll__networl_1_0_AI_2
P_poll__networl_1_0_AnnP_0
P_poll__networl_1_0_AnnP_1
P_poll__networl_1_0_AnnP_2
P_poll__networl_1_0_RP_0
P_poll__networl_1_0_RP_1
P_poll__networl_1_0_RP_2
P_poll__networl_1_1_AskP_0
P_poll__networl_1_1_AskP_1
P_poll__networl_1_1_AskP_2
P_poll__networl_1_1_AnsP_0
P_poll__networl_1_1_AnsP_1
P_poll__networl_1_1_AnsP_2
P_poll__networl_1_1_RI_0
P_poll__networl_1_1_RI_1
P_poll__networl_1_1_RI_2
P_poll__networl_1_1_AI_0
P_poll__networl_1_1_AI_1
P_poll__networl_1_1_AI_2
P_poll__networl_1_1_AnnP_0
P_poll__networl_1_1_AnnP_1
P_poll__networl_1_1_AnnP_2
P_poll__networl_1_1_RP_0
P_poll__networl_1_1_RP_1
P_poll__networl_1_1_RP_2
P_poll__networl_1_2_AskP_0
P_poll__networl_1_2_AskP_1
P_poll__networl_1_2_AskP_2
P_poll__networl_1_2_AnsP_0
P_poll__networl_1_2_AnsP_1
P_poll__networl_1_2_AnsP_2
P_poll__networl_1_2_RI_0
P_poll__networl_1_2_RI_1
P_poll__networl_1_2_RI_2
P_poll__networl_1_2_AI_0
P_poll__networl_1_2_AI_1
P_poll__networl_1_2_AI_2
P_poll__networl_1_2_AnnP_0
P_poll__networl_1_2_AnnP_1
P_poll__networl_1_2_AnnP_2
P_poll__networl_1_2_RP_0
P_poll__networl_1_2_RP_1
P_poll__networl_1_2_RP_2
P_poll__networl_2_0_AskP_0
P_poll__networl_2_0_AskP_1
P_poll__networl_2_0_AskP_2
P_poll__networl_2_0_AnsP_0
P_poll__networl_2_0_AnsP_1
P_poll__networl_2_0_AnsP_2
P_poll__networl_2_0_RI_0
P_poll__networl_2_0_RI_1
P_poll__networl_2_0_RI_2
P_poll__networl_2_0_AI_0
P_poll__networl_2_0_AI_1
P_poll__networl_2_0_AI_2
P_poll__networl_2_0_AnnP_0
P_poll__networl_2_0_AnnP_1
P_poll__networl_2_0_AnnP_2
P_poll__networl_2_0_RP_0
P_poll__networl_2_0_RP_1
P_poll__networl_2_0_RP_2
P_poll__networl_2_1_AskP_0
P_poll__networl_2_1_AskP_1
P_poll__networl_2_1_AskP_2
P_poll__networl_2_1_AnsP_0
P_poll__networl_2_1_AnsP_1
P_poll__networl_2_1_AnsP_2
P_poll__networl_2_1_RI_0
P_poll__networl_2_1_RI_1
P_poll__networl_2_1_RI_2
P_poll__networl_2_1_AI_0
P_poll__networl_2_1_AI_1
P_poll__networl_2_1_AI_2
P_poll__networl_2_1_AnnP_0
P_poll__networl_2_1_AnnP_1
P_poll__networl_2_1_AnnP_2
P_poll__networl_2_1_RP_0
P_poll__networl_2_1_RP_1
P_poll__networl_2_1_RP_2
P_poll__networl_2_2_AskP_0
P_poll__networl_2_2_AskP_1
P_poll__networl_2_2_AskP_2
P_poll__networl_2_2_AnsP_0
P_poll__networl_2_2_AnsP_1
P_poll__networl_2_2_AnsP_2
P_poll__networl_2_2_RI_0
P_poll__networl_2_2_RI_1
P_poll__networl_2_2_RI_2
P_poll__networl_2_2_AI_0
P_poll__networl_2_2_AI_1
P_poll__networl_2_2_AI_2
P_poll__networl_2_2_AnnP_0
P_poll__networl_2_2_AnnP_1
P_poll__networl_2_2_AnnP_2
P_poll__networl_2_2_RP_0
P_poll__networl_2_2_RP_1
P_poll__networl_2_2_RP_2
P_poll__pollEnd_0
P_poll__waitingMessage_0
P_poll__waitingMessage_1
P_poll__waitingMessage_2
P_polling_0
P_sendAnnPs__broadcasting_0_1
P_sendAnnPs__broadcasting_0_2
P_sendAnnPs__broadcasting_1_1
P_sendAnnPs__broadcasting_1_2
P_sendAnnPs__broadcasting_2_1
P_sendAnnPs__broadcasting_2_2
P_stage_0_NEG
P_stage_0_PRIM
P_stage_0_SEC
P_stage_1_PRIM
P_stage_1_SEC
P_stage_2_PRIM
P_stage_2_SEC
P_startNeg__broadcasting_0_1
P_startNeg__broadcasting_0_2
The net has transition(s) that can never fire:
T_poll__end_1
T_poll__handleAI1_10
T_poll__handleAI1_1
T_poll__handleAI1_2
T_poll__handleAI1_3
T_poll__handleAI2_9
T_poll__handleAI1_14
T_poll__handleAI1_11
T_poll__handleAI1_12
T_poll__handleAI1_13
T_poll__handleAI1_15
T_poll__handleAI1_25
T_poll__handleAI1_19
T_poll__handleAI1_20
T_poll__handleAI1_21
T_poll__handleAI1_22
T_poll__handleAI1_24
T_poll__handleAI2_25
T_poll__iAmSecondary_8
T_poll__handleAI1_26
T_poll__handleAI1_27
T_poll__handleAI2_7
T_poll__iAmSecondary_9
T_poll__handleAnnP1_49
T_poll__handleAI2_8
T_poll__handleAI2_10
T_poll__handleAI2_32
T_poll__handleAI2_11
T_poll__handleAI2_12
T_poll__handleAI2_13
T_poll__handleAI2_27
T_poll__handleAI2_14
T_poll__handleAI2_15
T_poll__handleAI2_16
T_poll__handleAI2_17
T_poll__handleAI2_18
T_poll__handleAnsP2_3
T_poll__handleAI2_87
T_poll__handleAI2_88
T_poll__handleAI2_26
T_poll__handleAI2_105
T_poll__handleAI2_28
T_poll__handleAI2_29
T_poll__handleAI2_47
T_poll__handleAI2_30
T_poll__handleAI2_31
T_poll__handleAI2_33
T_poll__iAmSecondary_4
T_poll__handleAI2_34
T_poll__handleAI2_35
T_poll__handleAI2_49
T_poll__handleAI2_36
T_poll__handleAI2_43
T_poll__handleAI2_44
T_poll__handleAI2_45
T_poll__handleAI2_46
T_poll__handleAI2_48
T_poll__handleAI2_50
T_poll__handleAnnP1_46
T_poll__handleAnnP1_44
T_poll__handleAI2_51
T_poll__handleAI2_52
T_poll__handleAI2_53
T_poll__handleAI2_54
T_poll__handleAI2_67
T_poll__handleAI2_68
T_poll__handleAI2_69
T_poll__handleAI2_70
T_poll__handleAI2_90
T_poll__handleAI2_71
T_poll__handleAI2_72
T_poll__handleAI2_85
T_poll__handleAI2_86
T_poll__handleAnsP2_4
T_poll__handleAnsP2_5
T_poll__handleAnsP2_6
T_poll__handleAnsP2_9
T_poll__handleAI2_89
T_poll__handleAnnP1_33
T_poll__handleAI2_104
T_poll__handleAskP_40
T_poll__handleAnsP2_48
T_poll__handleAnsP2_51
T_poll__handleAI2_107
T_poll__handleAI2_108
T_poll__handleAnnP2_6
T_poll__handleAnnP1_2
T_poll__handleAnnP1_31
T_poll__handleAnnP1_3
T_poll__handleAnnP1_5
T_poll__handleAnnP1_6
T_poll__handleAnnP1_8
T_poll__handleAnnP1_9
T_poll__handleAnnP1_11
T_poll__handleAnnP1_12
T_poll__handleAnnP1_14
T_poll__handleAnnP1_15
T_poll__handleAnnP1_17
T_poll__handleAnnP1_18
T_poll__handleAnnP1_19
T_poll__handleAnnP1_21
T_poll__handleAnnP1_22
T_poll__handleAnnP1_24
T_poll__handleAnnP1_27
T_poll__handleAnnP1_25
T_poll__handleAnnP1_28
T_poll__handleAnnP1_30
T_poll__handleAnnP1_34
T_poll__handleAnsP3_117
T_poll__handleAnnP1_36
T_poll__handleAnnP1_37
T_poll__handleAnnP1_38
T_poll__handleAnnP1_40
T_poll__handleAnnP1_41
T_poll__handleAnnP1_43
T_poll__handleAnsP4_16
T_poll__handleAnsP4_17
T_poll__handleAnsP4_18
T_poll__handleAnnP1_47
T_poll__handleAnsP2_47
T_poll__handleAnnP1_50
T_poll__handleAnnP1_52
T_poll__handleAnnP1_53
T_poll__handleAnnP2_2
T_poll__handleAnnP2_1
T_poll__handleAnnP2_3
T_poll__handleAnnP2_4
T_poll__handleAnnP2_5
T_poll__handleAnnP2_7
T_poll__handleAnnP2_8
T_poll__handleAnnP2_9
T_poll__handleAnsP1_1
T_poll__handleAnsP1_3
T_poll__handleAnsP1_2
T_poll__handleAnsP1_5
T_poll__handleAnsP1_4
T_poll__handleAnsP1_7
T_poll__handleAnsP1_9
T_poll__handleAnsP2_15
T_poll__handleAskP_22
T_poll__handleAskP_23
T_poll__handleAskP_24
T_poll__handleAskP_25
T_poll__handleAskP_26
T_poll__handleAskP_27
T_poll__handleAskP_28
T_poll__handleAskP_29
T_poll__handleAnsP2_10
T_poll__handleAnsP2_11
T_poll__handleAnsP2_12
T_poll__handleAnsP2_16
T_poll__handleAnsP2_17
T_poll__handleAnsP2_18
T_poll__handleAnsP2_21
T_poll__handleAnsP2_22
T_poll__handleAnsP2_23
T_poll__handleAnsP2_24
T_poll__handleAnsP2_27
T_poll__handleAnsP2_28
T_poll__handleAnsP2_29
T_poll__handleAnsP2_30
T_poll__handleAnsP2_33
T_poll__handleAnsP2_34
T_poll__handleAnsP2_35
T_poll__handleAnsP2_36
T_poll__handleAnsP2_39
T_poll__handleAnsP2_40
T_poll__handleAnsP2_41
T_poll__handleAnsP2_42
T_poll__handleAnsP2_45
T_poll__handleAnsP2_46
T_sendAnnPs__send_14
T_sendAnnPs__send_15
T_sendAnnPs__start_1
T_sendAnnPs__start_2
T_sendAnnPs__start_3
T_startNeg__end_1
T_startNeg__send_1
T_poll__handleAnsP2_52
T_poll__handleAnsP2_53
T_poll__handleAnsP2_54
T_poll__handleAnsP3_9
T_poll__handleAnsP3_12
T_poll__handleAnsP3_14
T_poll__handleAnsP3_17
T_poll__handleAnsP3_27
T_poll__handleAnsP3_30
T_poll__handleAnsP3_32
T_poll__handleAnsP3_35
T_poll__handleAnsP3_45
T_poll__handleAnsP3_48
T_poll__handleAnsP3_50
T_poll__handleAnsP3_53
T_poll__handleAnsP3_63
T_poll__handleAnsP3_66
T_poll__handleAnsP3_68
T_poll__handleAnsP3_71
T_poll__handleAnsP3_81
T_poll__handleAnsP3_84
T_poll__handleAnsP3_86
T_poll__handleAnsP3_89
T_poll__handleAnsP3_99
T_poll__handleAnsP3_102
T_poll__handleAnsP3_104
T_poll__handleAnsP3_107
T_poll__handleAnsP3_120
T_poll__handleAnsP3_122
T_poll__handleAnsP3_125
T_poll__handleAnsP3_135
T_poll__handleAnsP3_138
T_poll__handleAnsP3_140
T_poll__handleAnsP3_143
T_poll__handleAnsP3_153
T_poll__handleAnsP3_156
T_poll__handleAnsP3_158
T_poll__handleAnsP3_161
T_poll__handleAnsP4_3
T_poll__handleAnsP4_4
T_poll__handleAnsP4_5
T_poll__handleAnsP4_6
T_poll__handleAnsP4_9
T_poll__handleAnsP4_10
T_poll__handleAnsP4_11
T_poll__handleAnsP4_12
T_poll__handleAnsP4_15
T_poll__handleAskP_20
T_poll__handleAnsP4_21
T_poll__handleAnsP4_22
T_poll__handleAnsP4_23
T_poll__handleAnsP4_24
T_poll__handleAnsP4_27
T_poll__handleAnsP4_28
T_poll__handleAnsP4_29
T_poll__handleAnsP4_30
T_poll__handleAnsP4_33
T_poll__handleAnsP4_34
T_poll__handleAnsP4_35
T_poll__handleAnsP4_36
T_poll__handleAnsP4_39
T_poll__handleAnsP4_40
T_poll__handleAnsP4_41
T_poll__handleAnsP4_42
T_poll__handleAnsP4_45
T_poll__handleAnsP4_46
T_poll__handleAnsP4_47
T_poll__handleAnsP4_48
T_poll__handleAnsP4_51
T_poll__handleAnsP4_52
T_poll__handleAnsP4_53
T_poll__handleAnsP4_54
T_poll__handleAskP_1
T_poll__handleAskP_2
T_poll__handleAskP_3
T_poll__handleAskP_4
T_poll__handleAskP_5
T_poll__handleAskP_6
T_poll__handleAskP_7
T_poll__handleAskP_8
T_poll__handleAskP_9
T_poll__handleAskP_10
T_poll__handleAskP_11
T_poll__handleAskP_12
T_poll__handleAskP_13
T_poll__handleAskP_14
T_poll__handleAskP_15
T_poll__handleAskP_16
T_poll__handleAskP_17
T_poll__handleAskP_18
T_poll__handleAskP_19
T_poll__handleAskP_31
T_poll__handleAskP_33
T_poll__handleAskP_32
T_poll__handleAskP_34
T_poll__handleAskP_35
T_poll__handleAskP_36
T_poll__handleAskP_37
T_poll__handleAskP_38
T_poll__handleAskP_39
T_poll__handleAskP_41
T_poll__handleAskP_42
T_poll__handleAskP_43
T_poll__handleAskP_44
T_poll__handleAskP_45
T_poll__handleAskP_46
T_poll__handleAskP_48
T_poll__handleAskP_49
T_poll__handleAskP_50
T_poll__handleAskP_51
T_poll__handleAskP_52
T_poll__handleAskP_53
T_poll__handleAskP_54
T_poll__handleRI_1
T_poll__handleRI_2
T_poll__handleRI_3
T_poll__handleRI_4
T_poll__handleRI_5
T_poll__handleRI_7
T_poll__handleRI_9
T_poll__handleRP_1
T_poll__handleRP_2
T_poll__handleRP_3
T_poll__handleRP_4
T_poll__handleRP_5
T_poll__handleRP_6
T_poll__handleRP_7
T_poll__handleRP_8
T_poll__handleRP_9
T_poll__iAmPrimary_1
T_poll__iAmPrimary_2
T_poll__iAmPrimary_3
T_poll__iAmSecondary_2
T_poll__iAmSecondary_1
T_poll__iAmSecondary_3
T_poll__iAmSecondary_5
T_poll__iAmSecondary_6
T_poll__iAmSecondary_7
T_sendAnnPs__end_1
T_poll__start_1
T_sendAnnPs__end_2
T_sendAnnPs__end_3
T_sendAnnPs__send_1
T_sendAnnPs__send_2
T_sendAnnPs__send_3
T_sendAnnPs__send_7
T_sendAnnPs__send_8
T_sendAnnPs__send_9
T_sendAnnPs__send_13
T_startNeg__send_2
T_startNeg__send_3
T_startNeg__send_7
T_startNeg__send_8
T_startNeg__send_13
T_startNeg__send_15
T_startNeg__start_1
T_startSec_2
T_startSec_3
T_startSec_1
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.001sec
1464 1747
iterations count:2579 (7), effective:32 (0)
initing FirstDep: 0m 0.006sec
iterations count:357 (1), effective:0 (0)
iterations count:493 (1), effective:2 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:509 (1), effective:2 (0)
iterations count:357 (1), effective:0 (0)
iterations count:359 (1), effective:2 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
1349 1493
iterations count:2646 (7), effective:36 (0)
iterations count:376 (1), effective:1 (0)
iterations count:357 (1), effective:0 (0)
iterations count:513 (1), effective:4 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-2"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/root/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-2.tgz
mv NeoElection-PT-2 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is NeoElection-PT-2, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r077kn-smll-146363815900079"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;