fond
Model Checking Contest @ Petri Nets 2016
6th edition, Toruń, Poland, June 21, 2016
Execution of r073kn-smll-146363808900091
Last Updated
June 30, 2016

About the Execution of ITS-Tools for NeoElection-PT-4

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
1860.390 146859.00 155358.00 570.50 2.9191E+0011 1.8650E+0012 1 52 normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
..........
=====================================================================
Generated by BenchKit 2-2979
Executing tool itstools
Input is NeoElection-PT-4, examination is StateSpace
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r073kn-smll-146363808900091
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

no data necessary for post analysis


=== Now, execution of the tool begins

BK_START 1463961136774


its-reach command run as :

/home/mcc/BenchKit/eclipse/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201605191313/bin/its-reach-linux64 --gc-threshold 2000000 --quiet -i /home/mcc/execution/model.pnml.gal -t CGAL --stats
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection\_PT\_4\_flat,2.91912e+11,74.4522,1262308,2,128910,5,3.17418e+06,6,0,4109,1.79507e+06,0
Total reachable state count : 291911853682

Max variable value : 1
STATE_SPACE MAX_TOKEN_IN_PLACE 1 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Maximum sum along a path : 40
STATE_SPACE MAX_TOKEN_PER_MARKING 52 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Exact state count : 291911853682
STATE_SPACE STATES 291911853682 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Total edges in reachability graph : 1864964458601
STATE_SPACE TRANSITIONS 1864964458601 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL

BK_STOP 1463961283633

--------------------
content from stderr:

+ export BINDIR=/home/mcc/BenchKit/
+ BINDIR=/home/mcc/BenchKit/
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ [[ StateSpace = StateSpace ]]
+ [[ -f modelMain.xml ]]
+ /home/mcc/BenchKit//runeclipse.sh /home/mcc/execution StateSpace -its
+ ulimit -s 65536
+ java -Dosgi.requiredJavaVersion=1.6 -XX:MaxPermSize=512m -Xss8m -Xms40m -Xmx8192m -Declipse.pde.launch=true -Dfile.encoding=UTF-8 -classpath /home/mcc/BenchKit//eclipse/plugins/org.eclipse.equinox.launcher_1.3.100.v20150511-1540.jar org.eclipse.equinox.launcher.Main -application fr.lip6.move.gal.application.pnmcc -data /home/mcc/BenchKit//workspace -os linux -ws gtk -arch x86_64 -nl en_US -consoleLog -pnfolder /home/mcc/execution -examination StateSpace -z3path /home/mcc/BenchKit//z3/bin/z3 -yices2path /home/mcc/BenchKit//yices/bin/yices -its
Java HotSpot(TM) 64-Bit Server VM warning: ignoring option MaxPermSize=512m; support was removed in 8.0
May 22, 2016 11:52:19 PM fr.lip6.move.gal.application.Application transformPNML
INFO: Parsing pnml file : /home/mcc/execution/model.pnml
May 22, 2016 11:52:19 PM fr.lip6.move.gal.nupn.PTNetReader loadFromXML
INFO: Load time of PNML (sax parser for PT used): 303 ms
May 22, 2016 11:52:20 PM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 1830 places.
May 22, 2016 11:52:20 PM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 2340 transitions.
May 22, 2016 11:52:21 PM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 1265 fixed domain variables (out of 1830 variables) in GAL type NeoElection_PT_4
May 22, 2016 11:52:21 PM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: Found a total of 1265 constant array cells/variables (out of 1830 variables) in type NeoElection_PT_4
May 22, 2016 11:52:21 PM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: P_poll__networl_2_1_AnsP_0,P_network_1_3_AI_1,P_poll__networl_3_2_AI_4,P_poll__networl_3_1_AnnP_4,P_network_4_4_AskP_4,P_poll__networl_2_2_RP_1,P_poll__networl_0_0_RI_4,P_poll__networl_4_2_AnnP_2,P_poll__networl_3_4_RI_1,P_network_2_1_RP_1,P_poll__networl_0_0_RP_0,P_poll__networl_3_0_RI_2,P_network_2_0_AI_4,P_poll__networl_0_0_RP_3,P_poll__networl_3_3_RP_3,P_poll__networl_0_3_AskP_0,P_network_1_4_RP_3,P_network_2_1_AskP_1,P_network_2_4_AnnP_1,P_network_0_1_RI_2,P_poll__networl_0_3_AnnP_0,P_poll__networl_0_3_AnnP_4,P_poll__networl_3_0_AskP_2,P_network_1_4_RI_2,P_network_2_2_RI_1,P_poll__networl_3_4_AI_3,P_network_0_1_AskP_3,P_network_2_0_AI_2,P_network_1_3_RP_2,P_network_2_3_AI_2,P_network_3_3_AskP_2,P_poll__networl_1_1_RI_3,P_poll__networl_2_4_AnnP_3,P_poll__networl_0_2_AskP_1,P_poll__networl_3_1_RI_2,P_masterList_2_4_1,P_poll__networl_3_3_RP_0,P_poll__networl_2_0_AnnP_0,P_masterList_4_4_0,P_poll__networl_3_3_AskP_0,P_poll__networl_4_1_AI_2,P_poll__networl_4_4_AnnP_2,P_poll__networl_0_0_AnnP_4,P_network_3_1_RP_3,P_network_0_3_AI_1,P_network_2_0_AskP_1,P_poll__networl_4_4_RI_4,P_crashed_3,P_network_4_2_AskP_3,P_poll__networl_1_0_AnnP_0,P_network_1_1_AskP_3,P_poll__networl_0_4_RI_4,P_masterList_1_2_3,P_poll__networl_1_4_AnnP_2,P_poll__networl_3_3_RI_1,P_network_2_0_AnnP_1,P_network_1_1_AI_3,P_poll__networl_1_2_AI_2,P_dead_2,P_masterList_4_4_4,P_network_3_2_AnnP_4,P_poll__networl_3_0_RI_0,P_poll__networl_2_2_AskP_4,P_network_3_2_RI_1,P_poll__networl_3_1_RI_0,P_poll__networl_3_2_RI_0,P_network_2_3_RI_3,P_network_2_2_AskP_2,P_poll__networl_2_0_AI_4,P_poll__networl_3_3_RI_0,P_masterList_1_2_2,P_poll__networl_0_2_RI_0,P_network_1_1_AskP_4,P_network_0_1_RP_4,P_network_0_4_AnnP_2,P_poll__networl_4_0_AnnP_0,P_network_0_3_AnnP_3,P_poll__networl_0_2_AnnP_3,P_poll__networl_2_3_RI_0,P_network_1_0_RI_2,P_network_1_3_RI_4,P_network_1_0_AskP_4,P_poll__networl_3_0_RI_1,P_poll__networl_2_0_RP_0,P_poll__networl_4_3_AI_3,P_network_1_0_RP_2,P_network_0_0_AnnP_3,P_poll__networl_0_0_RI_2,P_poll__networl_1_1_AskP_0,P_poll__networl_0_3_AI_3,P_poll__networl_2_2_AnnP_0,P_masterList_4_2_3,P_poll__networl_1_2_RP_1,P_network_3_4_AskP_2,P_network_4_2_RI_1,P_poll__networl_2_4_RP_2,P_network_2_4_RI_4,P_poll__networl_1_3_AskP_3,P_poll__networl_4_0_RP_0,P_network_2_3_AskP_3,P_poll__networl_0_0_RP_1,P_network_1_0_RP_1,P_network_1_3_RP_1,P_poll__networl_0_2_AskP_0,P_masterList_3_1_1,P_masterList_2_1_3,P_poll__networl_2_4_AnsP_0,P_network_4_4_RP_2,P_masterList_1_3_2,P_network_4_0_AskP_3,P_poll__networl_4_0_AI_1,P_network_1_1_AI_4,P_network_4_3_AnnP_4,P_network_4_0_AskP_1,P_network_4_2_RI_3,P_poll__networl_3_4_RP_0,P_network_0_2_AnnP_4,P_network_2_0_AI_3,P_poll__networl_2_3_RP_3,P_poll__networl_4_2_AI_1,P_network_0_3_AI_2,P_network_2_2_RP_1,P_network_0_0_RP_2,P_network_1_3_AnnP_4,P_poll__networl_3_4_RI_2,P_poll__networl_3_3_RI_4,P_network_0_0_RP_3,P_poll__networl_0_2_RP_2,P_network_3_2_RI_3,P_poll__networl_1_4_RP_2,P_network_3_1_RP_1,P_masterList_0_1_2,P_network_2_3_RP_4,P_poll__networl_4_2_AnnP_3,P_poll__networl_3_3_AnnP_0,P_network_2_0_RP_1,P_network_2_2_AnnP_4,P_network_1_0_AI_1,P_masterList_3_4_0,P_poll__networl_4_4_AI_2,P_network_3_1_RI_3,P_masterList_1_4_4,P_poll__networl_0_1_RP_2,P_poll__networl_3_1_AnnP_0,P_poll__networl_3_1_AnnP_2,P_poll__networl_2_0_RI_1,P_poll__networl_2_0_AnnP_2,P_poll__networl_3_4_AnsP_0,P_poll__networl_0_1_AI_4,P_network_3_4_AnnP_4,P_poll__networl_3_0_AI_0,P_poll__networl_3_2_AnnP_1,P_poll__networl_1_2_AnnP_4,P_network_1_3_AI_3,P_masterList_3_3_0,P_poll__networl_1_2_RI_1,P_network_4_4_RI_2,P_poll__networl_0_1_AI_3,P_network_1_1_RP_1,P_network_1_4_AI_4,P_network_0_4_AskP_4,P_poll__networl_3_2_AskP_0,P_masterList_2_2_3,P_network_3_2_AskP_3,P_poll__networl_0_3_RI_3,P_poll__networl_1_1_AnnP_4,P_network_0_2_AnnP_1,P_poll__networl_4_3_AskP_2,P_poll__networl_4_0_AskP_4,P_masterList_1_3_0,P_poll__networl_2_4_AI_4,P_poll__networl_3_0_AskP_0,P_poll__networl_0_0_AnnP_1,P_masterList_3_2_1,P_poll__networl_4_4_AnnP_0,P_poll__networl_4_2_AI_4,P_network_4_3_AnnP_1,P_network_4_0_RI_3,P_poll__networl_0_3_AI_2,P_poll__networl_2_2_RI_1,P_network_2_3_AnnP_3,P_poll__networl_3_3_AskP_1,P_network_3_4_RI_4,P_network_4_1_AskP_3,P_poll__networl_4_2_RP_1,P_masterList_1_2_1,P_network_0_4_RP_3,P_poll__networl_4_4_AnnP_4,P_network_3_1_RP_4,P_poll__networl_2_4_AI_0,P_poll__networl_2_2_AnsP_0,P_poll__networl_3_1_AI_4,P_network_3_4_RI_1,P_network_3_1_AskP_1,P_poll__networl_0_4_AI_3,P_network_3_1_AnnP_2,P_network_4_1_RP_4,P_poll__networl_1_0_AskP_2,P_masterList_0_1_0,P_network_0_4_AskP_2,P_poll__networl_3_0_RI_3,P_poll__networl_2_4_AnnP_0,P_masterList_3_3_4,P_network_0_0_RI_4,P_network_3_4_AnnP_1,P_poll__networl_2_1_AskP_1,P_masterList_4_3_4,P_network_4_4_RI_1,P_poll__networl_3_1_AskP_4,P_network_4_2_AnnP_4,P_masterList_4_1_0,P_network_2_1_AskP_2,P_network_0_1_AI_4,P_poll__networl_4_2_RP_2,P_network_3_1_RP_2,P_poll__networl_0_3_AskP_4,P_poll__networl_3_1_AI_2,P_network_0_0_RP_4,P_poll__networl_2_1_AI_2,P_poll__networl_0_2_RP_3,P_network_4_2_RP_3,P_poll__networl_0_0_AnnP_2,P_poll__networl_0_0_AI_3,P_network_1_2_AskP_2,P_network_3_2_RI_2,P_network_1_0_AnnP_4,P_network_1_3_AI_4,P_poll__networl_3_1_AnnP_1,P_poll__networl_4_4_AskP_3,P_network_2_2_AskP_1,P_masterList_3_1_2,P_poll__networl_4_0_AI_2,P_poll__networl_4_4_AI_1,P_masterList_0_4_1,P_poll__networl_4_0_AnnP_2,P_network_0_2_RP_2,P_network_4_1_AnnP_4,P_poll__networl_1_0_AI_4,P_poll__networl_4_0_AskP_2,P_poll__networl_0_3_RP_3,P_network_1_2_RP_1,P_poll__networl_1_4_AI_3,P_masterList_3_3_2,P_poll__networl_4_0_AI_0,P_poll__networl_3_2_RP_0,P_masterList_2_4_3,P_network_4_2_AnnP_1,P_network_1_4_AnnP_1,P_poll__networl_1_1_AI_4,P_poll__networl_2_1_AnnP_1,P_poll__networl_1_2_AskP_2,P_poll__networl_2_0_AI_0,P_network_4_3_RI_1,P_poll__networl_3_2_AnnP_0,P_poll__networl_2_4_AI_1,P_poll__networl_3_0_AskP_4,P_poll__networl_2_1_RP_2,P_network_3_3_RI_3,P_network_0_0_AskP_3,P_masterList_1_4_0,P_poll__networl_3_3_RP_2,P_network_3_1_RI_1,P_poll__networl_2_4_AskP_3,P_network_3_0_AnnP_1,P_network_4_1_RI_2,P_network_0_3_AI_4,P_network_0_3_RP_3,P_poll__networl_1_3_AI_3,P_poll__networl_3_4_AnnP_3,P_network_0_0_AI_4,P_poll__networl_4_4_RP_3,P_poll__networl_1_3_RP_0,P_poll__networl_0_3_AI_1,P_poll__networl_2_3_AnnP_4,P_poll__networl_0_3_AI_4,P_poll__networl_2_3_AnsP_0,P_poll__networl_4_1_RI_3,P_poll__networl_4_2_RP_3,P_network_1_3_AI_2,P_poll__networl_1_2_RI_2,P_network_2_0_RP_4,P_network_0_1_AskP_2,P_network_4_0_AnnP_4,P_poll__networl_2_2_AskP_1,P_network_2_2_RI_3,P_masterList_1_1_0,P_poll__networl_3_2_AnnP_2,P_network_0_0_AskP_1,P_poll__networl_4_0_RP_4,P_poll__networl_1_4_AskP_2,P_poll__networl_4_4_AnnP_3,P_poll__networl_4_3_RP_2,P_poll__networl_4_1_AI_0,P_network_1_1_RI_4,P_network_4_1_AskP_2,P_poll__networl_2_2_RP_0,P_poll__networl_0_2_AskP_3,P_poll__networl_3_2_RI_1,P_network_4_4_AnnP_4,P_poll__networl_2_3_AskP_3,P_network_2_3_AI_1,P_network_3_4_AskP_4,P_poll__networl_1_2_AI_4,P_poll__networl_3_4_RI_0,P_poll__networl_4_1_AskP_3,P_poll__networl_1_3_RI_1,P_network_2_3_AnnP_1,P_network_4_2_RP_1,P_network_2_4_RP_1,P_masterList_4_1_2,P_poll__networl_1_0_AnnP_2,P_network_1_2_AnnP_4,P_poll__networl_1_2_AskP_3,P_network_3_1_AI_2,P_poll__networl_2_0_RI_2,P_poll__networl_3_3_AnnP_4,P_network_1_1_AskP_1,P_network_3_2_RP_3,P_network_1_2_AI_2,P_masterList_1_4_2,P_network_0_0_AI_1,P_poll__networl_0_2_RI_1,P_poll__networl_1_3_RP_1,P_poll__networl_4_1_RP_3,P_poll__networl_4_3_RI_4,P_network_2_2_RI_2,P_network_2_0_AnnP_2,P_poll__networl_1_4_AI_0,P_poll__networl_4_4_AskP_1,P_masterList_0_3_2,P_poll__networl_1_2_AnnP_2,P_poll__networl_2_0_AI_1,P_poll__networl_0_3_RI_0,P_poll__networl_1_0_AI_0,P_network_2_0_AskP_4,P_poll__networl_3_0_AI_2,P_network_2_0_RI_2,P_network_3_0_RI_2,P_poll__networl_4_1_RP_0,P_poll__networl_4_4_AskP_2,P_poll__networl_4_4_RP_2,P_poll__networl_3_2_AnsP_0,P_poll__networl_3_0_RI_4,P_network_3_1_AI_3,P_poll__networl_2_0_RI_4,P_network_3_3_AskP_3,P_poll__networl_0_3_RP_4,P_network_0_1_AI_2,P_poll__networl_2_1_AnnP_2,P_poll__networl_2_4_RI_2,P_network_1_0_AskP_3,P_network_4_1_AI_2,P_poll__networl_1_0_AnnP_4,P_poll__networl_4_3_RP_4,P_masterList_4_3_0,P_poll__networl_1_4_RP_1,P_poll__networl_1_4_RI_4,P_masterList_2_3_0,P_network_0_1_RI_1,P_poll__networl_2_3_AskP_2,P_poll__networl_4_3_AnnP_2,P_network_3_4_RI_2,P_poll__networl_3_4_RP_2,P_network_2_2_RP_4,P_network_3_1_AskP_3,P_poll__networl_1_0_RI_0,P_poll__networl_2_1_RI_1,P_poll__networl_1_0_RP_2,P_poll__networl_0_2_AnsP_0,P_poll__networl_2_2_AI_2,P_network_2_0_RI_3,P_poll__networl_0_0_AnnP_0,P_poll__networl_3_3_AskP_4,P_poll__networl_3_4_AskP_1,P_network_0_3_AskP_4,P_network_1_1_AnnP_4,P_network_4_1_AI_1,P_poll__networl_2_2_RP_2,P_poll__networl_4_4_AI_3,P_poll__networl_3_1_AnnP_3,P_network_4_2_AskP_1,P_poll__networl_2_0_AnsP_0,P_network_0_0_AI_3,P_network_4_1_AnnP_2,P_network_1_3_AskP_2,P_poll__networl_2_1_AI_0,P_poll__networl_3_1_AI_1,P_network_4_2_AI_1,P_poll__networl_0_2_AskP_2,P_network_0_1_AskP_1,P_masterList_4_1_1,P_network_4_4_AskP_2,P_poll__networl_2_2_RP_4,P_network_2_1_AnnP_1,P_network_0_2_RP_3,P_network_4_3_AskP_1,P_poll__networl_2_2_AnnP_1,P_poll__networl_3_2_AskP_2,P_poll__networl_4_2_RP_4,P_poll__networl_4_3_AI_4,P_network_0_0_AnnP_1,P_network_4_4_AnnP_1,P_poll__networl_0_3_AnsP_0,P_poll__networl_0_2_AnnP_2,P_poll__networl_1_3_AI_0,P_poll__networl_0_1_AskP_4,P_crashed_0,P_poll__networl_0_1_AskP_1,P_poll__networl_2_2_AI_3,P_poll__networl_3_3_AnnP_3,P_network_4_2_RP_2,P_network_2_1_RI_1,P_poll__networl_0_3_AnnP_2,P_poll__networl_1_4_AskP_0,P_poll__networl_2_3_AI_2,P_network_3_3_AskP_1,P_poll__networl_3_4_AnnP_1,P_crashed_4,P_poll__networl_0_1_AI_0,P_poll__networl_1_2_AnnP_0,P_network_0_4_RI_3,P_network_4_4_RP_4,P_poll__networl_3_2_AI_0,P_network_0_4_AI_2,P_poll__networl_2_0_AI_3,P_poll__networl_3_0_AskP_1,P_poll__networl_2_1_AskP_4,P_poll__networl_2_0_AskP_3,P_poll__networl_4_0_RI_4,P_network_0_1_AnnP_3,P_network_2_1_RP_2,P_network_4_4_AnnP_2,P_masterList_3_4_4,P_poll__networl_4_0_RI_1,P_network_2_1_AnnP_4,P_network_0_2_AI_4,P_network_2_3_RI_2,P_poll__networl_3_1_RP_1,P_masterList_0_3_1,P_network_2_4_AI_2,P_poll__networl_2_2_AI_4,P_poll__networl_3_0_AnnP_2,P_masterList_2_3_2,P_network_1_0_AI_2,P_poll__networl_0_2_AI_3,P_poll__networl_1_2_AnnP_1,P_poll__networl_4_2_AskP_0,P_poll__networl_0_0_RI_3,P_network_0_1_RI_4,P_poll__networl_2_1_RP_3,P_poll__networl_0_4_AskP_3,P_poll__networl_3_2_RI_4,P_network_1_2_RI_2,P_network_3_0_RP_1,P_masterList_2_2_1,P_network_3_1_AI_4,P_poll__networl_1_2_RI_4,P_network_0_3_AnnP_1,P_network_0_4_AI_4,P_network_1_0_RI_3,P_poll__networl_0_1_AnnP_0,P_poll__networl_3_4_RP_3,P_poll__networl_1_0_AnsP_0,P_poll__networl_2_4_AnnP_1,P_poll__networl_1_1_RP_3,P_poll__networl_2_2_AskP_2,P_masterList_4_2_2,P_poll__networl_0_3_AskP_1,P_network_2_3_AskP_4,P_poll__networl_2_3_RP_4,P_poll__networl_1_3_AskP_2,P_network_4_2_RP_4,P_network_1_4_RI_3,P_masterList_2_4_0,P_network_1_0_RI_4,P_poll__networl_1_0_RI_2,P_poll__networl_0_1_AnnP_1,P_poll__networl_4_2_AI_2,P_network_3_0_AI_3,P_poll__networl_1_0_AI_3,P_network_0_3_RI_2,P_poll__networl_1_4_AnsP_0,P_network_4_4_AI_3,P_poll__networl_0_0_AI_1,P_network_4_0_RP_2,P_poll__networl_1_3_AskP_0,P_masterList_0_2_3,P_network_1_2_AI_1,P_network_4_3_AI_1,P_network_4_4_RI_3,P_network_4_4_RP_1,P_network_4_3_AskP_2,P_network_1_1_AnnP_3,P_network_2_0_AskP_2,P_masterList_2_2_4,P_poll__networl_2_2_RI_3,P_poll__networl_0_2_AI_1,P_masterList_2_3_1,P_network_4_2_RI_4,P_poll__networl_3_3_AnsP_0,P_network_1_1_RI_2,P_network_3_2_AnnP_3,P_poll__networl_4_2_AnnP_1,P_network_0_4_AI_1,P_poll__networl_0_3_AskP_3,P_network_0_0_RI_2,P_network_2_2_AI_2,P_masterList_0_3_3,P_poll__networl_3_4_AI_4,P_masterList_1_1_1,P_network_3_0_AI_2,P_poll__networl_0_1_AskP_3,P_poll__networl_2_4_AI_2,P_network_0_1_RP_1,P_poll__networl_2_4_RI_0,P_poll__networl_2_3_AI_1,P_poll__networl_1_3_RI_2,P_poll__networl_3_3_RP_4,P_poll__networl_3_3_RP_1,P_poll__networl_0_0_AskP_4,P_electionFailed_0,P_network_3_4_AI_1,P_poll__networl_2_4_AskP_4,P_poll__networl_2_3_AI_4,P_poll__networl_4_3_RP_3,P_network_0_3_RP_1,P_network_1_2_AskP_4,P_network_4_0_AI_4,P_poll__networl_3_3_RI_3,P_poll__networl_0_4_AI_4,P_poll__networl_2_3_AskP_1,P_poll__networl_4_3_RI_1,P_poll__networl_3_4_RP_4,P_network_3_2_AskP_2,P_poll__networl_4_3_AnsP_0,P_poll__networl_0_4_AnnP_2,P_poll__networl_4_0_RP_1,P_poll__networl_4_1_AnnP_2,P_network_3_0_AskP_3,P_network_0_2_AskP_2,P_poll__networl_2_1_RP_1,P_network_3_2_RP_1,P_poll__networl_2_1_RP_0,P_poll__networl_4_0_AI_3,P_poll__networl_4_1_AnnP_4,P_network_4_2_AnnP_3,P_network_3_2_AI_4,P_network_0_0_AnnP_2,P_network_0_2_AnnP_2,P_poll__networl_0_3_RP_1,P_poll__networl_2_3_RI_2,P_poll__networl_0_2_RI_3,P_poll__networl_3_0_RP_2,P_poll__networl_2_4_AI_3,P_network_1_4_AskP_1,P_poll__networl_0_1_RI_4,P_poll__networl_2_0_AskP_1,P_network_0_1_RP_3,P_poll__networl_2_1_AskP_2,P_masterList_1_3_4,P_poll__networl_1_4_RI_1,P_network_3_1_AnnP_1,P_network_3_4_RP_1,P_network_4_2_AI_2,P_network_2_1_RI_4,P_poll__networl_1_1_RP_0,P_poll__networl_0_1_AnnP_3,P_network_4_0_AnnP_1,P_network_3_0_RI_4,P_masterList_0_4_4,P_network_0_2_RI_1,P_network_2_4_AskP_3,P_poll__networl_0_4_AnsP_0,P_network_3_1_AnnP_3,P_network_3_2_AI_1,P_poll__networl_1_1_RI_0,P_poll__networl_4_1_RP_4,P_network_2_3_RI_1,P_network_3_3_RP_2,P_poll__networl_1_1_AskP_1,P_poll__networl_4_1_AskP_2,P_network_0_3_RP_2,P_poll__networl_0_4_RI_0,P_network_2_0_AnnP_4,P_network_3_4_AnnP_3,P_network_4_2_AI_3,P_poll__networl_3_4_AI_2,P_network_2_4_AskP_1,P_poll__networl_3_1_RP_0,P_network_0_3_RI_3,P_poll__networl_0_3_RP_2,P_poll__networl_2_2_RI_4,P_poll__networl_2_4_AskP_0,P_poll__networl_0_1_AI_2,P_network_4_2_AskP_4,P_network_0_0_AnnP_4,P_network_1_4_RI_1,P_crashed_1,P_network_3_2_RP_4,P_masterList_0_1_3,P_poll__networl_0_1_RI_2,P_network_4_1_AskP_1,P_masterList_2_2_2,P_electionFailed_4,P_poll__networl_4_4_RP_0,P_network_2_1_AskP_4,P_poll__networl_0_0_AskP_1,P_network_2_4_RI_2,P_poll__networl_3_1_RI_3,P_masterList_4_1_3,P_poll__networl_2_1_AnnP_3,P_poll__networl_1_3_AnsP_0,P_poll__networl_0_0_RP_2,P_network_1_2_RI_4,P_poll__networl_4_1_AnnP_1,P_network_4_0_AskP_4,P_poll__networl_3_4_AnnP_2,P_poll__networl_0_4_RP_4,P_poll__networl_4_3_AnnP_1,P_network_0_4_RP_1,P_poll__networl_3_4_AskP_2,P_poll__networl_4_3_RP_0,P_poll__networl_0_0_AskP_0,P_network_4_1_AskP_4,P_network_1_1_RP_2,P_poll__networl_2_4_RP_3,P_poll__networl_3_0_RP_0,P_network_4_4_AskP_3,P_poll__networl_0_2_AnnP_1,P_poll__networl_1_1_AI_0,P_network_4_1_AI_4,P_masterList_3_2_4,P_network_2_4_RI_1,P_network_2_1_AskP_3,P_poll__networl_4_4_AskP_0,P_poll__networl_2_2_RI_0,P_network_3_1_AskP_2,P_poll__networl_1_3_AI_4,P_poll__networl_4_2_RI_1,P_masterList_2_3_3,P_network_4_0_AnnP_2,P_poll__networl_1_0_AnnP_3,P_poll__networl_4_0_AI_4,P_poll__networl_0_4_AnnP_0,P_poll__networl_3_2_AskP_4,P_masterList_4_3_1,P_poll__networl_4_3_AI_1,P_network_4_1_RP_1,P_poll__networl_4_1_RI_4,P_network_3_3_AI_4,P_network_3_2_RI_4,P_poll__networl_4_4_AnsP_0,P_network_4_3_AnnP_2,P_poll__networl_1_3_RP_4,P_masterList_4_1_4,P_poll__networl_3_0_AI_3,P_poll__networl_3_4_AskP_0,P_poll__networl_3_2_AnnP_4,P_poll__networl_3_1_AI_3,P_poll__networl_2_3_AskP_4,P_masterList_1_2_0,P_network_1_3_AskP_3,P_poll__networl_4_1_AI_3,P_poll__networl_3_0_AnnP_1,P_network_4_3_RP_1,P_poll__networl_1_3_AnnP_2,P_poll__networl_0_3_RP_0,P_poll__networl_1_0_RI_3,P_poll__networl_1_3_RP_3,P_poll__networl_1_3_RI_3,P_poll__networl_3_3_RI_2,P_network_3_0_AI_4,P_network_4_4_AskP_1,P_poll__networl_4_4_AI_0,P_network_2_3_RP_3,P_network_0_3_AnnP_2,P_poll__networl_0_0_AI_0,P_network_1_2_AskP_3,P_network_4_1_RI_4,P_poll__networl_2_3_AI_3,P_poll__networl_2_1_RP_4,P_network_2_2_AI_4,P_poll__networl_2_2_RP_3,P_masterList_0_2_2,P_masterList_3_4_3,P_network_0_2_AskP_1,P_poll__networl_0_1_RI_0,P_dead_3,P_network_3_0_AskP_4,P_network_0_2_AskP_4,P_poll__networl_3_1_AskP_1,P_poll__networl_1_3_AI_1,P_poll__networl_4_2_RI_0,P_poll__networl_0_4_RI_2,P_poll__networl_4_3_RI_3,P_masterList_3_4_2,P_network_3_4_AI_3,P_poll__networl_4_0_RP_3,P_network_0_1_AI_3,P_network_2_4_RP_4,P_poll__networl_3_2_RP_1,P_network_4_4_AnnP_3,P_poll__networl_4_2_RI_3,P_masterList_2_2_0,P_poll__networl_2_0_AI_2,P_masterList_3_3_1,P_network_2_1_RI_2,P_poll__networl_1_2_AskP_0,P_crashed_2,P_network_3_1_AI_1,P_poll__networl_1_4_RI_2,P_network_0_0_AskP_2,P_poll__networl_4_4_RI_3,P_network_1_2_RP_4,P_network_1_0_AnnP_2,P_network_2_2_AI_3,P_poll__networl_2_4_RI_1,P_poll__networl_3_4_AI_1,P_poll__networl_2_2_AI_1,P_poll__networl_3_2_AskP_1,P_network_0_0_RI_1,P_poll__networl_3_4_AI_0,P_poll__networl_2_3_AskP_0,P_poll__networl_0_1_RP_1,P_poll__networl_1_1_AI_3,P_masterList_0_3_0,P_network_1_3_AnnP_1,P_network_2_4_AI_1,P_poll__networl_1_2_AskP_1,P_poll__networl_2_3_AnnP_1,P_network_0_4_AskP_3,P_poll__networl_2_4_AnnP_4,P_poll__networl_2_1_RI_3,P_network_1_4_AnnP_3,P_masterList_1_3_3,P_network_3_0_RP_3,P_network_1_1_AskP_2,P_network_1_4_AnnP_4,P_network_1_2_AnnP_1,P_network_4_3_RP_2,P_poll__networl_3_1_AnsP_0,P_network_3_2_AskP_1,P_poll__networl_2_0_RP_1,P_network_0_1_RI_3,P_network_1_2_AnnP_2,P_network_1_3_AskP_1,P_poll__networl_1_4_AskP_1,P_network_0_3_RI_1,P_poll__networl_1_1_AskP_2,P_poll__networl_0_2_RP_0,P_poll__networl_4_2_AnnP_0,P_poll__networl_2_4_AnnP_2,P_poll__networl_4_1_AskP_1,P_poll__networl_3_4_RI_4,P_poll__networl_0_4_RP_1,P_masterList_2_1_1,P_poll__networl_1_4_AnnP_3,P_network_2_1_AnnP_3,P_network_2_3_AI_4,P_poll__networl_3_2_RI_2,P_masterList_4_4_1,P_network_2_2_RP_2,P_poll__networl_1_4_AskP_4,P_dead_4,P_poll__networl_1_4_AskP_3,P_poll__networl_1_4_RP_0,P_network_3_0_AskP_2,P_network_2_2_AskP_3,P_poll__networl_3_3_AI_2,P_network_0_3_AnnP_4,P_network_0_2_RI_4,P_poll__networl_1_2_AnnP_3,P_network_3_3_AskP_4,P_poll__networl_1_1_RP_4,P_masterList_0_2_4,P_network_1_4_RP_4,P_poll__networl_2_4_RP_0,P_poll__networl_4_4_RI_2,P_poll__networl_4_1_AnnP_3,P_network_2_3_RP_1,P_network_0_0_RI_3,P_poll__networl_2_0_AskP_2,P_network_1_4_RP_2,P_network_2_4_RI_3,P_poll__networl_2_0_RI_3,P_network_2_3_AI_3,P_poll__networl_1_4_AnnP_1,P_poll__networl_2_1_AI_3,P_network_1_0_AskP_2,P_poll__networl_4_3_RP_1,P_network_4_3_RI_4,P_poll__networl_0_1_RI_3,P_poll__networl_0_0_RI_1,P_dead_1,P_network_3_4_AnnP_2,P_poll__networl_2_4_AskP_1,P_network_1_2_RP_2,P_poll__networl_2_1_AnnP_4,P_network_0_0_AI_2,P_poll__networl_0_2_AI_2,P_poll__networl_3_0_AnnP_4,P_poll__networl_0_4_RI_1,P_poll__networl_4_2_RI_4,P_poll__networl_4_2_RP_0,P_network_2_4_AskP_2,P_poll__networl_0_0_RP_4,P_poll__networl_1_2_RI_0,P_network_1_0_AnnP_3,P_network_0_4_AskP_1,P_poll__networl_0_0_AI_2,P_poll__networl_1_0_RI_4,P_poll__networl_1_0_AnnP_1,P_network_1_1_AnnP_2,P_poll__networl_0_2_RI_2,P_poll__networl_4_1_AskP_0,P_network_0_1_AnnP_4,P_network_1_2_AI_3,P_poll__networl_3_3_AI_0,P_poll__networl_2_2_AskP_0,P_poll__networl_3_2_RI_3,P_network_2_4_AnnP_4,P_masterList_2_1_4,P_network_3_0_RP_2,P_poll__networl_1_2_AI_0,P_network_2_2_RI_4,P_poll__networl_2_0_RP_3,P_poll__networl_0_2_AnnP_4,P_poll__networl_3_3_AI_4,P_poll__networl_0_2_RP_1,P_poll__networl_2_0_AskP_4,P_network_2_4_RP_2,P_poll__networl_3_4_AnnP_4,P_poll__networl_4_4_RI_0,P_network_0_4_AI_3,P_network_0_2_RI_3,P_network_2_0_RP_3,P_poll__networl_1_2_RP_0,P_poll__networl_4_3_AskP_4,P_poll__networl_1_1_AnnP_3,P_network_4_0_RP_3,P_network_4_4_AI_2,P_poll__networl_3_2_RP_3,P_poll__networl_2_3_RP_2,P_poll__networl_3_1_RI_1,P_network_1_4_AI_3,P_poll__networl_3_3_AI_1,P_poll__networl_1_1_AnnP_0,P_network_2_3_RP_2,P_poll__networl_4_2_AnsP_0,P_poll__networl_4_4_RP_4,P_network_3_4_RI_3,P_masterList_4_3_2,P_network_3_0_RI_1,P_poll__networl_4_0_RI_0,P_poll__networl_2_2_AnnP_3,P_network_0_2_AI_3,P_poll__networl_1_3_RI_0,P_poll__networl_1_3_AI_2,P_dead_0,P_network_2_1_RI_3,P_network_4_3_AI_3,P_poll__networl_2_0_RI_0,P_poll__networl_1_3_AnnP_0,P_network_4_4_AI_1,P_poll__networl_1_3_AskP_1,P_network_1_4_RP_1,P_poll__networl_4_3_AskP_3,P_poll__networl_1_0_RP_3,P_electionFailed_2,P_masterList_1_2_4,P_masterList_3_4_1,P_masterList_1_1_3,P_network_3_4_AI_4,P_network_1_4_AI_2,P_poll__networl_0_0_AnnP_3,P_poll__networl_1_1_AnnP_2,P_poll__networl_2_1_RI_2,P_network_4_4_RI_4,P_poll__networl_2_3_RI_4,P_poll__networl_0_0_AnsP_0,P_poll__networl_2_3_AI_0,P_network_1_2_RP_3,P_poll__networl_3_4_AskP_3,P_network_0_2_RP_1,P_network_2_4_AskP_4,P_network_4_0_RP_4,P_network_3_0_AnnP_3,P_poll__networl_4_0_RP_2,P_poll__networl_1_2_AI_3,P_poll__networl_2_0_AnnP_4,P_network_1_1_AnnP_1,P_poll__networl_1_0_AskP_1,P_network_2_0_RI_1,P_poll__networl_1_1_AskP_3,P_network_2_1_RP_3,P_poll__networl_0_4_AskP_4,P_network_0_4_RI_2,P_network_2_3_AnnP_2,P_poll__networl_4_1_AnsP_0,P_poll__networl_1_1_AnsP_0,P_masterList_0_4_3,P_masterList_2_4_2,P_network_3_3_AI_2,P_poll__networl_3_0_AnnP_0,P_masterList_3_2_3,P_network_3_3_AnnP_1,P_poll__networl_4_0_AskP_0,P_poll__networl_1_1_AnnP_1,P_network_3_0_AnnP_4,P_poll__networl_1_3_AnnP_4,P_network_2_0_RP_2,P_poll__networl_3_3_AskP_3,P_network_1_3_AnnP_2,P_poll__networl_2_4_AskP_2,P_masterList_0_2_0,P_network_3_4_RP_2,P_poll__networl_1_1_RP_2,P_poll__networl_3_3_AI_3,P_poll__networl_1_2_RI_3,P_poll__networl_3_0_RP_3,P_poll__networl_1_0_AI_2,P_poll__networl_4_1_RI_2,P_masterList_1_1_2,P_poll__networl_1_1_AskP_4,P_poll__networl_3_1_RP_4,P_poll__networl_3_4_RI_3,P_network_0_2_AskP_3,P_poll__networl_2_2_AnnP_4,P_poll__networl_2_3_RP_0,P_poll__networl_3_2_AskP_3,P_poll__networl_4_1_RP_1,P_poll__networl_2_0_AnnP_3,P_poll__networl_2_1_RI_4,P_poll__networl_3_0_RP_4,P_poll__networl_0_1_AnnP_2,P_network_1_4_AskP_4,P_poll__networl_2_1_AnnP_0,P_network_1_4_AskP_2,P_network_4_1_AnnP_1,P_poll__networl_4_3_AnnP_3,P_network_4_0_AnnP_3,P_poll__networl_0_2_RI_4,P_poll__networl_1_2_RP_2,P_poll__networl_4_2_AnnP_4,P_masterList_4_2_0,P_network_4_2_AskP_2,P_network_3_0_AnnP_2,P_poll__networl_4_3_AnnP_0,P_poll__networl_0_4_RI_3,P_network_4_0_AI_2,P_network_0_2_RI_2,P_network_1_1_AI_2,P_network_1_1_RI_3,P_poll__networl_1_3_RP_2,P_poll__networl_4_1_RI_1,P_network_3_4_AskP_3,P_network_1_3_RI_3,P_poll__networl_0_2_AI_0,P_network_1_3_AskP_4,P_network_2_2_RP_3,P_poll__networl_3_0_AnsP_0,P_poll__networl_4_2_AskP_2,P_poll__networl_2_3_RI_3,P_network_2_0_AnnP_3,P_masterList_0_1_1,P_poll__networl_4_2_AskP_4,P_poll__networl_3_0_AnnP_3,P_poll__networl_4_4_AI_4,P_network_4_3_AnnP_3,P_poll__networl_4_0_RI_3,P_network_1_0_RI_1,P_network_3_3_RP_1,P_masterList_4_4_3,P_poll__networl_3_2_AI_2,P_poll__networl_0_0_AskP_3,P_network_1_2_AskP_1,P_poll__networl_0_2_AI_4,P_network_2_3_AskP_1,P_poll__networl_0_4_RP_0,P_poll__networl_2_2_AnnP_2,P_poll__networl_1_4_AI_2,P_network_2_4_AI_4,P_network_2_4_AnnP_2,P_poll__networl_0_4_AskP_0,P_poll__networl_0_4_AI_1,P_network_1_1_AI_1,P_poll__networl_4_1_RI_0,P_poll__networl_3_2_AnnP_3,P_network_4_1_RI_3,P_network_4_2_AnnP_2,P_network_3_1_AskP_4,P_masterList_0_4_2,P_masterList_1_3_1,P_network_2_0_AskP_3,P_poll__networl_3_1_RP_2,P_network_2_4_RP_3,P_network_1_4_AI_1,P_poll__networl_2_1_AI_1,P_poll__networl_2_3_RP_1,P_poll__networl_1_4_AnnP_0,P_poll__networl_1_3_AskP_4,P_masterList_1_4_3,P_network_0_3_RI_4,P_network_4_0_AI_3,P_network_1_1_RP_4,P_poll__networl_2_2_RI_2,P_masterList_0_2_1,P_poll__networl_1_2_RP_3,P_network_3_4_AskP_1,P_network_0_1_AskP_4,P_poll__networl_0_4_AI_0,P_poll__networl_1_1_AI_1,P_poll__networl_0_4_AskP_2,P_network_2_1_AI_1,P_poll__networl_0_1_RP_0,P_network_3_2_AnnP_2,P_poll__networl_4_2_AI_0,P_poll__networl_0_3_AnnP_1,P_network_3_1_RI_4,P_poll__networl_1_4_RI_3,P_network_4_3_AskP_4,P_poll__networl_2_3_AnnP_2,P_network_2_2_AnnP_2,P_network_3_0_RI_3,P_poll__networl_4_2_AskP_1,P_poll__networl_1_2_AI_1,P_network_1_2_AI_4,P_masterList_4_2_4,P_network_3_2_AnnP_1,P_poll__networl_0_4_AskP_1,P_poll__networl_2_1_AI_4,P_masterList_4_4_2,P_network_1_3_RI_2,P_masterList_2_1_0,P_network_4_1_RP_2,P_poll__networl_4_2_AI_3,P_masterList_4_2_1,P_network_0_4_AnnP_4,P_network_4_3_RP_3,P_network_1_0_RP_3,P_network_2_1_AnnP_2,P_poll__networl_0_3_AskP_2,P_poll__networl_3_1_AI_0,P_poll__networl_1_2_AnsP_0,P_poll__networl_4_1_AI_1,P_poll__networl_1_3_RI_4,P_network_1_4_AnnP_2,P_network_3_3_RI_1,P_network_1_4_AskP_3,P_masterList_0_1_4,P_network_2_0_RI_4,P_network_1_3_RP_4,P_poll__networl_3_2_RP_4,P_network_2_1_RP_4,P_masterList_3_2_0,P_poll__networl_2_2_AskP_3,P_poll__networl_0_4_RP_2,P_poll__networl_4_1_RP_2,P_poll__networl_1_0_RP_4,P_network_4_3_AI_4,P_network_1_0_AI_4,P_poll__networl_0_3_RI_4,P_poll__networl_3_0_AI_4,P_poll__networl_4_4_AskP_4,P_network_3_2_AI_3,P_poll__networl_0_2_AskP_4,P_network_4_1_AI_3,P_network_3_4_RP_4,P_poll__networl_1_1_RI_1,P_network_2_1_AI_4,P_poll__networl_0_2_RP_4,P_poll__networl_0_1_RP_4,P_poll__networl_3_3_AnnP_1,P_network_3_0_RP_4,P_poll__networl_2_4_RI_4,P_network_0_3_AskP_3,P_network_0_3_RP_4,P_poll__networl_1_4_AnnP_4,P_network_2_4_AnnP_3,P_network_3_4_AI_2,P_poll__networl_3_1_RP_3,P_poll__networl_3_2_AI_3,P_poll__networl_0_1_AnnP_4,P_network_3_1_AnnP_4,P_network_2_3_AskP_2,P_masterList_3_2_2,P_network_4_0_RP_1,P_masterList_3_3_3,P_poll__networl_1_3_AnnP_1,P_network_1_1_RI_1,P_poll__networl_2_3_AnnP_3,P_poll__networl_3_0_AI_1,P_network_2_2_AskP_4,P_network_1_2_AnnP_3,P_poll__networl_0_3_RI_1,P_network_4_0_AskP_2,P_network_4_3_RI_2,P_poll__networl_0_4_RP_3,P_masterList_3_1_0,P_poll__networl_0_0_AskP_2,P_network_0_4_RI_4,P_poll__networl_4_0_AskP_1,P_poll__networl_1_2_RP_4,P_poll__networl_0_1_AskP_0,P_network_2_1_AI_3,P_poll__networl_4_1_AskP_4,P_network_3_3_RP_4,P_network_3_3_AI_1,P_network_4_4_AI_4,P_poll__networl_1_4_RI_0,P_network_0_0_AskP_4,P_network_0_2_AnnP_3,P_electionFailed_3,P_poll__networl_4_1_AnnP_0,P_network_3_3_RP_3,P_poll__networl_1_4_AI_1,P_network_1_3_RP_3,P_poll__networl_4_0_AnnP_4,P_poll__networl_3_4_RP_1,P_network_1_3_AnnP_3,P_network_3_2_RP_2,P_poll__networl_4_4_AnnP_1,P_network_2_3_RI_4,P_poll__networl_0_4_AnnP_1,P_poll__networl_0_0_RI_0,P_network_3_3_RI_2,P_network_3_3_AnnP_4,P_poll__networl_0_2_AnnP_0,P_poll__networl_0_4_AI_2,P_poll__networl_4_0_AnnP_1,P_poll__networl_1_4_RP_4,P_network_0_1_RP_2,P_network_2_4_AI_3,P_poll__networl_2_0_RP_2,P_network_0_1_AnnP_2,P_network_1_3_RI_1,P_poll__networl_0_4_AnnP_4,P_network_0_2_AI_2,P_network_2_1_AI_2,P_network_0_0_RP_1,P_network_4_3_AI_2,P_network_1_0_RP_4,P_poll__networl_0_1_AnsP_0,P_poll__networl_1_1_RI_4,P_network_4_3_AskP_3,P_network_3_3_AnnP_2,P_poll__networl_4_0_RI_2,P_poll__networl_1_0_RP_0,P_network_0_1_AI_1,P_network_4_0_RI_1,P_network_1_2_RI_3,P_masterList_0_3_4,P_poll__networl_1_2_AskP_4,P_network_3_3_RI_4,P_poll__networl_3_4_AnnP_0,P_poll__networl_2_4_RI_3,P_poll__networl_4_3_AI_2,P_poll__networl_1_1_AI_2,P_poll__networl_2_1_AskP_3,P_poll__networl_3_3_AskP_2,P_poll__networl_3_2_AI_1,P_masterList_2_1_2,P_masterList_4_3_3,P_poll__networl_4_3_AskP_0,P_poll__networl_0_1_RP_3,P_network_0_3_AI_3,P_poll__networl_2_0_RP_4,P_network_2_2_AnnP_3,P_poll__networl_3_1_AskP_3,P_network_0_2_RP_4,P_network_0_3_AskP_2,P_network_3_2_AI_2,P_network_1_0_AI_3,P_poll__networl_2_2_AI_0,P_poll__networl_3_1_AskP_0,P_poll__networl_4_4_RI_1,P_network_4_0_AI_1,P_network_4_4_RP_3,P_network_3_2_AskP_4,P_network_4_1_RP_3,P_network_2_2_AnnP_1,P_network_4_0_RI_2,P_poll__networl_3_0_RP_1,P_poll__networl_0_4_AnnP_3,P_poll__networl_4_0_AskP_3,P_poll__networl_4_0_AnnP_3,P_poll__networl_4_1_AI_4,P_network_3_0_AskP_1,P_poll__networl_4_3_RI_0,P_network_2_2_AI_1,P_poll__networl_2_4_RP_1,P_network_3_4_RP_3,P_poll__networl_2_0_AskP_0,P_poll__networl_2_4_RP_4,P_poll__networl_4_4_RP_1,P_network_4_3_RI_3,P_network_4_2_RI_2,P_poll__networl_3_1_RI_4,P_poll__networl_2_3_AnnP_0,P_masterList_1_1_4,P_network_0_4_RI_1,P_electionFailed_1,P_poll__networl_0_3_AnnP_3,P_network_0_4_AnnP_3,P_poll__networl_4_3_AI_0,P_poll__networl_2_3_RI_1,P_poll__networl_0_3_RI_2,P_poll__networl_1_3_AnnP_3,P_poll__networl_1_0_AskP_0,P_network_2_0_AI_1,P_poll__networl_0_1_AI_1,P_poll__networl_4_2_AskP_3,P_network_0_4_RP_4,P_network_4_0_RI_4,P_network_1_2_RI_1,P_network_3_0_AI_1,P_network_1_0_AnnP_1,P_poll__networl_1_0_RI_1,P_network_1_4_RI_4,P_network_0_4_AnnP_1,P_network_0_4_RP_2,P_network_3_1_RI_2,P_poll__networl_3_1_AskP_2,P_poll__networl_0_0_AI_4,P_poll__networl_4_0_AnsP_0,P_poll__networl_3_4_AskP_4,P_poll__networl_1_0_AskP_4,P_poll__networl_4_2_RI_2,P_poll__networl_3_3_AnnP_2,P_network_1_1_RP_3,P_network_4_1_RI_1,P_poll__networl_4_3_AnnP_4,P_poll__networl_1_1_RI_2,P_network_3_3_AnnP_3,P_network_0_3_AskP_1,P_poll__networl_1_0_AI_1,P_network_0_2_AI_1,P_poll__networl_4_3_RI_2,P_poll__networl_3_0_AskP_3,P_poll__networl_1_0_RP_1,P_poll__networl_1_4_AI_4,P_network_0_1_AnnP_1,P_poll__networl_2_1_RI_0,P_network_4_3_RP_4,P_network_3_3_AI_3,P_poll__networl_2_1_AskP_0,P_poll__networl_4_3_AskP_1,P_masterList_2_3_4,P_poll__networl_3_2_RP_2,P_poll__networl_2_0_AnnP_1,P_poll__networl_0_1_RI_1,P_masterList_2_4_4,P_poll__networl_1_0_AskP_3,P_poll__networl_0_3_AI_0,P_network_4_2_AI_4,P_poll__networl_0_1_AskP_2,P_network_2_3_AnnP_4,P_masterList_3_1_4,P_masterList_3_1_3,P_poll__networl_1_1_RP_1,P_network_1_0_AskP_1,P_network_4_1_AnnP_3,P_masterList_0_4_0,P_poll__networl_1_4_RP_3,P_masterList_1_4_1,
May 22, 2016 11:52:45 PM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: Removed 1265 constant variables :P_poll__networl_2_1_AnsP_0, P_network_1_3_AI_1, P_poll__networl_3_2_AI_4, P_poll__networl_3_1_AnnP_4, P_network_4_4_AskP_4, P_poll__networl_2_2_RP_1, P_poll__networl_0_0_RI_4, P_poll__networl_4_2_AnnP_2, P_poll__networl_3_4_RI_1, P_network_2_1_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_3_0_RI_2, P_network_2_0_AI_4, P_poll__networl_0_0_RP_3, P_poll__networl_3_3_RP_3, P_poll__networl_0_3_AskP_0, P_network_1_4_RP_3, P_network_2_1_AskP_1, P_network_2_4_AnnP_1, P_network_0_1_RI_2, P_poll__networl_0_3_AnnP_0, P_poll__networl_0_3_AnnP_4, P_poll__networl_3_0_AskP_2, P_network_1_4_RI_2, P_network_2_2_RI_1, P_poll__networl_3_4_AI_3, P_network_0_1_AskP_3, P_network_2_0_AI_2, P_network_1_3_RP_2, P_network_2_3_AI_2, P_network_3_3_AskP_2, P_poll__networl_1_1_RI_3, P_poll__networl_2_4_AnnP_3, P_poll__networl_0_2_AskP_1, P_poll__networl_3_1_RI_2, P_masterList_2_4_1, P_poll__networl_3_3_RP_0, P_poll__networl_2_0_AnnP_0, P_masterList_4_4_0, P_poll__networl_3_3_AskP_0, P_poll__networl_4_1_AI_2, P_poll__networl_4_4_AnnP_2, P_poll__networl_0_0_AnnP_4, P_network_3_1_RP_3, P_network_0_3_AI_1, P_network_2_0_AskP_1, P_poll__networl_4_4_RI_4, P_crashed_3, P_network_4_2_AskP_3, P_poll__networl_1_0_AnnP_0, P_network_1_1_AskP_3, P_poll__networl_0_4_RI_4, P_masterList_1_2_3, P_poll__networl_1_4_AnnP_2, P_poll__networl_3_3_RI_1, P_network_2_0_AnnP_1, P_network_1_1_AI_3, P_poll__networl_1_2_AI_2, P_dead_2, P_masterList_4_4_4, P_network_3_2_AnnP_4, P_poll__networl_3_0_RI_0, P_poll__networl_2_2_AskP_4, P_network_3_2_RI_1, P_poll__networl_3_1_RI_0, P_poll__networl_3_2_RI_0, P_network_2_3_RI_3, P_network_2_2_AskP_2, P_poll__networl_2_0_AI_4, P_poll__networl_3_3_RI_0, P_masterList_1_2_2, P_poll__networl_0_2_RI_0, P_network_1_1_AskP_4, P_network_0_1_RP_4, P_network_0_4_AnnP_2, P_poll__networl_4_0_AnnP_0, P_network_0_3_AnnP_3, P_poll__networl_0_2_AnnP_3, P_poll__networl_2_3_RI_0, P_network_1_0_RI_2, P_network_1_3_RI_4, P_network_1_0_AskP_4, P_poll__networl_3_0_RI_1, P_poll__networl_2_0_RP_0, P_poll__networl_4_3_AI_3, P_network_1_0_RP_2, P_network_0_0_AnnP_3, P_poll__networl_0_0_RI_2, P_poll__networl_1_1_AskP_0, P_poll__networl_0_3_AI_3, P_poll__networl_2_2_AnnP_0, P_masterList_4_2_3, P_poll__networl_1_2_RP_1, P_network_3_4_AskP_2, P_network_4_2_RI_1, P_poll__networl_2_4_RP_2, P_network_2_4_RI_4, P_poll__networl_1_3_AskP_3, P_poll__networl_4_0_RP_0, P_network_2_3_AskP_3, P_poll__networl_0_0_RP_1, P_network_1_0_RP_1, P_network_1_3_RP_1, P_poll__networl_0_2_AskP_0, P_masterList_3_1_1, P_masterList_2_1_3, P_poll__networl_2_4_AnsP_0, P_network_4_4_RP_2, P_masterList_1_3_2, P_network_4_0_AskP_3, P_poll__networl_4_0_AI_1, P_network_1_1_AI_4, P_network_4_3_AnnP_4, P_network_4_0_AskP_1, P_network_4_2_RI_3, P_poll__networl_3_4_RP_0, P_network_0_2_AnnP_4, P_network_2_0_AI_3, P_poll__networl_2_3_RP_3, P_poll__networl_4_2_AI_1, P_network_0_3_AI_2, P_network_2_2_RP_1, P_network_0_0_RP_2, P_network_1_3_AnnP_4, P_poll__networl_3_4_RI_2, P_poll__networl_3_3_RI_4, P_network_0_0_RP_3, P_poll__networl_0_2_RP_2, P_network_3_2_RI_3, P_poll__networl_1_4_RP_2, P_network_3_1_RP_1, P_masterList_0_1_2, P_network_2_3_RP_4, P_poll__networl_4_2_AnnP_3, P_poll__networl_3_3_AnnP_0, P_network_2_0_RP_1, P_network_2_2_AnnP_4, P_network_1_0_AI_1, P_masterList_3_4_0, P_poll__networl_4_4_AI_2, P_network_3_1_RI_3, P_masterList_1_4_4, P_poll__networl_0_1_RP_2, P_poll__networl_3_1_AnnP_0, P_poll__networl_3_1_AnnP_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_AnnP_2, P_poll__networl_3_4_AnsP_0, P_poll__networl_0_1_AI_4, P_network_3_4_AnnP_4, P_poll__networl_3_0_AI_0, P_poll__networl_3_2_AnnP_1, P_poll__networl_1_2_AnnP_4, P_network_1_3_AI_3, P_masterList_3_3_0, P_poll__networl_1_2_RI_1, P_network_4_4_RI_2, P_poll__networl_0_1_AI_3, P_network_1_1_RP_1, P_network_1_4_AI_4, P_network_0_4_AskP_4, P_poll__networl_3_2_AskP_0, P_masterList_2_2_3, P_network_3_2_AskP_3, P_poll__networl_0_3_RI_3, P_poll__networl_1_1_AnnP_4, P_network_0_2_AnnP_1, P_poll__networl_4_3_AskP_2, P_poll__networl_4_0_AskP_4, P_masterList_1_3_0, P_poll__networl_2_4_AI_4, P_poll__networl_3_0_AskP_0, P_poll__networl_0_0_AnnP_1, P_masterList_3_2_1, P_poll__networl_4_4_AnnP_0, P_poll__networl_4_2_AI_4, P_network_4_3_AnnP_1, P_network_4_0_RI_3, P_poll__networl_0_3_AI_2, P_poll__networl_2_2_RI_1, P_network_2_3_AnnP_3, P_poll__networl_3_3_AskP_1, P_network_3_4_RI_4, P_network_4_1_AskP_3, P_poll__networl_4_2_RP_1, P_masterList_1_2_1, P_network_0_4_RP_3, P_poll__networl_4_4_AnnP_4, P_network_3_1_RP_4, P_poll__networl_2_4_AI_0, P_poll__networl_2_2_AnsP_0, P_poll__networl_3_1_AI_4, P_network_3_4_RI_1, P_network_3_1_AskP_1, P_poll__networl_0_4_AI_3, P_network_3_1_AnnP_2, P_network_4_1_RP_4, P_poll__networl_1_0_AskP_2, P_masterList_0_1_0, P_network_0_4_AskP_2, P_poll__networl_3_0_RI_3, P_poll__networl_2_4_AnnP_0, P_masterList_3_3_4, P_network_0_0_RI_4, P_network_3_4_AnnP_1, P_poll__networl_2_1_AskP_1, P_masterList_4_3_4, P_network_4_4_RI_1, P_poll__networl_3_1_AskP_4, P_network_4_2_AnnP_4, P_masterList_4_1_0, P_network_2_1_AskP_2, P_network_0_1_AI_4, P_poll__networl_4_2_RP_2, P_network_3_1_RP_2, P_poll__networl_0_3_AskP_4, P_poll__networl_3_1_AI_2, P_network_0_0_RP_4, P_poll__networl_2_1_AI_2, P_poll__networl_0_2_RP_3, P_network_4_2_RP_3, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AI_3, P_network_1_2_AskP_2, P_network_3_2_RI_2, P_network_1_0_AnnP_4, P_network_1_3_AI_4, P_poll__networl_3_1_AnnP_1, P_poll__networl_4_4_AskP_3, P_network_2_2_AskP_1, P_masterList_3_1_2, P_poll__networl_4_0_AI_2, P_poll__networl_4_4_AI_1, P_masterList_0_4_1, P_poll__networl_4_0_AnnP_2, P_network_0_2_RP_2, P_network_4_1_AnnP_4, P_poll__networl_1_0_AI_4, P_poll__networl_4_0_AskP_2, P_poll__networl_0_3_RP_3, P_network_1_2_RP_1, P_poll__networl_1_4_AI_3, P_masterList_3_3_2, P_poll__networl_4_0_AI_0, P_poll__networl_3_2_RP_0, P_masterList_2_4_3, P_network_4_2_AnnP_1, P_network_1_4_AnnP_1, P_poll__networl_1_1_AI_4, P_poll__networl_2_1_AnnP_1, P_poll__networl_1_2_AskP_2, P_poll__networl_2_0_AI_0, P_network_4_3_RI_1, P_poll__networl_3_2_AnnP_0, P_poll__networl_2_4_AI_1, P_poll__networl_3_0_AskP_4, P_poll__networl_2_1_RP_2, P_network_3_3_RI_3, P_network_0_0_AskP_3, P_masterList_1_4_0, P_poll__networl_3_3_RP_2, P_network_3_1_RI_1, P_poll__networl_2_4_AskP_3, P_network_3_0_AnnP_1, P_network_4_1_RI_2, P_network_0_3_AI_4, P_network_0_3_RP_3, P_poll__networl_1_3_AI_3, P_poll__networl_3_4_AnnP_3, P_network_0_0_AI_4, P_poll__networl_4_4_RP_3, P_poll__networl_1_3_RP_0, P_poll__networl_0_3_AI_1, P_poll__networl_2_3_AnnP_4, P_poll__networl_0_3_AI_4, P_poll__networl_2_3_AnsP_0, P_poll__networl_4_1_RI_3, P_poll__networl_4_2_RP_3, P_network_1_3_AI_2, P_poll__networl_1_2_RI_2, P_network_2_0_RP_4, P_network_0_1_AskP_2, P_network_4_0_AnnP_4, P_poll__networl_2_2_AskP_1, P_network_2_2_RI_3, P_masterList_1_1_0, P_poll__networl_3_2_AnnP_2, P_network_0_0_AskP_1, P_poll__networl_4_0_RP_4, P_poll__networl_1_4_AskP_2, P_poll__networl_4_4_AnnP_3, P_poll__networl_4_3_RP_2, P_poll__networl_4_1_AI_0, P_network_1_1_RI_4, P_network_4_1_AskP_2, P_poll__networl_2_2_RP_0, P_poll__networl_0_2_AskP_3, P_poll__networl_3_2_RI_1, P_network_4_4_AnnP_4, P_poll__networl_2_3_AskP_3, P_network_2_3_AI_1, P_network_3_4_AskP_4, P_poll__networl_1_2_AI_4, P_poll__networl_3_4_RI_0, P_poll__networl_4_1_AskP_3, P_poll__networl_1_3_RI_1, P_network_2_3_AnnP_1, P_network_4_2_RP_1, P_network_2_4_RP_1, P_masterList_4_1_2, P_poll__networl_1_0_AnnP_2, P_network_1_2_AnnP_4, P_poll__networl_1_2_AskP_3, P_network_3_1_AI_2, P_poll__networl_2_0_RI_2, P_poll__networl_3_3_AnnP_4, P_network_1_1_AskP_1, P_network_3_2_RP_3, P_network_1_2_AI_2, P_masterList_1_4_2, P_network_0_0_AI_1, P_poll__networl_0_2_RI_1, P_poll__networl_1_3_RP_1, P_poll__networl_4_1_RP_3, P_poll__networl_4_3_RI_4, P_network_2_2_RI_2, P_network_2_0_AnnP_2, P_poll__networl_1_4_AI_0, P_poll__networl_4_4_AskP_1, P_masterList_0_3_2, P_poll__networl_1_2_AnnP_2, P_poll__networl_2_0_AI_1, P_poll__networl_0_3_RI_0, P_poll__networl_1_0_AI_0, P_network_2_0_AskP_4, P_poll__networl_3_0_AI_2, P_network_2_0_RI_2, P_network_3_0_RI_2, P_poll__networl_4_1_RP_0, P_poll__networl_4_4_AskP_2, P_poll__networl_4_4_RP_2, P_poll__networl_3_2_AnsP_0, P_poll__networl_3_0_RI_4, P_network_3_1_AI_3, P_poll__networl_2_0_RI_4, P_network_3_3_AskP_3, P_poll__networl_0_3_RP_4, P_network_0_1_AI_2, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_4_RI_2, P_network_1_0_AskP_3, P_network_4_1_AI_2, P_poll__networl_1_0_AnnP_4, P_poll__networl_4_3_RP_4, P_masterList_4_3_0, P_poll__networl_1_4_RP_1, P_poll__networl_1_4_RI_4, P_masterList_2_3_0, P_network_0_1_RI_1, P_poll__networl_2_3_AskP_2, P_poll__networl_4_3_AnnP_2, P_network_3_4_RI_2, P_poll__networl_3_4_RP_2, P_network_2_2_RP_4, P_network_3_1_AskP_3, P_poll__networl_1_0_RI_0, P_poll__networl_2_1_RI_1, P_poll__networl_1_0_RP_2, P_poll__networl_0_2_AnsP_0, P_poll__networl_2_2_AI_2, P_network_2_0_RI_3, P_poll__networl_0_0_AnnP_0, P_poll__networl_3_3_AskP_4, P_poll__networl_3_4_AskP_1, P_network_0_3_AskP_4, P_network_1_1_AnnP_4, P_network_4_1_AI_1, P_poll__networl_2_2_RP_2, P_poll__networl_4_4_AI_3, P_poll__networl_3_1_AnnP_3, P_network_4_2_AskP_1, P_poll__networl_2_0_AnsP_0, P_network_0_0_AI_3, P_network_4_1_AnnP_2, P_network_1_3_AskP_2, P_poll__networl_2_1_AI_0, P_poll__networl_3_1_AI_1, P_network_4_2_AI_1, P_poll__networl_0_2_AskP_2, P_network_0_1_AskP_1, P_masterList_4_1_1, P_network_4_4_AskP_2, P_poll__networl_2_2_RP_4, P_network_2_1_AnnP_1, P_network_0_2_RP_3, P_network_4_3_AskP_1, P_poll__networl_2_2_AnnP_1, P_poll__networl_3_2_AskP_2, P_poll__networl_4_2_RP_4, P_poll__networl_4_3_AI_4, P_network_0_0_AnnP_1, P_network_4_4_AnnP_1, P_poll__networl_0_3_AnsP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_1_3_AI_0, P_poll__networl_0_1_AskP_4, P_crashed_0, P_poll__networl_0_1_AskP_1, P_poll__networl_2_2_AI_3, P_poll__networl_3_3_AnnP_3, P_network_4_2_RP_2, P_network_2_1_RI_1, P_poll__networl_0_3_AnnP_2, P_poll__networl_1_4_AskP_0, P_poll__networl_2_3_AI_2, P_network_3_3_AskP_1, P_poll__networl_3_4_AnnP_1, P_crashed_4, P_poll__networl_0_1_AI_0, P_poll__networl_1_2_AnnP_0, P_network_0_4_RI_3, P_network_4_4_RP_4, P_poll__networl_3_2_AI_0, P_network_0_4_AI_2, P_poll__networl_2_0_AI_3, P_poll__networl_3_0_AskP_1, P_poll__networl_2_1_AskP_4, P_poll__networl_2_0_AskP_3, P_poll__networl_4_0_RI_4, P_network_0_1_AnnP_3, P_network_2_1_RP_2, P_network_4_4_AnnP_2, P_masterList_3_4_4, P_poll__networl_4_0_RI_1, P_network_2_1_AnnP_4, P_network_0_2_AI_4, P_network_2_3_RI_2, P_poll__networl_3_1_RP_1, P_masterList_0_3_1, P_network_2_4_AI_2, P_poll__networl_2_2_AI_4, P_poll__networl_3_0_AnnP_2, P_masterList_2_3_2, P_network_1_0_AI_2, P_poll__networl_0_2_AI_3, P_poll__networl_1_2_AnnP_1, P_poll__networl_4_2_AskP_0, P_poll__networl_0_0_RI_3, P_network_0_1_RI_4, P_poll__networl_2_1_RP_3, P_poll__networl_0_4_AskP_3, P_poll__networl_3_2_RI_4, P_network_1_2_RI_2, P_network_3_0_RP_1, P_masterList_2_2_1, P_network_3_1_AI_4, P_poll__networl_1_2_RI_4, P_network_0_3_AnnP_1, P_network_0_4_AI_4, P_network_1_0_RI_3, P_poll__networl_0_1_AnnP_0, P_poll__networl_3_4_RP_3, P_poll__networl_1_0_AnsP_0, P_poll__networl_2_4_AnnP_1, P_poll__networl_1_1_RP_3, P_poll__networl_2_2_AskP_2, P_masterList_4_2_2, P_poll__networl_0_3_AskP_1, P_network_2_3_AskP_4, P_poll__networl_2_3_RP_4, P_poll__networl_1_3_AskP_2, P_network_4_2_RP_4, P_network_1_4_RI_3, P_masterList_2_4_0, P_network_1_0_RI_4, P_poll__networl_1_0_RI_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_4_2_AI_2, P_network_3_0_AI_3, P_poll__networl_1_0_AI_3, P_network_0_3_RI_2, P_poll__networl_1_4_AnsP_0, P_network_4_4_AI_3, P_poll__networl_0_0_AI_1, P_network_4_0_RP_2, P_poll__networl_1_3_AskP_0, P_masterList_0_2_3, P_network_1_2_AI_1, P_network_4_3_AI_1, P_network_4_4_RI_3, P_network_4_4_RP_1, P_network_4_3_AskP_2, P_network_1_1_AnnP_3, P_network_2_0_AskP_2, P_masterList_2_2_4, P_poll__networl_2_2_RI_3, P_poll__networl_0_2_AI_1, P_masterList_2_3_1, P_network_4_2_RI_4, P_poll__networl_3_3_AnsP_0, P_network_1_1_RI_2, P_network_3_2_AnnP_3, P_poll__networl_4_2_AnnP_1, P_network_0_4_AI_1, P_poll__networl_0_3_AskP_3, P_network_0_0_RI_2, P_network_2_2_AI_2, P_masterList_0_3_3, P_poll__networl_3_4_AI_4, P_masterList_1_1_1, P_network_3_0_AI_2, P_poll__networl_0_1_AskP_3, P_poll__networl_2_4_AI_2, P_network_0_1_RP_1, P_poll__networl_2_4_RI_0, P_poll__networl_2_3_AI_1, P_poll__networl_1_3_RI_2, P_poll__networl_3_3_RP_4, P_poll__networl_3_3_RP_1, P_poll__networl_0_0_AskP_4, P_electionFailed_0, P_network_3_4_AI_1, P_poll__networl_2_4_AskP_4, P_poll__networl_2_3_AI_4, P_poll__networl_4_3_RP_3, P_network_0_3_RP_1, P_network_1_2_AskP_4, P_network_4_0_AI_4, P_poll__networl_3_3_RI_3, P_poll__networl_0_4_AI_4, P_poll__networl_2_3_AskP_1, P_poll__networl_4_3_RI_1, P_poll__networl_3_4_RP_4, P_network_3_2_AskP_2, P_poll__networl_4_3_AnsP_0, P_poll__networl_0_4_AnnP_2, P_poll__networl_4_0_RP_1, P_poll__networl_4_1_AnnP_2, P_network_3_0_AskP_3, P_network_0_2_AskP_2, P_poll__networl_2_1_RP_1, P_network_3_2_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_4_0_AI_3, P_poll__networl_4_1_AnnP_4, P_network_4_2_AnnP_3, P_network_3_2_AI_4, P_network_0_0_AnnP_2, P_network_0_2_AnnP_2, P_poll__networl_0_3_RP_1, P_poll__networl_2_3_RI_2, P_poll__networl_0_2_RI_3, P_poll__networl_3_0_RP_2, P_poll__networl_2_4_AI_3, P_network_1_4_AskP_1, P_poll__networl_0_1_RI_4, P_poll__networl_2_0_AskP_1, P_network_0_1_RP_3, P_poll__networl_2_1_AskP_2, P_masterList_1_3_4, P_poll__networl_1_4_RI_1, P_network_3_1_AnnP_1, P_network_3_4_RP_1, P_network_4_2_AI_2, P_network_2_1_RI_4, P_poll__networl_1_1_RP_0, P_poll__networl_0_1_AnnP_3, P_network_4_0_AnnP_1, P_network_3_0_RI_4, P_masterList_0_4_4, P_network_0_2_RI_1, P_network_2_4_AskP_3, P_poll__networl_0_4_AnsP_0, P_network_3_1_AnnP_3, P_network_3_2_AI_1, P_poll__networl_1_1_RI_0, P_poll__networl_4_1_RP_4, P_network_2_3_RI_1, P_network_3_3_RP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_4_1_AskP_2, P_network_0_3_RP_2, P_poll__networl_0_4_RI_0, P_network_2_0_AnnP_4, P_network_3_4_AnnP_3, P_network_4_2_AI_3, P_poll__networl_3_4_AI_2, P_network_2_4_AskP_1, P_poll__networl_3_1_RP_0, P_network_0_3_RI_3, P_poll__networl_0_3_RP_2, P_poll__networl_2_2_RI_4, P_poll__networl_2_4_AskP_0, P_poll__networl_0_1_AI_2, P_network_4_2_AskP_4, P_network_0_0_AnnP_4, P_network_1_4_RI_1, P_crashed_1, P_network_3_2_RP_4, P_masterList_0_1_3, P_poll__networl_0_1_RI_2, P_network_4_1_AskP_1, P_masterList_2_2_2, P_electionFailed_4, P_poll__networl_4_4_RP_0, P_network_2_1_AskP_4, P_poll__networl_0_0_AskP_1, P_network_2_4_RI_2, P_poll__networl_3_1_RI_3, P_masterList_4_1_3, P_poll__networl_2_1_AnnP_3, P_poll__networl_1_3_AnsP_0, P_poll__networl_0_0_RP_2, P_network_1_2_RI_4, P_poll__networl_4_1_AnnP_1, P_network_4_0_AskP_4, P_poll__networl_3_4_AnnP_2, P_poll__networl_0_4_RP_4, P_poll__networl_4_3_AnnP_1, P_network_0_4_RP_1, P_poll__networl_3_4_AskP_2, P_poll__networl_4_3_RP_0, P_poll__networl_0_0_AskP_0, P_network_4_1_AskP_4, P_network_1_1_RP_2, P_poll__networl_2_4_RP_3, P_poll__networl_3_0_RP_0, P_network_4_4_AskP_3, P_poll__networl_0_2_AnnP_1, P_poll__networl_1_1_AI_0, P_network_4_1_AI_4, P_masterList_3_2_4, P_network_2_4_RI_1, P_network_2_1_AskP_3, P_poll__networl_4_4_AskP_0, P_poll__networl_2_2_RI_0, P_network_3_1_AskP_2, P_poll__networl_1_3_AI_4, P_poll__networl_4_2_RI_1, P_masterList_2_3_3, P_network_4_0_AnnP_2, P_poll__networl_1_0_AnnP_3, P_poll__networl_4_0_AI_4, P_poll__networl_0_4_AnnP_0, P_poll__networl_3_2_AskP_4, P_masterList_4_3_1, P_poll__networl_4_3_AI_1, P_network_4_1_RP_1, P_poll__networl_4_1_RI_4, P_network_3_3_AI_4, P_network_3_2_RI_4, P_poll__networl_4_4_AnsP_0, P_network_4_3_AnnP_2, P_poll__networl_1_3_RP_4, P_masterList_4_1_4, P_poll__networl_3_0_AI_3, P_poll__networl_3_4_AskP_0, P_poll__networl_3_2_AnnP_4, P_poll__networl_3_1_AI_3, P_poll__networl_2_3_AskP_4, P_masterList_1_2_0, P_network_1_3_AskP_3, P_poll__networl_4_1_AI_3, P_poll__networl_3_0_AnnP_1, P_network_4_3_RP_1, P_poll__networl_1_3_AnnP_2, P_poll__networl_0_3_RP_0, P_poll__networl_1_0_RI_3, P_poll__networl_1_3_RP_3, P_poll__networl_1_3_RI_3, P_poll__networl_3_3_RI_2, P_network_3_0_AI_4, P_network_4_4_AskP_1, P_poll__networl_4_4_AI_0, P_network_2_3_RP_3, P_network_0_3_AnnP_2, P_poll__networl_0_0_AI_0, P_network_1_2_AskP_3, P_network_4_1_RI_4, P_poll__networl_2_3_AI_3, P_poll__networl_2_1_RP_4, P_network_2_2_AI_4, P_poll__networl_2_2_RP_3, P_masterList_0_2_2, P_masterList_3_4_3, P_network_0_2_AskP_1, P_poll__networl_0_1_RI_0, P_dead_3, P_network_3_0_AskP_4, P_network_0_2_AskP_4, P_poll__networl_3_1_AskP_1, P_poll__networl_1_3_AI_1, P_poll__networl_4_2_RI_0, P_poll__networl_0_4_RI_2, P_poll__networl_4_3_RI_3, P_masterList_3_4_2, P_network_3_4_AI_3, P_poll__networl_4_0_RP_3, P_network_0_1_AI_3, P_network_2_4_RP_4, P_poll__networl_3_2_RP_1, P_network_4_4_AnnP_3, P_poll__networl_4_2_RI_3, P_masterList_2_2_0, P_poll__networl_2_0_AI_2, P_masterList_3_3_1, P_network_2_1_RI_2, P_poll__networl_1_2_AskP_0, P_crashed_2, P_network_3_1_AI_1, P_poll__networl_1_4_RI_2, P_network_0_0_AskP_2, P_poll__networl_4_4_RI_3, P_network_1_2_RP_4, P_network_1_0_AnnP_2, P_network_2_2_AI_3, P_poll__networl_2_4_RI_1, P_poll__networl_3_4_AI_1, P_poll__networl_2_2_AI_1, P_poll__networl_3_2_AskP_1, P_network_0_0_RI_1, P_poll__networl_3_4_AI_0, P_poll__networl_2_3_AskP_0, P_poll__networl_0_1_RP_1, P_poll__networl_1_1_AI_3, P_masterList_0_3_0, P_network_1_3_AnnP_1, P_network_2_4_AI_1, P_poll__networl_1_2_AskP_1, P_poll__networl_2_3_AnnP_1, P_network_0_4_AskP_3, P_poll__networl_2_4_AnnP_4, P_poll__networl_2_1_RI_3, P_network_1_4_AnnP_3, P_masterList_1_3_3, P_network_3_0_RP_3, P_network_1_1_AskP_2, P_network_1_4_AnnP_4, P_network_1_2_AnnP_1, P_network_4_3_RP_2, P_poll__networl_3_1_AnsP_0, P_network_3_2_AskP_1, P_poll__networl_2_0_RP_1, P_network_0_1_RI_3, P_network_1_2_AnnP_2, P_network_1_3_AskP_1, P_poll__networl_1_4_AskP_1, P_network_0_3_RI_1, P_poll__networl_1_1_AskP_2, P_poll__networl_0_2_RP_0, P_poll__networl_4_2_AnnP_0, P_poll__networl_2_4_AnnP_2, P_poll__networl_4_1_AskP_1, P_poll__networl_3_4_RI_4, P_poll__networl_0_4_RP_1, P_masterList_2_1_1, P_poll__networl_1_4_AnnP_3, P_network_2_1_AnnP_3, P_network_2_3_AI_4, P_poll__networl_3_2_RI_2, P_masterList_4_4_1, P_network_2_2_RP_2, P_poll__networl_1_4_AskP_4, P_dead_4, P_poll__networl_1_4_AskP_3, P_poll__networl_1_4_RP_0, P_network_3_0_AskP_2, P_network_2_2_AskP_3, P_poll__networl_3_3_AI_2, P_network_0_3_AnnP_4, P_network_0_2_RI_4, P_poll__networl_1_2_AnnP_3, P_network_3_3_AskP_4, P_poll__networl_1_1_RP_4, P_masterList_0_2_4, P_network_1_4_RP_4, P_poll__networl_2_4_RP_0, P_poll__networl_4_4_RI_2, P_poll__networl_4_1_AnnP_3, P_network_2_3_RP_1, P_network_0_0_RI_3, P_poll__networl_2_0_AskP_2, P_network_1_4_RP_2, P_network_2_4_RI_3, P_poll__networl_2_0_RI_3, P_network_2_3_AI_3, P_poll__networl_1_4_AnnP_1, P_poll__networl_2_1_AI_3, P_network_1_0_AskP_2, P_poll__networl_4_3_RP_1, P_network_4_3_RI_4, P_poll__networl_0_1_RI_3, P_poll__networl_0_0_RI_1, P_dead_1, P_network_3_4_AnnP_2, P_poll__networl_2_4_AskP_1, P_network_1_2_RP_2, P_poll__networl_2_1_AnnP_4, P_network_0_0_AI_2, P_poll__networl_0_2_AI_2, P_poll__networl_3_0_AnnP_4, P_poll__networl_0_4_RI_1, P_poll__networl_4_2_RI_4, P_poll__networl_4_2_RP_0, P_network_2_4_AskP_2, P_poll__networl_0_0_RP_4, P_poll__networl_1_2_RI_0, P_network_1_0_AnnP_3, P_network_0_4_AskP_1, P_poll__networl_0_0_AI_2, P_poll__networl_1_0_RI_4, P_poll__networl_1_0_AnnP_1, P_network_1_1_AnnP_2, P_poll__networl_0_2_RI_2, P_poll__networl_4_1_AskP_0, P_network_0_1_AnnP_4, P_network_1_2_AI_3, P_poll__networl_3_3_AI_0, P_poll__networl_2_2_AskP_0, P_poll__networl_3_2_RI_3, P_network_2_4_AnnP_4, P_masterList_2_1_4, P_network_3_0_RP_2, P_poll__networl_1_2_AI_0, P_network_2_2_RI_4, P_poll__networl_2_0_RP_3, P_poll__networl_0_2_AnnP_4, P_poll__networl_3_3_AI_4, P_poll__networl_0_2_RP_1, P_poll__networl_2_0_AskP_4, P_network_2_4_RP_2, P_poll__networl_3_4_AnnP_4, P_poll__networl_4_4_RI_0, P_network_0_4_AI_3, P_network_0_2_RI_3, P_network_2_0_RP_3, P_poll__networl_1_2_RP_0, P_poll__networl_4_3_AskP_4, P_poll__networl_1_1_AnnP_3, P_network_4_0_RP_3, P_network_4_4_AI_2, P_poll__networl_3_2_RP_3, P_poll__networl_2_3_RP_2, P_poll__networl_3_1_RI_1, P_network_1_4_AI_3, P_poll__networl_3_3_AI_1, P_poll__networl_1_1_AnnP_0, P_network_2_3_RP_2, P_poll__networl_4_2_AnsP_0, P_poll__networl_4_4_RP_4, P_network_3_4_RI_3, P_masterList_4_3_2, P_network_3_0_RI_1, P_poll__networl_4_0_RI_0, P_poll__networl_2_2_AnnP_3, P_network_0_2_AI_3, P_poll__networl_1_3_RI_0, P_poll__networl_1_3_AI_2, P_dead_0, P_network_2_1_RI_3, P_network_4_3_AI_3, P_poll__networl_2_0_RI_0, P_poll__networl_1_3_AnnP_0, P_network_4_4_AI_1, P_poll__networl_1_3_AskP_1, P_network_1_4_RP_1, P_poll__networl_4_3_AskP_3, P_poll__networl_1_0_RP_3, P_electionFailed_2, P_masterList_1_2_4, P_masterList_3_4_1, P_masterList_1_1_3, P_network_3_4_AI_4, P_network_1_4_AI_2, P_poll__networl_0_0_AnnP_3, P_poll__networl_1_1_AnnP_2, P_poll__networl_2_1_RI_2, P_network_4_4_RI_4, P_poll__networl_2_3_RI_4, P_poll__networl_0_0_AnsP_0, P_poll__networl_2_3_AI_0, P_network_1_2_RP_3, P_poll__networl_3_4_AskP_3, P_network_0_2_RP_1, P_network_2_4_AskP_4, P_network_4_0_RP_4, P_network_3_0_AnnP_3, P_poll__networl_4_0_RP_2, P_poll__networl_1_2_AI_3, P_poll__networl_2_0_AnnP_4, P_network_1_1_AnnP_1, P_poll__networl_1_0_AskP_1, P_network_2_0_RI_1, P_poll__networl_1_1_AskP_3, P_network_2_1_RP_3, P_poll__networl_0_4_AskP_4, P_network_0_4_RI_2, P_network_2_3_AnnP_2, P_poll__networl_4_1_AnsP_0, P_poll__networl_1_1_AnsP_0, P_masterList_0_4_3, P_masterList_2_4_2, P_network_3_3_AI_2, P_poll__networl_3_0_AnnP_0, P_masterList_3_2_3, P_network_3_3_AnnP_1, P_poll__networl_4_0_AskP_0, P_poll__networl_1_1_AnnP_1, P_network_3_0_AnnP_4, P_poll__networl_1_3_AnnP_4, P_network_2_0_RP_2, P_poll__networl_3_3_AskP_3, P_network_1_3_AnnP_2, P_poll__networl_2_4_AskP_2, P_masterList_0_2_0, P_network_3_4_RP_2, P_poll__networl_1_1_RP_2, P_poll__networl_3_3_AI_3, P_poll__networl_1_2_RI_3, P_poll__networl_3_0_RP_3, P_poll__networl_1_0_AI_2, P_poll__networl_4_1_RI_2, P_masterList_1_1_2, P_poll__networl_1_1_AskP_4, P_poll__networl_3_1_RP_4, P_poll__networl_3_4_RI_3, P_network_0_2_AskP_3, P_poll__networl_2_2_AnnP_4, P_poll__networl_2_3_RP_0, P_poll__networl_3_2_AskP_3, P_poll__networl_4_1_RP_1, P_poll__networl_2_0_AnnP_3, P_poll__networl_2_1_RI_4, P_poll__networl_3_0_RP_4, P_poll__networl_0_1_AnnP_2, P_network_1_4_AskP_4, P_poll__networl_2_1_AnnP_0, P_network_1_4_AskP_2, P_network_4_1_AnnP_1, P_poll__networl_4_3_AnnP_3, P_network_4_0_AnnP_3, P_poll__networl_0_2_RI_4, P_poll__networl_1_2_RP_2, P_poll__networl_4_2_AnnP_4, P_masterList_4_2_0, P_network_4_2_AskP_2, P_network_3_0_AnnP_2, P_poll__networl_4_3_AnnP_0, P_poll__networl_0_4_RI_3, P_network_4_0_AI_2, P_network_0_2_RI_2, P_network_1_1_AI_2, P_network_1_1_RI_3, P_poll__networl_1_3_RP_2, P_poll__networl_4_1_RI_1, P_network_3_4_AskP_3, P_network_1_3_RI_3, P_poll__networl_0_2_AI_0, P_network_1_3_AskP_4, P_network_2_2_RP_3, P_poll__networl_3_0_AnsP_0, P_poll__networl_4_2_AskP_2, P_poll__networl_2_3_RI_3, P_network_2_0_AnnP_3, P_masterList_0_1_1, P_poll__networl_4_2_AskP_4, P_poll__networl_3_0_AnnP_3, P_poll__networl_4_4_AI_4, P_network_4_3_AnnP_3, P_poll__networl_4_0_RI_3, P_network_1_0_RI_1, P_network_3_3_RP_1, P_masterList_4_4_3, P_poll__networl_3_2_AI_2, P_poll__networl_0_0_AskP_3, P_network_1_2_AskP_1, P_poll__networl_0_2_AI_4, P_network_2_3_AskP_1, P_poll__networl_0_4_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_1_4_AI_2, P_network_2_4_AI_4, P_network_2_4_AnnP_2, P_poll__networl_0_4_AskP_0, P_poll__networl_0_4_AI_1, P_network_1_1_AI_1, P_poll__networl_4_1_RI_0, P_poll__networl_3_2_AnnP_3, P_network_4_1_RI_3, P_network_4_2_AnnP_2, P_network_3_1_AskP_4, P_masterList_0_4_2, P_masterList_1_3_1, P_network_2_0_AskP_3, P_poll__networl_3_1_RP_2, P_network_2_4_RP_3, P_network_1_4_AI_1, P_poll__networl_2_1_AI_1, P_poll__networl_2_3_RP_1, P_poll__networl_1_4_AnnP_0, P_poll__networl_1_3_AskP_4, P_masterList_1_4_3, P_network_0_3_RI_4, P_network_4_0_AI_3, P_network_1_1_RP_4, P_poll__networl_2_2_RI_2, P_masterList_0_2_1, P_poll__networl_1_2_RP_3, P_network_3_4_AskP_1, P_network_0_1_AskP_4, P_poll__networl_0_4_AI_0, P_poll__networl_1_1_AI_1, P_poll__networl_0_4_AskP_2, P_network_2_1_AI_1, P_poll__networl_0_1_RP_0, P_network_3_2_AnnP_2, P_poll__networl_4_2_AI_0, P_poll__networl_0_3_AnnP_1, P_network_3_1_RI_4, P_poll__networl_1_4_RI_3, P_network_4_3_AskP_4, P_poll__networl_2_3_AnnP_2, P_network_2_2_AnnP_2, P_network_3_0_RI_3, P_poll__networl_4_2_AskP_1, P_poll__networl_1_2_AI_1, P_network_1_2_AI_4, P_masterList_4_2_4, P_network_3_2_AnnP_1, P_poll__networl_0_4_AskP_1, P_poll__networl_2_1_AI_4, P_masterList_4_4_2, P_network_1_3_RI_2, P_masterList_2_1_0, P_network_4_1_RP_2, P_poll__networl_4_2_AI_3, P_masterList_4_2_1, P_network_0_4_AnnP_4, P_network_4_3_RP_3, P_network_1_0_RP_3, P_network_2_1_AnnP_2, P_poll__networl_0_3_AskP_2, P_poll__networl_3_1_AI_0, P_poll__networl_1_2_AnsP_0, P_poll__networl_4_1_AI_1, P_poll__networl_1_3_RI_4, P_network_1_4_AnnP_2, P_network_3_3_RI_1, P_network_1_4_AskP_3, P_masterList_0_1_4, P_network_2_0_RI_4, P_network_1_3_RP_4, P_poll__networl_3_2_RP_4, P_network_2_1_RP_4, P_masterList_3_2_0, P_poll__networl_2_2_AskP_3, P_poll__networl_0_4_RP_2, P_poll__networl_4_1_RP_2, P_poll__networl_1_0_RP_4, P_network_4_3_AI_4, P_network_1_0_AI_4, P_poll__networl_0_3_RI_4, P_poll__networl_3_0_AI_4, P_poll__networl_4_4_AskP_4, P_network_3_2_AI_3, P_poll__networl_0_2_AskP_4, P_network_4_1_AI_3, P_network_3_4_RP_4, P_poll__networl_1_1_RI_1, P_network_2_1_AI_4, P_poll__networl_0_2_RP_4, P_poll__networl_0_1_RP_4, P_poll__networl_3_3_AnnP_1, P_network_3_0_RP_4, P_poll__networl_2_4_RI_4, P_network_0_3_AskP_3, P_network_0_3_RP_4, P_poll__networl_1_4_AnnP_4, P_network_2_4_AnnP_3, P_network_3_4_AI_2, P_poll__networl_3_1_RP_3, P_poll__networl_3_2_AI_3, P_poll__networl_0_1_AnnP_4, P_network_3_1_AnnP_4, P_network_2_3_AskP_2, P_masterList_3_2_2, P_network_4_0_RP_1, P_masterList_3_3_3, P_poll__networl_1_3_AnnP_1, P_network_1_1_RI_1, P_poll__networl_2_3_AnnP_3, P_poll__networl_3_0_AI_1, P_network_2_2_AskP_4, P_network_1_2_AnnP_3, P_poll__networl_0_3_RI_1, P_network_4_0_AskP_2, P_network_4_3_RI_2, P_poll__networl_0_4_RP_3, P_masterList_3_1_0, P_poll__networl_0_0_AskP_2, P_network_0_4_RI_4, P_poll__networl_4_0_AskP_1, P_poll__networl_1_2_RP_4, P_poll__networl_0_1_AskP_0, P_network_2_1_AI_3, P_poll__networl_4_1_AskP_4, P_network_3_3_RP_4, P_network_3_3_AI_1, P_network_4_4_AI_4, P_poll__networl_1_4_RI_0, P_network_0_0_AskP_4, P_network_0_2_AnnP_3, P_electionFailed_3, P_poll__networl_4_1_AnnP_0, P_network_3_3_RP_3, P_poll__networl_1_4_AI_1, P_network_1_3_RP_3, P_poll__networl_4_0_AnnP_4, P_poll__networl_3_4_RP_1, P_network_1_3_AnnP_3, P_network_3_2_RP_2, P_poll__networl_4_4_AnnP_1, P_network_2_3_RI_4, P_poll__networl_0_4_AnnP_1, P_poll__networl_0_0_RI_0, P_network_3_3_RI_2, P_network_3_3_AnnP_4, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_4_AI_2, P_poll__networl_4_0_AnnP_1, P_poll__networl_1_4_RP_4, P_network_0_1_RP_2, P_network_2_4_AI_3, P_poll__networl_2_0_RP_2, P_network_0_1_AnnP_2, P_network_1_3_RI_1, P_poll__networl_0_4_AnnP_4, P_network_0_2_AI_2, P_network_2_1_AI_2, P_network_0_0_RP_1, P_network_4_3_AI_2, P_network_1_0_RP_4, P_poll__networl_0_1_AnsP_0, P_poll__networl_1_1_RI_4, P_network_4_3_AskP_3, P_network_3_3_AnnP_2, P_poll__networl_4_0_RI_2, P_poll__networl_1_0_RP_0, P_network_0_1_AI_1, P_network_4_0_RI_1, P_network_1_2_RI_3, P_masterList_0_3_4, P_poll__networl_1_2_AskP_4, P_network_3_3_RI_4, P_poll__networl_3_4_AnnP_0, P_poll__networl_2_4_RI_3, P_poll__networl_4_3_AI_2, P_poll__networl_1_1_AI_2, P_poll__networl_2_1_AskP_3, P_poll__networl_3_3_AskP_2, P_poll__networl_3_2_AI_1, P_masterList_2_1_2, P_masterList_4_3_3, P_poll__networl_4_3_AskP_0, P_poll__networl_0_1_RP_3, P_network_0_3_AI_3, P_poll__networl_2_0_RP_4, P_network_2_2_AnnP_3, P_poll__networl_3_1_AskP_3, P_network_0_2_RP_4, P_network_0_3_AskP_2, P_network_3_2_AI_2, P_network_1_0_AI_3, P_poll__networl_2_2_AI_0, P_poll__networl_3_1_AskP_0, P_poll__networl_4_4_RI_1, P_network_4_0_AI_1, P_network_4_4_RP_3, P_network_3_2_AskP_4, P_network_4_1_RP_3, P_network_2_2_AnnP_1, P_network_4_0_RI_2, P_poll__networl_3_0_RP_1, P_poll__networl_0_4_AnnP_3, P_poll__networl_4_0_AskP_3, P_poll__networl_4_0_AnnP_3, P_poll__networl_4_1_AI_4, P_network_3_0_AskP_1, P_poll__networl_4_3_RI_0, P_network_2_2_AI_1, P_poll__networl_2_4_RP_1, P_network_3_4_RP_3, P_poll__networl_2_0_AskP_0, P_poll__networl_2_4_RP_4, P_poll__networl_4_4_RP_1, P_network_4_3_RI_3, P_network_4_2_RI_2, P_poll__networl_3_1_RI_4, P_poll__networl_2_3_AnnP_0, P_masterList_1_1_4, P_network_0_4_RI_1, P_electionFailed_1, P_poll__networl_0_3_AnnP_3, P_network_0_4_AnnP_3, P_poll__networl_4_3_AI_0, P_poll__networl_2_3_RI_1, P_poll__networl_0_3_RI_2, P_poll__networl_1_3_AnnP_3, P_poll__networl_1_0_AskP_0, P_network_2_0_AI_1, P_poll__networl_0_1_AI_1, P_poll__networl_4_2_AskP_3, P_network_0_4_RP_4, P_network_4_0_RI_4, P_network_1_2_RI_1, P_network_3_0_AI_1, P_network_1_0_AnnP_1, P_poll__networl_1_0_RI_1, P_network_1_4_RI_4, P_network_0_4_AnnP_1, P_network_0_4_RP_2, P_network_3_1_RI_2, P_poll__networl_3_1_AskP_2, P_poll__networl_0_0_AI_4, P_poll__networl_4_0_AnsP_0, P_poll__networl_3_4_AskP_4, P_poll__networl_1_0_AskP_4, P_poll__networl_4_2_RI_2, P_poll__networl_3_3_AnnP_2, P_network_1_1_RP_3, P_network_4_1_RI_1, P_poll__networl_4_3_AnnP_4, P_poll__networl_1_1_RI_2, P_network_3_3_AnnP_3, P_network_0_3_AskP_1, P_poll__networl_1_0_AI_1, P_network_0_2_AI_1, P_poll__networl_4_3_RI_2, P_poll__networl_3_0_AskP_3, P_poll__networl_1_0_RP_1, P_poll__networl_1_4_AI_4, P_network_0_1_AnnP_1, P_poll__networl_2_1_RI_0, P_network_4_3_RP_4, P_network_3_3_AI_3, P_poll__networl_2_1_AskP_0, P_poll__networl_4_3_AskP_1, P_masterList_2_3_4, P_poll__networl_3_2_RP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_0_1_RI_1, P_masterList_2_4_4, P_poll__networl_1_0_AskP_3, P_poll__networl_0_3_AI_0, P_network_4_2_AI_4, P_poll__networl_0_1_AskP_2, P_network_2_3_AnnP_4, P_masterList_3_1_4, P_masterList_3_1_3, P_poll__networl_1_1_RP_1, P_network_1_0_AskP_1, P_network_4_1_AnnP_3, P_masterList_0_4_0, P_poll__networl_1_4_RP_3, P_masterList_1_4_1
May 22, 2016 11:52:45 PM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: Simplified 150 expressions due to constant valuations.
May 22, 2016 11:52:45 PM fr.lip6.move.gal.instantiate.Simplifier simplifyFalseTransitions
INFO: Removed 126 false transitions.
May 22, 2016 11:52:45 PM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 17 fixed domain variables (out of 565 variables) in GAL type NeoElection_PT_4_flat
May 22, 2016 11:52:45 PM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 24548 ms
May 22, 2016 11:52:45 PM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /home/mcc/execution/model.pnml.gal : 64 ms

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-4"
export BK_EXAMINATION="StateSpace"
export BK_TOOL="itstools"
export BK_RESULT_DIR="/root/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-4.tgz
mv NeoElection-PT-4 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool itstools"
echo " Input is NeoElection-PT-4, examination is StateSpace"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r073kn-smll-146363808900091"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "StateSpace" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "StateSpace" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "StateSpace.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property StateSpace.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "StateSpace.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' StateSpace.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;