fond
Model Checking Contest @ Petri Nets 2016
6th edition, Toruń, Poland, June 21, 2016
Execution of r029kn-smll-146348014700022
Last Updated
June 30, 2016

About the Execution of Marcie for Dekker-PT-020

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
5418.860 10759.00 9950.00 100.00 FFFFFTFFTFFFTFFT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
................
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is Dekker-PT-020, examination is CTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r029kn-smll-146348014700022
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME Dekker-PT-020-CTLFireability-0
FORMULA_NAME Dekker-PT-020-CTLFireability-1
FORMULA_NAME Dekker-PT-020-CTLFireability-10
FORMULA_NAME Dekker-PT-020-CTLFireability-11
FORMULA_NAME Dekker-PT-020-CTLFireability-12
FORMULA_NAME Dekker-PT-020-CTLFireability-13
FORMULA_NAME Dekker-PT-020-CTLFireability-14
FORMULA_NAME Dekker-PT-020-CTLFireability-15
FORMULA_NAME Dekker-PT-020-CTLFireability-2
FORMULA_NAME Dekker-PT-020-CTLFireability-3
FORMULA_NAME Dekker-PT-020-CTLFireability-4
FORMULA_NAME Dekker-PT-020-CTLFireability-5
FORMULA_NAME Dekker-PT-020-CTLFireability-6
FORMULA_NAME Dekker-PT-020-CTLFireability-7
FORMULA_NAME Dekker-PT-020-CTLFireability-8
FORMULA_NAME Dekker-PT-020-CTLFireability-9

=== Now, execution of the tool begins

BK_START 1463480775145


Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=CTLFireability.xml --mcc-mode --memory=6 --suppress

parse successfull
net created successfully

Net: Dekker_PT_020
(NrP: 100 NrTr: 440 NrArc: 3240)

net check time: 0m 0.000sec

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.012sec

init dd package: 0m 3.890sec


RS generation: 0m 0.373sec


-> reachability set: #nodes 1185 (1.2e+03) #states 11,534,336 (7)



starting MCC model checker
--------------------------

checking: AG [EX [EX [IS_FIREABLE [withdraw_4_6]]]]
normalized: ~ [E [true U ~ [EX [EX [IS_FIREABLE [withdraw_4_6]]]]]]

..-> the formula is FALSE

FORMULA Dekker-PT-020-CTLFireability-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.761sec

checking: AG [~ [EG [IS_FIREABLE [exit_0]]]]
normalized: ~ [E [true U EG [IS_FIREABLE [exit_0]]]]

.
EG iterations: 1
-> the formula is FALSE

FORMULA Dekker-PT-020-CTLFireability-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.171sec

checking: ~ [AG [~ [AX [IS_FIREABLE [withdraw_17_10]]]]]
normalized: E [true U ~ [EX [~ [IS_FIREABLE [withdraw_17_10]]]]]

.-> the formula is FALSE

FORMULA Dekker-PT-020-CTLFireability-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.033sec

checking: EF [AF [AG [IS_FIREABLE [exit_4]]]]
normalized: E [true U ~ [EG [E [true U ~ [IS_FIREABLE [exit_4]]]]]]


EG iterations: 0
-> the formula is FALSE

FORMULA Dekker-PT-020-CTLFireability-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.044sec

checking: ~ [AG [EF [[IS_FIREABLE [enter_18] | IS_FIREABLE [withdraw_9_17]]]]]
normalized: E [true U ~ [E [true U [IS_FIREABLE [enter_18] | IS_FIREABLE [withdraw_9_17]]]]]

-> the formula is FALSE

FORMULA Dekker-PT-020-CTLFireability-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.267sec

checking: EF [[[EX [IS_FIREABLE [withdraw_7_10]] | IS_FIREABLE [withdraw_10_4]] & AG [~ [IS_FIREABLE [withdraw_19_8]]]]]
normalized: E [true U [[IS_FIREABLE [withdraw_10_4] | EX [IS_FIREABLE [withdraw_7_10]]] & ~ [E [true U IS_FIREABLE [withdraw_19_8]]]]]

.-> the formula is FALSE

FORMULA Dekker-PT-020-CTLFireability-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.134sec

checking: ~ [EF [[[IS_FIREABLE [exit_6] | [IS_FIREABLE [withdraw_10_6] | IS_FIREABLE [withdraw_16_9]]] & ~ [~ [IS_FIREABLE [exit_0]]]]]]
normalized: ~ [E [true U [IS_FIREABLE [exit_0] & [IS_FIREABLE [exit_6] | [IS_FIREABLE [withdraw_10_6] | IS_FIREABLE [withdraw_16_9]]]]]]

-> the formula is FALSE

FORMULA Dekker-PT-020-CTLFireability-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.035sec

checking: E [~ [[~ [IS_FIREABLE [withdraw_7_9]] & [IS_FIREABLE [withdraw_4_0] & IS_FIREABLE [withdraw_1_11]]]] U EG [IS_FIREABLE [enter_2]]]
normalized: E [~ [[~ [IS_FIREABLE [withdraw_7_9]] & [IS_FIREABLE [withdraw_4_0] & IS_FIREABLE [withdraw_1_11]]]] U EG [IS_FIREABLE [enter_2]]]

..
EG iterations: 2
-> the formula is FALSE

FORMULA Dekker-PT-020-CTLFireability-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.014sec

checking: ~ [[E [[IS_FIREABLE [withdraw_15_13] | IS_FIREABLE [withdraw_12_14]] U ~ [IS_FIREABLE [withdraw_11_5]]] & EF [AX [IS_FIREABLE [withdraw_18_8]]]]]
normalized: ~ [[E [true U ~ [EX [~ [IS_FIREABLE [withdraw_18_8]]]]] & E [[IS_FIREABLE [withdraw_15_13] | IS_FIREABLE [withdraw_12_14]] U ~ [IS_FIREABLE [withdraw_11_5]]]]]

.-> the formula is TRUE

FORMULA Dekker-PT-020-CTLFireability-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.296sec

checking: [IS_FIREABLE [withdraw_1_6] | [~ [EX [[IS_FIREABLE [withdraw_5_14] & IS_FIREABLE [withdraw_1_9]]]] & EF [EG [IS_FIREABLE [exit_0]]]]]
normalized: [IS_FIREABLE [withdraw_1_6] | [E [true U EG [IS_FIREABLE [exit_0]]] & ~ [EX [[IS_FIREABLE [withdraw_5_14] & IS_FIREABLE [withdraw_1_9]]]]]]

..
EG iterations: 1
-> the formula is TRUE

FORMULA Dekker-PT-020-CTLFireability-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.168sec

checking: [EF [[[[IS_FIREABLE [withdraw_7_18] | IS_FIREABLE [withdraw_2_7]] & IS_FIREABLE [withdraw_8_9]] & AX [IS_FIREABLE [withdraw_11_1]]]] & ~ [AX [IS_FIREABLE [withdraw_19_16]]]]
normalized: [EX [~ [IS_FIREABLE [withdraw_19_16]]] & E [true U [~ [EX [~ [IS_FIREABLE [withdraw_11_1]]]] & [IS_FIREABLE [withdraw_8_9] & [IS_FIREABLE [withdraw_7_18] | IS_FIREABLE [withdraw_2_7]]]]]]

..-> the formula is FALSE

FORMULA Dekker-PT-020-CTLFireability-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.271sec

checking: [EG [A [IS_FIREABLE [withdraw_9_12] U IS_FIREABLE [withdraw_15_14]]] | ~ [EF [[[IS_FIREABLE [enter_6] & IS_FIREABLE [try_9]] & [IS_FIREABLE [withdraw_8_13] | IS_FIREABLE [withdraw_9_17]]]]]]
normalized: [EG [[~ [EG [~ [IS_FIREABLE [withdraw_15_14]]]] & ~ [E [~ [IS_FIREABLE [withdraw_15_14]] U [~ [IS_FIREABLE [withdraw_15_14]] & ~ [IS_FIREABLE [withdraw_9_12]]]]]]] | ~ [E [true U [[IS_FIREABLE [enter_6] & IS_FIREABLE [try_9]] & [IS_FIREABLE [withdraw_8_13] | IS_FIREABLE [withdraw_9_17]]]]]]

.
EG iterations: 1
.
EG iterations: 1
-> the formula is TRUE

FORMULA Dekker-PT-020-CTLFireability-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.608sec

checking: [~ [[[AX [IS_FIREABLE [withdraw_16_15]] | AG [IS_FIREABLE [withdraw_2_11]]] | ~ [[[IS_FIREABLE [enter_11] | IS_FIREABLE [withdraw_3_10]] | IS_FIREABLE [withdraw_3_6]]]]] | EF [~ [EF [IS_FIREABLE [withdraw_7_19]]]]]
normalized: [E [true U ~ [E [true U IS_FIREABLE [withdraw_7_19]]]] | ~ [[[~ [E [true U ~ [IS_FIREABLE [withdraw_2_11]]]] | ~ [EX [~ [IS_FIREABLE [withdraw_16_15]]]]] | ~ [[IS_FIREABLE [withdraw_3_6] | [IS_FIREABLE [enter_11] | IS_FIREABLE [withdraw_3_10]]]]]]]

.-> the formula is FALSE

FORMULA Dekker-PT-020-CTLFireability-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.210sec

checking: ~ [[EF [[[IS_FIREABLE [withdraw_5_3] | IS_FIREABLE [withdraw_1_6]] & IS_FIREABLE [withdraw_19_3]]] & A [[IS_FIREABLE [withdraw_1_15] | IS_FIREABLE [withdraw_2_6]] U [IS_FIREABLE [withdraw_16_10] | IS_FIREABLE [try_7]]]]]
normalized: ~ [[[~ [E [~ [[IS_FIREABLE [withdraw_16_10] | IS_FIREABLE [try_7]]] U [~ [[IS_FIREABLE [withdraw_16_10] | IS_FIREABLE [try_7]]] & ~ [[IS_FIREABLE [withdraw_1_15] | IS_FIREABLE [withdraw_2_6]]]]]] & ~ [EG [~ [[IS_FIREABLE [withdraw_16_10] | IS_FIREABLE [try_7]]]]]] & E [true U [IS_FIREABLE [withdraw_19_3] & [IS_FIREABLE [withdraw_5_3] | IS_FIREABLE [withdraw_1_6]]]]]]

.
EG iterations: 1
-> the formula is FALSE

FORMULA Dekker-PT-020-CTLFireability-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.493sec

checking: E [[EF [IS_FIREABLE [withdraw_2_13]] | [IS_FIREABLE [withdraw_16_4] | IS_FIREABLE [withdraw_9_10]]] U [[[IS_FIREABLE [withdraw_13_4] | IS_FIREABLE [withdraw_16_2]] & IS_FIREABLE [withdraw_18_4]] & [[IS_FIREABLE [withdraw_2_7] | IS_FIREABLE [withdraw_6_19]] | IS_FIREABLE [withdraw_4_15]]]]
normalized: E [[[IS_FIREABLE [withdraw_16_4] | IS_FIREABLE [withdraw_9_10]] | E [true U IS_FIREABLE [withdraw_2_13]]] U [[IS_FIREABLE [withdraw_18_4] & [IS_FIREABLE [withdraw_13_4] | IS_FIREABLE [withdraw_16_2]]] & [IS_FIREABLE [withdraw_4_15] | [IS_FIREABLE [withdraw_2_7] | IS_FIREABLE [withdraw_6_19]]]]]

-> the formula is TRUE

FORMULA Dekker-PT-020-CTLFireability-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.139sec

checking: [[E [[IS_FIREABLE [withdraw_19_15] | IS_FIREABLE [withdraw_8_14]] U [IS_FIREABLE [withdraw_7_8] & IS_FIREABLE [withdraw_0_15]]] | AG [~ [[IS_FIREABLE [exit_5] & IS_FIREABLE [withdraw_0_11]]]]] & E [[[IS_FIREABLE [withdraw_7_13] & IS_FIREABLE [withdraw_7_0]] & ~ [IS_FIREABLE [try_14]]] U [[IS_FIREABLE [withdraw_15_11] | IS_FIREABLE [withdraw_11_3]] | ~ [IS_FIREABLE [withdraw_13_10]]]]]
normalized: [E [[~ [IS_FIREABLE [try_14]] & [IS_FIREABLE [withdraw_7_13] & IS_FIREABLE [withdraw_7_0]]] U [[IS_FIREABLE [withdraw_15_11] | IS_FIREABLE [withdraw_11_3]] | ~ [IS_FIREABLE [withdraw_13_10]]]] & [~ [E [true U [IS_FIREABLE [exit_5] & IS_FIREABLE [withdraw_0_11]]]] | E [[IS_FIREABLE [withdraw_19_15] | IS_FIREABLE [withdraw_8_14]] U [IS_FIREABLE [withdraw_7_8] & IS_FIREABLE [withdraw_0_15]]]]]

-> the formula is FALSE

FORMULA Dekker-PT-020-CTLFireability-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.574sec


Total processing time: 0m10.721sec


BK_STOP 1463480785904

--------------------
content from stderr:

check for maximal unmarked siphon
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.006sec

245 260 289 354 296 344 390 350 458 637 1088
iterations count:11810 (26), effective:335 (0)

initing FirstDep: 0m 0.001sec

565 598 578 645 802 1185
iterations count:6142 (13), effective:158 (0)
654 715 776 1049
iterations count:4443 (10), effective:59 (0)

iterations count:462 (1), effective:1 (0)
1050 1068 1063 1072 1095 1119 1185
iterations count:7012 (15), effective:240 (0)

iterations count:458 (1), effective:3 (0)
639 715 776 1049
iterations count:4493 (10), effective:61 (0)

iterations count:533 (1), effective:3 (0)
654 715 776 1049
iterations count:4443 (10), effective:59 (0)

iterations count:637 (1), effective:2 (0)

iterations count:499 (1), effective:2 (0)

iterations count:470 (1), effective:3 (0)

iterations count:512 (1), effective:7 (0)

iterations count:509 (1), effective:4 (0)

iterations count:480 (1), effective:3 (0)

iterations count:692 (1), effective:9 (0)

iterations count:506 (1), effective:6 (0)
574 581 642 729 1049
iterations count:5330 (12), effective:122 (0)

iterations count:462 (1), effective:1 (0)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Dekker-PT-020"
export BK_EXAMINATION="CTLFireability"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/root/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/Dekker-PT-020.tgz
mv Dekker-PT-020 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is Dekker-PT-020, examination is CTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r029kn-smll-146348014700022"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLFireability.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;