This form is a summary description of the model entitled “HouseConstruction” proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

This model has been extracted from the petriweb.org repository available at http://www.petriweb.org. According to the provided information, the net was designed by J. L. Peterson, from a PERT chart by F. Levy. The PERT chart contains timing information, which is not accurately translated.

Graphical representation for \(N = 2 \)
References

This model was probably described in: Peterson, James Lyle (1981). *Petri Net Theory and the Modeling of Systems*. Prentice Hall. ISBN 0-13-661983-5. However, this was not checked, the book being unavailable in our library.

Scaling parameter

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Parameter description</th>
<th>Chosen parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>initial number of tokens on place p2</td>
<td>2, 5, 10, 20, 50, 100, 200, 500</td>
</tr>
</tbody>
</table>

Size of the model

Although the model is parameterized, its size does not depend on parameter values.

- number of places: 26
- number of transitions: 18
- number of arcs: 51

Structural properties

- **ordinary** — all arcs have multiplicity one
- **simple free choice** — all (different) transitions with a shared input place have no other input place
- **state machine** — every transition has exactly one input place and exactly one output place
- **marked graph** — every place has exactly one input transition and exactly one output transition
- **connected** — there is an undirected path between every two nodes (places or transitions)
- **strongly connected** — there is a directed path between every two nodes (places or transitions)
- **source place(s)** — one or more places have no input transitions
- **sink place(s)** — one or more places have no output transitions
- **source transition(s)** — one or more places have no input places
- **sink transitions(s)** — one or more transitions have no output places
- **loop-free** — no transition has an input place that is also an output place
- **conservative** — for each transition, the number of input arcs equals the number of output arcs
- **subconservative** — for each transition, the number of input arcs equals or exceeds the number of output arcs
- **nested units** — places are structured into hierarchically nested sequential units

Behavioural properties

- **safe** — in every reachable marking, there is no more than one token on a place
- **deadlock** — there exists a reachable marking from which no transition can be fired
- **reversible** — from every reachable marking, there is a transition path going back to the initial marking

\((a) \) stated by CÆSAR.BDD version 1.7 on all 8 instances (2, 5, 10, 20, 50, 100, 200, and 500).
\((b) \) 11 transitions are not of a state machine, e.g., transition “t3”.
\((c) \) place “p1” is not of a marked graph.
\((d) \) stated by CÆSAR.BDD version 1.7 on all 8 instances (2, 5, 10, 20, 50, 100, 200, and 500).
\((e) \) from place “p2” one cannot reach place “p1”.
\((f) \) place “p1” is a source place.
\((g) \) stated by CÆSAR.BDD version 1.7 on all 8 instances (2, 5, 10, 20, 50, 100, 200, and 500).
\((h) \) 11 transitions are not conservative, e.g., transition “t3”.
\((i) \) 5 transitions are not subconservative, e.g., transition “t3”.
\((m) \) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php
\((n) \) in the initial marking, some places have several tokens (the number of which depends on \(N \)).
\((o) \) confirmed at MCC’2014 by Lola and Tapaal on all 8 instances, and by GreatSPN on 4 instances.
quasi-live — for every transition t, there exists a reachable marking in which t can fire.

live — for every transition t, from every reachable marking, one can reach a marking in which t can fire.

Size of the marking graphs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of reachable markings</th>
<th>Number of transition firings</th>
<th>Max. number of tokens per place</th>
<th>Max. number of tokens per marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N = 2$</td>
<td>$1501^{(q)}$</td>
<td>$4780^{(r)}$</td>
<td>$2^{(s)}$</td>
<td>$12^{(t)}$</td>
</tr>
<tr>
<td>$N = 5$</td>
<td>$1.1886E+6^{(u)}$</td>
<td>$7.1911E+6^{(v)}$</td>
<td>$5^{(w)}$</td>
<td>$30^{(x)}$</td>
</tr>
<tr>
<td>$N = 10$</td>
<td>$1.6636E+9^{(y)}$</td>
<td>$1.4808E+10^{(z)}$</td>
<td>$10^{(aa)}$</td>
<td>$60^{(ab)}$</td>
</tr>
<tr>
<td>$N = 20$</td>
<td>$1.3666E+13^{(ac)}$</td>
<td>$1.6144E+14^{(ad)}$</td>
<td>$20^{(ae)}$</td>
<td>$120^{(af)}$</td>
</tr>
<tr>
<td>$N = 50$</td>
<td>$1.5682E+19^{(ag)}$</td>
<td>?</td>
<td>$50^{(ah)}$</td>
<td>$300^{(ai)}$</td>
</tr>
</tbody>
</table>

(p) stated by CÆSAR.BDD version 2.0 on all 8 instances (2, 5, 10, 20, 50, 100, 200, and 500).

(q) computed at MCC’2013 by Alpina, ITS-Tools, Marcie, and PNXDD; confirmed at MCC’2014 by GreatSPN, Marcie, PNMC, PNXDD, Strategem, and Tapaal.

(r) computed at MCC’2014 by Marcie.

(s) computed at MCC’2014 by GreatSPN, Marcie, PNMC, and Tapaal.

(t) computed at MCC’2014 by GreatSPN, Marcie, PNMC, and Tapaal.

(u) computed at MCC’2013 by Alpina, ITS-Tools, Marcie, Neco, and PNXDD; exact value: 1 187 984; confirmed at MCC’2014 by GreatSPN, Marcie, PNMC, PNXDD, Strategem, and Tapaal.

(v) computed at MCC’2014 by GreatSPN.

(w) computed at MCC’2014 by Marcie.

(x) computed at MCC’2014 by GreatSPN, Marcie, PNMC, and Tapaal.

(y) computed at MCC’2013 by ITS-Tools, Marcie, and PNXDD; confirmed at MCC’2014 by GreatSPN, Marcie, and PNMC.

(z) computed at MCC’2014 by Marcie.

(aa) computed at MCC’2014 by GreatSPN, Marcie, PNMC.

(ab) computed at MCC’2014 by GreatSPN, Marcie, PNMC.

(ac) computed at MCC’2013 by ITS-Tools, Marcie; confirmed at MCC’2014 by GreatSPN, Marcie, and PNMC.

(ad) computed at MCC’2014 by Marcie.

(af) computed at MCC’2014 by GreatSPN, Marcie, and PNMC.

(ah) computed at MCC’2014 by GreatSPN.

(ai) computed at MCC’2014 by GreatSPN.