fond
Model Checking Contest @ Petri Nets 2015
Bruxelles, Belgium, June 23, 2015
TAPAAL(MC) compared to other tools («Surprise» models, ReachabilityCardinality)
Last Updated
August 19, 2015

Introduction

This page presents how TAPAAL(MC) do cope efficiently with the ReachabilityCardinality examination face to the other participating tools. In this page, we consider «Surprise» models.

The next sections will show chart comparing performances in termsof both memory and execution time.The x-axis corresponds to the challenging tool where the y-axes represents TAPAAL(MC)' performances. Thus, points below the diagonal of a chart denote comparisons favorables to the tool whileothers corresponds to situations where the challenging tool performs better.

You might also find plots out of the range that denote the case were at least one tool could not answer appropriately (error, time-out, could not compute or did not competed).

TAPAAL(MC) versus GreatSPN-Meddly

Some statistics are displayed below, based on 242 runs (121 for TAPAAL(MC) and 121 for GreatSPN-Meddly, so there are 121 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing TAPAAL(MC) to GreatSPN-Meddly are shown (you may click on one graph to enlarge it).

Statistics on the execution
  TAPAAL(MC) GreatSPN-Meddly Both tools   TAPAAL(MC) GreatSPN-Meddly
Computed OK 57 0 32   Smallest Memory Footprint
Do not compete 27 0 0 Times tool wins 76 13
Error detected 2 6 0   Shortest Execution Time
Cannot Compute + Time-out 1 81 2 Times tool wins 83 6


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

TAPAAL(MC) versus ITS-Tools

Some statistics are displayed below, based on 242 runs (121 for TAPAAL(MC) and 121 for ITS-Tools, so there are 121 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing TAPAAL(MC) to ITS-Tools are shown (you may click on one graph to enlarge it).

Statistics on the execution
  TAPAAL(MC) ITS-Tools Both tools   TAPAAL(MC) ITS-Tools
Computed OK 68 24 21   Smallest Memory Footprint
Do not compete 27 0 0 Times tool wins 80 33
Error detected 1 57 1   Shortest Execution Time
Cannot Compute + Time-out 2 17 1 Times tool wins 75 38


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

TAPAAL(MC) versus LoLA2.0

Some statistics are displayed below, based on 242 runs (121 for TAPAAL(MC) and 121 for LoLA2.0, so there are 121 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing TAPAAL(MC) to LoLA2.0 are shown (you may click on one graph to enlarge it).

Statistics on the execution
  TAPAAL(MC) LoLA2.0 Both tools   TAPAAL(MC) LoLA2.0
Computed OK 13 5 76   Smallest Memory Footprint
Do not compete 0 0 27 Times tool wins 32 62
Error detected 2 13 0   Shortest Execution Time
Cannot Compute + Time-out 3 0 0 Times tool wins 57 37


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

TAPAAL(MC) versus LTSMin

Some statistics are displayed below, based on 242 runs (121 for TAPAAL(MC) and 121 for LTSMin, so there are 121 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing TAPAAL(MC) to LTSMin are shown (you may click on one graph to enlarge it).

Statistics on the execution
  TAPAAL(MC) LTSMin Both tools   TAPAAL(MC) LTSMin
Computed OK 60 3 29   Smallest Memory Footprint
Do not compete 27 0 0 Times tool wins 81 11
Error detected 0 60 2   Shortest Execution Time
Cannot Compute + Time-out 3 27 0 Times tool wins 81 11


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

TAPAAL(MC) versus Marcie

Some statistics are displayed below, based on 242 runs (121 for TAPAAL(MC) and 121 for Marcie, so there are 121 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing TAPAAL(MC) to Marcie are shown (you may click on one graph to enlarge it).

Statistics on the execution
  TAPAAL(MC) Marcie Both tools   TAPAAL(MC) Marcie
Computed OK 48 11 41   Smallest Memory Footprint
Do not compete 27 0 0 Times tool wins 84 16
Error detected 2 6 0   Shortest Execution Time
Cannot Compute + Time-out 0 60 3 Times tool wins 88 12


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

TAPAAL(MC) versus TAPAAL(SEQ)

Some statistics are displayed below, based on 242 runs (121 for TAPAAL(MC) and 121 for TAPAAL(SEQ), so there are 121 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing TAPAAL(MC) to TAPAAL(SEQ) are shown (you may click on one graph to enlarge it).

Statistics on the execution
  TAPAAL(MC) TAPAAL(SEQ) Both tools   TAPAAL(MC) TAPAAL(SEQ)
Computed OK 0 5 89   Smallest Memory Footprint
Do not compete 0 0 27 Times tool wins 1 93
Error detected 2 0 0   Shortest Execution Time
Cannot Compute + Time-out 3 0 0 Times tool wins 51 43


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

TAPAAL(MC) versus TAPAAL-OTF(PAR)

Some statistics are displayed below, based on 242 runs (121 for TAPAAL(MC) and 121 for TAPAAL-OTF(PAR), so there are 121 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing TAPAAL(MC) to TAPAAL-OTF(PAR) are shown (you may click on one graph to enlarge it).

Statistics on the execution
  TAPAAL(MC) TAPAAL-OTF(PAR) Both tools   TAPAAL(MC) TAPAAL-OTF(PAR)
Computed OK 59 0 30   Smallest Memory Footprint
Do not compete 0 0 27 Times tool wins 69 20
Error detected 2 8 0   Shortest Execution Time
Cannot Compute + Time-out 0 53 3 Times tool wins 88 1


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

TAPAAL(MC) versus TAPAAL-OTF(SEQ)

Some statistics are displayed below, based on 242 runs (121 for TAPAAL(MC) and 121 for TAPAAL-OTF(SEQ), so there are 121 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing TAPAAL(MC) to TAPAAL-OTF(SEQ) are shown (you may click on one graph to enlarge it).

Statistics on the execution
  TAPAAL(MC) TAPAAL-OTF(SEQ) Both tools   TAPAAL(MC) TAPAAL-OTF(SEQ)
Computed OK 36 0 53   Smallest Memory Footprint
Do not compete 0 0 27 Times tool wins 56 33
Error detected 2 0 0   Shortest Execution Time
Cannot Compute + Time-out 0 38 3 Times tool wins 59 30


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart