fond
Model Checking Contest @ Petri Nets 2015
Bruxelles, Belgium, June 23, 2015
Cunf compared to other tools («Stripped» models, ReachabilityFireabilitySimple)
Last Updated
August 19, 2015

Introduction

This page presents how Cunf do cope efficiently with the ReachabilityFireabilitySimple examination face to the other participating tools. In this page, we consider «Stripped» models.

The next sections will show chart comparing performances in termsof both memory and execution time.The x-axis corresponds to the challenging tool where the y-axes represents Cunf' performances. Thus, points below the diagonal of a chart denote comparisons favorables to the tool whileothers corresponds to situations where the challenging tool performs better.

You might also find plots out of the range that denote the case were at least one tool could not answer appropriately (error, time-out, could not compute or did not competed).

Cunf versus GreatSPN-Meddly

Some statistics are displayed below, based on 808 runs (404 for Cunf and 404 for GreatSPN-Meddly, so there are 404 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Cunf to GreatSPN-Meddly are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Cunf GreatSPN-Meddly Both tools   Cunf GreatSPN-Meddly
Computed OK 60 42 15   Smallest Memory Footprint
Do not compete 163 0 114 Times tool wins 75 42
Error detected 0 82 1   Shortest Execution Time
Cannot Compute + Time-out 6 105 45 Times tool wins 75 42


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

Cunf versus ITS-Tools

Some statistics are displayed below, based on 808 runs (404 for Cunf and 404 for ITS-Tools, so there are 404 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Cunf to ITS-Tools are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Cunf ITS-Tools Both tools   Cunf ITS-Tools
Computed OK 15 161 60   Smallest Memory Footprint
Do not compete 277 0 0 Times tool wins 71 165
Error detected 1 7 0   Shortest Execution Time
Cannot Compute + Time-out 22 147 29 Times tool wins 70 166


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

Cunf versus LoLA2.0

Some statistics are displayed below, based on 808 runs (404 for Cunf and 404 for LoLA2.0, so there are 404 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Cunf to LoLA2.0 are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Cunf LoLA2.0 Both tools   Cunf LoLA2.0
Computed OK 1 184 74   Smallest Memory Footprint
Do not compete 140 0 137 Times tool wins 53 206
Error detected 1 2 0   Shortest Execution Time
Cannot Compute + Time-out 47 3 4 Times tool wins 67 192


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

Cunf versus LTSMin

Some statistics are displayed below, based on 808 runs (404 for Cunf and 404 for LTSMin, so there are 404 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Cunf to LTSMin are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Cunf LTSMin Both tools   Cunf LTSMin
Computed OK 1 185 74   Smallest Memory Footprint
Do not compete 277 0 0 Times tool wins 72 188
Error detected 1 6 0   Shortest Execution Time
Cannot Compute + Time-out 50 138 1 Times tool wins 71 189


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

Cunf versus Marcie

Some statistics are displayed below, based on 808 runs (404 for Cunf and 404 for Marcie, so there are 404 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Cunf to Marcie are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Cunf Marcie Both tools   Cunf Marcie
Computed OK 15 107 60   Smallest Memory Footprint
Do not compete 277 0 0 Times tool wins 75 107
Error detected 1 0 0   Shortest Execution Time
Cannot Compute + Time-out 12 198 39 Times tool wins 75 107


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

Cunf versus TAPAAL(MC)

Some statistics are displayed below, based on 808 runs (404 for Cunf and 404 for TAPAAL(MC), so there are 404 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Cunf to TAPAAL(MC) are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Cunf TAPAAL(MC) Both tools   Cunf TAPAAL(MC)
Computed OK 7 170 68   Smallest Memory Footprint
Do not compete 140 0 137 Times tool wins 65 180
Error detected 1 1 0   Shortest Execution Time
Cannot Compute + Time-out 42 19 9 Times tool wins 56 189


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

Cunf versus TAPAAL(SEQ)

Some statistics are displayed below, based on 808 runs (404 for Cunf and 404 for TAPAAL(SEQ), so there are 404 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Cunf to TAPAAL(SEQ) are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Cunf TAPAAL(SEQ) Both tools   Cunf TAPAAL(SEQ)
Computed OK 1 187 74   Smallest Memory Footprint
Do not compete 140 0 137 Times tool wins 51 211
Error detected 1 0 0   Shortest Execution Time
Cannot Compute + Time-out 48 3 3 Times tool wins 58 204


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

Cunf versus TAPAAL-OTF(PAR)

Some statistics are displayed below, based on 808 runs (404 for Cunf and 404 for TAPAAL-OTF(PAR), so there are 404 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Cunf to TAPAAL-OTF(PAR) are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Cunf TAPAAL-OTF(PAR) Both tools   Cunf TAPAAL-OTF(PAR)
Computed OK 31 78 44   Smallest Memory Footprint
Do not compete 140 0 137 Times tool wins 70 83
Error detected 1 7 0   Shortest Execution Time
Cannot Compute + Time-out 9 96 42 Times tool wins 57 96


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

Cunf versus TAPAAL-OTF(SEQ)

Some statistics are displayed below, based on 808 runs (404 for Cunf and 404 for TAPAAL-OTF(SEQ), so there are 404 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Cunf to TAPAAL-OTF(SEQ) are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Cunf TAPAAL-OTF(SEQ) Both tools   Cunf TAPAAL-OTF(SEQ)
Computed OK 24 97 51   Smallest Memory Footprint
Do not compete 140 0 137 Times tool wins 70 102
Error detected 1 0 0   Shortest Execution Time
Cannot Compute + Time-out 16 84 35 Times tool wins 56 116


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart