About the Execution of Marcie for S_QuasiCertifProtocol-PT-06
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5699.920 | 1384525.00 | 1383979.00 | 20.60 | TFFFFFFFTFFFTFTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
..............
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is S_QuasiCertifProtocol-PT-06, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r218st-ebro-143344930200867
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-0
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-1
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-15
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-2
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-3
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-4
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-5
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-6
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-7
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-8
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1433779050639
Model: S_QuasiCertifProtocol-PT-06
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 270 NrTr: 116 NrArc: 659)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m5sec
RS generation: 0m28sec
-> reachability set: #nodes 218170 (2.2e+05) #states 2,271,960 (6)
starting MCC model checker
--------------------------
checking: EF [~ [sum(n6_4, n6_3, n6_6, n6_5, n6_0, n6_2, n6_1)<=malicious_reservoir]]
normalized: E [true U ~ [sum(n6_4, n6_3, n6_6, n6_5, n6_0, n6_2, n6_1)<=malicious_reservoir]]
abstracting: (sum(n6_4, n6_3, n6_6, n6_5, n6_0, n6_2, n6_1)<=malicious_reservoir) states: 694,372 (5)
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m1sec
checking: AG [[[2<=AstopOK | AstopOK<=sum(n5_6, n5_1, n5_0, n5_3, n5_2, n5_5, n5_4)] | [3<=sum(s5_6, s5_4, s5_5, s5_2, s5_3, s5_0, s5_1) & ~ [a4<=SstopAbort]]]]
normalized: ~ [E [true U ~ [[[3<=sum(s5_6, s5_4, s5_5, s5_2, s5_3, s5_0, s5_1) & ~ [a4<=SstopAbort]] | [2<=AstopOK | AstopOK<=sum(n5_6, n5_1, n5_0, n5_3, n5_2, n5_5, n5_4)]]]]]
abstracting: (AstopOK<=sum(n5_6, n5_1, n5_0, n5_3, n5_2, n5_5, n5_4)) states: 1,613,520 (6)
abstracting: (2<=AstopOK) states: 0
abstracting: (a4<=SstopAbort) states: 2,271,959 (6)
abstracting: (3<=sum(s5_6, s5_4, s5_5, s5_2, s5_3, s5_0, s5_1)) states: 705,599 (5)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 2m30sec
checking: AG [sum(Cstart_0, Cstart_1, Cstart_6, Cstart_2, Cstart_3, Cstart_4, Cstart_5)<=sum(Cstart_0, Cstart_1, Cstart_6, Cstart_2, Cstart_3, Cstart_4, Cstart_5)]
normalized: ~ [E [true U ~ [sum(Cstart_0, Cstart_1, Cstart_6, Cstart_2, Cstart_3, Cstart_4, Cstart_5)<=sum(Cstart_0, Cstart_1, Cstart_6, Cstart_2, Cstart_3, Cstart_4, Cstart_5)]]]
abstracting: (sum(Cstart_0, Cstart_1, Cstart_6, Cstart_2, Cstart_3, Cstart_4, Cstart_5)<=sum(Cstart_0, Cstart_1, Cstart_6, Cstart_2, Cstart_3, Cstart_4, Cstart_5)) states: 2,271,960 (6)
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m10sec
checking: AG [sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)<=sum(n2_0, n2_1, n2_2, n2_3, n2_4, n2_5, n2_6)]
normalized: ~ [E [true U ~ [sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)<=sum(n2_0, n2_1, n2_2, n2_3, n2_4, n2_5, n2_6)]]]
abstracting: (sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)<=sum(n2_0, n2_1, n2_2, n2_3, n2_4, n2_5, n2_6)) states: 322,626 (5)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m34sec
checking: AG [sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)<=sum(n9_2_6, n9_1_6, n9_4_6, n9_3_6, n9_6_6, n9_5_6, n9_1_5, n9_0_5, n9_3_5, n9_2_5, n9_5_5, n9_4_5, n9_0_6, n9_6_5, n9_1_4, n9_2_4, n9_6_3, n9_0_4, n9_5_4, n9_6_4, n9_3_4, n9_4_4, n9_0_3, n9_1_3, n9_5_2, n9_6_2, n9_4_3, n9_5_3, n9_2_3, n9_3_3, n9_0_2, n9_6_1, n9_5_1, n9_4_1, n9_4_2, n9_3_2, n9_2_2, n9_1_2, n9_6_0, n9_5_0, n9_4_0, n9_3_0, n9_3_1, n9_2_1, n9_1_1, n9_0_1, n9_0_0, n9_1_0, n9_2_0)]
normalized: ~ [E [true U ~ [sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)<=sum(n9_2_6, n9_1_6, n9_4_6, n9_3_6, n9_6_6, n9_5_6, n9_1_5, n9_0_5, n9_3_5, n9_2_5, n9_5_5, n9_4_5, n9_0_6, n9_6_5, n9_1_4, n9_2_4, n9_6_3, n9_0_4, n9_5_4, n9_6_4, n9_3_4, n9_4_4, n9_0_3, n9_1_3, n9_5_2, n9_6_2, n9_4_3, n9_5_3, n9_2_3, n9_3_3, n9_0_2, n9_6_1, n9_5_1, n9_4_1, n9_4_2, n9_3_2, n9_2_2, n9_1_2, n9_6_0, n9_5_0, n9_4_0, n9_3_0, n9_3_1, n9_2_1, n9_1_1, n9_0_1, n9_0_0, n9_1_0, n9_2_0)]]]
abstracting: (sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)<=sum(n9_2_6, n9_1_6, n9_4_6, n9_3_6, n9_6_6, n9_5_6, n9_1_5, n9_0_5, n9_3_5, n9_2_5, n9_5_5, n9_4_5, n9_0_6, n9_6_5, n9_1_4, n9_2_4, n9_6_3, n9_0_4, n9_5_4, n9_6_4, n9_3_4, n9_4_4, n9_0_3, n9_1_3, n9_5_2, n9_6_2, n9_4_3, n9_5_3, n9_2_3, n9_3_3, n9_0_2, n9_6_1, n9_5_1, n9_4_1, n9_4_2, n9_3_2, n9_2_2, n9_1_2, n9_6_0, n9_5_0, n9_4_0, n9_3_0, n9_3_1, n9_2_1, n9_1_1, n9_0_1, n9_0_0, n9_1_0, n9_2_0)) states: 2,012,940 (6)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m9sec
checking: EF [~ [[~ [2<=AstopOK] | [1<=a3 & 1<=sum(s4_6, s4_5, s4_3, s4_4, s4_1, s4_2, s4_0)]]]]
normalized: E [true U ~ [[[1<=a3 & 1<=sum(s4_6, s4_5, s4_3, s4_4, s4_1, s4_2, s4_0)] | ~ [2<=AstopOK]]]]
abstracting: (2<=AstopOK) states: 0
abstracting: (1<=sum(s4_6, s4_5, s4_3, s4_4, s4_1, s4_2, s4_0)) states: 242,469 (5)
abstracting: (1<=a3) states: 8,192 (3)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m31sec
checking: AG [~ [[[2<=AstopOK | 3<=sum(n3_5, n3_4, n3_6, n3_0, n3_1, n3_2, n3_3)] & 2<=sum(n5_6, n5_1, n5_0, n5_3, n5_2, n5_5, n5_4)]]]
normalized: ~ [E [true U [2<=sum(n5_6, n5_1, n5_0, n5_3, n5_2, n5_5, n5_4) & [2<=AstopOK | 3<=sum(n3_5, n3_4, n3_6, n3_0, n3_1, n3_2, n3_3)]]]]
abstracting: (3<=sum(n3_5, n3_4, n3_6, n3_0, n3_1, n3_2, n3_3)) states: 12,672 (4)
abstracting: (2<=AstopOK) states: 0
abstracting: (2<=sum(n5_6, n5_1, n5_0, n5_3, n5_2, n5_5, n5_4)) states: 206,208 (5)
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m41sec
checking: EF [~ [[~ [2<=a1] | ~ [2<=sum(s6_6, s6_4, s6_5, s6_3, s6_2, s6_1, s6_0)]]]]
normalized: E [true U ~ [[~ [2<=sum(s6_6, s6_4, s6_5, s6_3, s6_2, s6_1, s6_0)] | ~ [2<=a1]]]]
abstracting: (2<=a1) states: 0
abstracting: (2<=sum(s6_6, s6_4, s6_5, s6_3, s6_2, s6_1, s6_0)) states: 1,177,242 (6)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [1<=sum(n4_0, n4_2, n4_1, n4_4, n4_3, n4_6, n4_5)]
normalized: E [true U 1<=sum(n4_0, n4_2, n4_1, n4_4, n4_3, n4_6, n4_5)]
abstracting: (1<=sum(n4_0, n4_2, n4_1, n4_4, n4_3, n4_6, n4_5)) states: 16,256 (4)
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m48sec
checking: AG [[[[1<=sum(n6_4, n6_3, n6_6, n6_5, n6_0, n6_2, n6_1) & sum(n8_3_5, n8_2_5, n8_1_5, n8_0_5, n8_0_6, n8_6_5, n8_5_5, n8_4_5, n8_4_6, n8_3_6, n8_2_6, n8_1_6, n8_6_6, n8_5_6, n8_0_3, n8_1_3, n8_5_2, n8_6_2, n8_4_3, n8_5_3, n8_2_3, n8_3_3, n8_1_4, n8_2_4, n8_6_3, n8_0_4, n8_5_4, n8_6_4, n8_3_4, n8_4_4, n8_1_1, n8_0_1, n8_3_1, n8_2_1, n8_4_0, n8_3_0, n8_6_0, n8_5_0, n8_2_2, n8_1_2, n8_4_2, n8_3_2, n8_5_1, n8_4_1, n8_0_2, n8_6_1, n8_0_0, n8_1_0, n8_2_0)<=a2] | 1<=sum(n4_0, n4_2, n4_1, n4_4, n4_3, n4_6, n4_5)] | ~ [[sum(n4_0, n4_2, n4_1, n4_4, n4_3, n4_6, n4_5)<=sum(CstopOK_2, CstopOK_3, CstopOK_4, CstopOK_5, CstopOK_6, CstopOK_1, CstopOK_0) & 2<=sum(n8_3_5, n8_2_5, n8_1_5, n8_0_5, n8_0_6, n8_6_5, n8_5_5, n8_4_5, n8_4_6, n8_3_6, n8_2_6, n8_1_6, n8_6_6, n8_5_6, n8_0_3, n8_1_3, n8_5_2, n8_6_2, n8_4_3, n8_5_3, n8_2_3, n8_3_3, n8_1_4, n8_2_4, n8_6_3, n8_0_4, n8_5_4, n8_6_4, n8_3_4, n8_4_4, n8_1_1, n8_0_1, n8_3_1, n8_2_1, n8_4_0, n8_3_0, n8_6_0, n8_5_0, n8_2_2, n8_1_2, n8_4_2, n8_3_2, n8_5_1, n8_4_1, n8_0_2, n8_6_1, n8_0_0, n8_1_0, n8_2_0)]]]]
normalized: ~ [E [true U ~ [[~ [[sum(n4_0, n4_2, n4_1, n4_4, n4_3, n4_6, n4_5)<=sum(CstopOK_2, CstopOK_3, CstopOK_4, CstopOK_5, CstopOK_6, CstopOK_1, CstopOK_0) & 2<=sum(n8_3_5, n8_2_5, n8_1_5, n8_0_5, n8_0_6, n8_6_5, n8_5_5, n8_4_5, n8_4_6, n8_3_6, n8_2_6, n8_1_6, n8_6_6, n8_5_6, n8_0_3, n8_1_3, n8_5_2, n8_6_2, n8_4_3, n8_5_3, n8_2_3, n8_3_3, n8_1_4, n8_2_4, n8_6_3, n8_0_4, n8_5_4, n8_6_4, n8_3_4, n8_4_4, n8_1_1, n8_0_1, n8_3_1, n8_2_1, n8_4_0, n8_3_0, n8_6_0, n8_5_0, n8_2_2, n8_1_2, n8_4_2, n8_3_2, n8_5_1, n8_4_1, n8_0_2, n8_6_1, n8_0_0, n8_1_0, n8_2_0)]] | [1<=sum(n4_0, n4_2, n4_1, n4_4, n4_3, n4_6, n4_5) | [1<=sum(n6_4, n6_3, n6_6, n6_5, n6_0, n6_2, n6_1) & sum(n8_3_5, n8_2_5, n8_1_5, n8_0_5, n8_0_6, n8_6_5, n8_5_5, n8_4_5, n8_4_6, n8_3_6, n8_2_6, n8_1_6, n8_6_6, n8_5_6, n8_0_3, n8_1_3, n8_5_2, n8_6_2, n8_4_3, n8_5_3, n8_2_3, n8_3_3, n8_1_4, n8_2_4, n8_6_3, n8_0_4, n8_5_4, n8_6_4, n8_3_4, n8_4_4, n8_1_1, n8_0_1, n8_3_1, n8_2_1, n8_4_0, n8_3_0, n8_6_0, n8_5_0, n8_2_2, n8_1_2, n8_4_2, n8_3_2, n8_5_1, n8_4_1, n8_0_2, n8_6_1, n8_0_0, n8_1_0, n8_2_0)<=a2]]]]]]
abstracting: (sum(n8_3_5, n8_2_5, n8_1_5, n8_0_5, n8_0_6, n8_6_5, n8_5_5, n8_4_5, n8_4_6, n8_3_6, n8_2_6, n8_1_6, n8_6_6, n8_5_6, n8_0_3, n8_1_3, n8_5_2, n8_6_2, n8_4_3, n8_5_3, n8_2_3, n8_3_3, n8_1_4, n8_2_4, n8_6_3, n8_0_4, n8_5_4, n8_6_4, n8_3_4, n8_4_4, n8_1_1, n8_0_1, n8_3_1, n8_2_1, n8_4_0, n8_3_0, n8_6_0, n8_5_0, n8_2_2, n8_1_2, n8_4_2, n8_3_2, n8_5_1, n8_4_1, n8_0_2, n8_6_1, n8_0_0, n8_1_0, n8_2_0)<=a2) states: 407,808 (5)
abstracting: (1<=sum(n6_4, n6_3, n6_6, n6_5, n6_0, n6_2, n6_1)) states: 1,580,304 (6)
abstracting: (1<=sum(n4_0, n4_2, n4_1, n4_4, n4_3, n4_6, n4_5)) states: 16,256 (4)
abstracting: (2<=sum(n8_3_5, n8_2_5, n8_1_5, n8_0_5, n8_0_6, n8_6_5, n8_5_5, n8_4_5, n8_4_6, n8_3_6, n8_2_6, n8_1_6, n8_6_6, n8_5_6, n8_0_3, n8_1_3, n8_5_2, n8_6_2, n8_4_3, n8_5_3, n8_2_3, n8_3_3, n8_1_4, n8_2_4, n8_6_3, n8_0_4, n8_5_4, n8_6_4, n8_3_4, n8_4_4, n8_1_1, n8_0_1, n8_3_1, n8_2_1, n8_4_0, n8_3_0, n8_6_0, n8_5_0, n8_2_2, n8_1_2, n8_4_2, n8_3_2, n8_5_1, n8_4_1, n8_0_2, n8_6_1, n8_0_0, n8_1_0, n8_2_0)) states: 1,864,152 (6)
abstracting: (sum(n4_0, n4_2, n4_1, n4_4, n4_3, n4_6, n4_5)<=sum(CstopOK_2, CstopOK_3, CstopOK_4, CstopOK_5, CstopOK_6, CstopOK_1, CstopOK_0)) states: 2,255,704 (6)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 3m41sec
checking: AG [sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)<=sum(n2_0, n2_1, n2_2, n2_3, n2_4, n2_5, n2_6)]
normalized: ~ [E [true U ~ [sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)<=sum(n2_0, n2_1, n2_2, n2_3, n2_4, n2_5, n2_6)]]]
abstracting: (sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)<=sum(n2_0, n2_1, n2_2, n2_3, n2_4, n2_5, n2_6)) states: 322,626 (5)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m19sec
checking: AG [sum(n5_6, n5_1, n5_0, n5_3, n5_2, n5_5, n5_4)<=sum(SstopOK_5, SstopOK_4, SstopOK_6, SstopOK_1, SstopOK_0, SstopOK_3, SstopOK_2)]
normalized: ~ [E [true U ~ [sum(n5_6, n5_1, n5_0, n5_3, n5_2, n5_5, n5_4)<=sum(SstopOK_5, SstopOK_4, SstopOK_6, SstopOK_1, SstopOK_0, SstopOK_3, SstopOK_2)]]]
abstracting: (sum(n5_6, n5_1, n5_0, n5_3, n5_2, n5_5, n5_4)<=sum(SstopOK_5, SstopOK_4, SstopOK_6, SstopOK_1, SstopOK_0, SstopOK_3, SstopOK_2)) states: 2,008,408 (6)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m51sec
checking: EF [[[~ [2<=a3] & [sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)<=sum(n6_4, n6_3, n6_6, n6_5, n6_0, n6_2, n6_1) | 1<=sum(s6_6, s6_4, s6_5, s6_3, s6_2, s6_1, s6_0)]] & [sum(s4_6, s4_5, s4_3, s4_4, s4_1, s4_2, s4_0)<=sum(n1_2, n1_3, n1_4, n1_5, n1_6, n1_1, n1_0) & 2<=a2]]]
normalized: E [true U [[sum(s4_6, s4_5, s4_3, s4_4, s4_1, s4_2, s4_0)<=sum(n1_2, n1_3, n1_4, n1_5, n1_6, n1_1, n1_0) & 2<=a2] & [[sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)<=sum(n6_4, n6_3, n6_6, n6_5, n6_0, n6_2, n6_1) | 1<=sum(s6_6, s6_4, s6_5, s6_3, s6_2, s6_1, s6_0)] & ~ [2<=a3]]]]
abstracting: (2<=a3) states: 0
abstracting: (1<=sum(s6_6, s6_4, s6_5, s6_3, s6_2, s6_1, s6_0)) states: 1,685,274 (6)
abstracting: (sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)<=sum(n6_4, n6_3, n6_6, n6_5, n6_0, n6_2, n6_1)) states: 1,622,182 (6)
abstracting: (2<=a2) states: 0
abstracting: (sum(s4_6, s4_5, s4_3, s4_4, s4_1, s4_2, s4_0)<=sum(n1_2, n1_3, n1_4, n1_5, n1_6, n1_1, n1_0)) states: 2,029,491 (6)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 2m22sec
checking: AG [[3<=Astart | [sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)<=CstopAbort | [2<=AstopAbort & sum(n5_6, n5_1, n5_0, n5_3, n5_2, n5_5, n5_4)<=sum(n2_0, n2_1, n2_2, n2_3, n2_4, n2_5, n2_6)]]]]
normalized: ~ [E [true U ~ [[3<=Astart | [sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)<=CstopAbort | [2<=AstopAbort & sum(n5_6, n5_1, n5_0, n5_3, n5_2, n5_5, n5_4)<=sum(n2_0, n2_1, n2_2, n2_3, n2_4, n2_5, n2_6)]]]]]]
abstracting: (sum(n5_6, n5_1, n5_0, n5_3, n5_2, n5_5, n5_4)<=sum(n2_0, n2_1, n2_2, n2_3, n2_4, n2_5, n2_6)) states: 2,008,408 (6)
abstracting: (2<=AstopAbort) states: 0
abstracting: (sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)<=CstopAbort) states: 337,851 (5)
abstracting: (3<=Astart) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m37sec
checking: AG [[[[sum(s3_6, s3_3, s3_2, s3_5, s3_4, s3_1, s3_0)<=sum(n3_5, n3_4, n3_6, n3_0, n3_1, n3_2, n3_3) | 1<=sum(n5_6, n5_1, n5_0, n5_3, n5_2, n5_5, n5_4)] | 1<=sum(n3_5, n3_4, n3_6, n3_0, n3_1, n3_2, n3_3)] | 2<=sum(n8_3_5, n8_2_5, n8_1_5, n8_0_5, n8_0_6, n8_6_5, n8_5_5, n8_4_5, n8_4_6, n8_3_6, n8_2_6, n8_1_6, n8_6_6, n8_5_6, n8_0_3, n8_1_3, n8_5_2, n8_6_2, n8_4_3, n8_5_3, n8_2_3, n8_3_3, n8_1_4, n8_2_4, n8_6_3, n8_0_4, n8_5_4, n8_6_4, n8_3_4, n8_4_4, n8_1_1, n8_0_1, n8_3_1, n8_2_1, n8_4_0, n8_3_0, n8_6_0, n8_5_0, n8_2_2, n8_1_2, n8_4_2, n8_3_2, n8_5_1, n8_4_1, n8_0_2, n8_6_1, n8_0_0, n8_1_0, n8_2_0)]]
normalized: ~ [E [true U ~ [[2<=sum(n8_3_5, n8_2_5, n8_1_5, n8_0_5, n8_0_6, n8_6_5, n8_5_5, n8_4_5, n8_4_6, n8_3_6, n8_2_6, n8_1_6, n8_6_6, n8_5_6, n8_0_3, n8_1_3, n8_5_2, n8_6_2, n8_4_3, n8_5_3, n8_2_3, n8_3_3, n8_1_4, n8_2_4, n8_6_3, n8_0_4, n8_5_4, n8_6_4, n8_3_4, n8_4_4, n8_1_1, n8_0_1, n8_3_1, n8_2_1, n8_4_0, n8_3_0, n8_6_0, n8_5_0, n8_2_2, n8_1_2, n8_4_2, n8_3_2, n8_5_1, n8_4_1, n8_0_2, n8_6_1, n8_0_0, n8_1_0, n8_2_0) | [1<=sum(n3_5, n3_4, n3_6, n3_0, n3_1, n3_2, n3_3) | [sum(s3_6, s3_3, s3_2, s3_5, s3_4, s3_1, s3_0)<=sum(n3_5, n3_4, n3_6, n3_0, n3_1, n3_2, n3_3) | 1<=sum(n5_6, n5_1, n5_0, n5_3, n5_2, n5_5, n5_4)]]]]]]
abstracting: (1<=sum(n5_6, n5_1, n5_0, n5_3, n5_2, n5_5, n5_4)) states: 263,552 (5)
abstracting: (sum(s3_6, s3_3, s3_2, s3_5, s3_4, s3_1, s3_0)<=sum(n3_5, n3_4, n3_6, n3_0, n3_1, n3_2, n3_3)) states: 2,033,324 (6)
abstracting: (1<=sum(n3_5, n3_4, n3_6, n3_0, n3_1, n3_2, n3_3)) states: 16,256 (4)
abstracting: (2<=sum(n8_3_5, n8_2_5, n8_1_5, n8_0_5, n8_0_6, n8_6_5, n8_5_5, n8_4_5, n8_4_6, n8_3_6, n8_2_6, n8_1_6, n8_6_6, n8_5_6, n8_0_3, n8_1_3, n8_5_2, n8_6_2, n8_4_3, n8_5_3, n8_2_3, n8_3_3, n8_1_4, n8_2_4, n8_6_3, n8_0_4, n8_5_4, n8_6_4, n8_3_4, n8_4_4, n8_1_1, n8_0_1, n8_3_1, n8_2_1, n8_4_0, n8_3_0, n8_6_0, n8_5_0, n8_2_2, n8_1_2, n8_4_2, n8_3_2, n8_5_1, n8_4_1, n8_0_2, n8_6_1, n8_0_0, n8_1_0, n8_2_0)) states: 1,864,152 (6)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 3m28sec
checking: AG [[[3<=a1 | ~ [3<=sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)]] | 2<=sum(n9_2_6, n9_1_6, n9_4_6, n9_3_6, n9_6_6, n9_5_6, n9_1_5, n9_0_5, n9_3_5, n9_2_5, n9_5_5, n9_4_5, n9_0_6, n9_6_5, n9_1_4, n9_2_4, n9_6_3, n9_0_4, n9_5_4, n9_6_4, n9_3_4, n9_4_4, n9_0_3, n9_1_3, n9_5_2, n9_6_2, n9_4_3, n9_5_3, n9_2_3, n9_3_3, n9_0_2, n9_6_1, n9_5_1, n9_4_1, n9_4_2, n9_3_2, n9_2_2, n9_1_2, n9_6_0, n9_5_0, n9_4_0, n9_3_0, n9_3_1, n9_2_1, n9_1_1, n9_0_1, n9_0_0, n9_1_0, n9_2_0)]]
normalized: ~ [E [true U ~ [[2<=sum(n9_2_6, n9_1_6, n9_4_6, n9_3_6, n9_6_6, n9_5_6, n9_1_5, n9_0_5, n9_3_5, n9_2_5, n9_5_5, n9_4_5, n9_0_6, n9_6_5, n9_1_4, n9_2_4, n9_6_3, n9_0_4, n9_5_4, n9_6_4, n9_3_4, n9_4_4, n9_0_3, n9_1_3, n9_5_2, n9_6_2, n9_4_3, n9_5_3, n9_2_3, n9_3_3, n9_0_2, n9_6_1, n9_5_1, n9_4_1, n9_4_2, n9_3_2, n9_2_2, n9_1_2, n9_6_0, n9_5_0, n9_4_0, n9_3_0, n9_3_1, n9_2_1, n9_1_1, n9_0_1, n9_0_0, n9_1_0, n9_2_0) | [3<=a1 | ~ [3<=sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)]]]]]]
abstracting: (3<=sum(c1_6, c1_5, c1_4, c1_3, c1_2, c1_1, c1_0)) states: 1,920,039 (6)
abstracting: (3<=a1) states: 0
abstracting: (2<=sum(n9_2_6, n9_1_6, n9_4_6, n9_3_6, n9_6_6, n9_5_6, n9_1_5, n9_0_5, n9_3_5, n9_2_5, n9_5_5, n9_4_5, n9_0_6, n9_6_5, n9_1_4, n9_2_4, n9_6_3, n9_0_4, n9_5_4, n9_6_4, n9_3_4, n9_4_4, n9_0_3, n9_1_3, n9_5_2, n9_6_2, n9_4_3, n9_5_3, n9_2_3, n9_3_3, n9_0_2, n9_6_1, n9_5_1, n9_4_1, n9_4_2, n9_3_2, n9_2_2, n9_1_2, n9_6_0, n9_5_0, n9_4_0, n9_3_0, n9_3_1, n9_2_1, n9_1_1, n9_0_1, n9_0_0, n9_1_0, n9_2_0)) states: 1,690,503 (6)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m8sec
Total processing time: 23m4sec
BK_STOP 1433780435164
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
84051 117217 137672 218170
iterations count:4068 (35), effective:116 (1)
initing FirstDep: 0m0sec
iterations count:784 (6), effective:50 (0)
iterations count:408 (3), effective:27 (0)
iterations count:492 (4), effective:37 (0)
iterations count:492 (4), effective:37 (0)
iterations count:347 (2), effective:35 (0)
iterations count:462 (3), effective:34 (0)
iterations count:492 (4), effective:37 (0)
iterations count:313 (2), effective:19 (0)
iterations count:531 (4), effective:40 (0)
iterations count:296 (2), effective:17 (0)
iterations count:517 (4), effective:39 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_QuasiCertifProtocol-PT-06"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/users/gast00/fkordon/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/S_QuasiCertifProtocol-PT-06.tgz
mv S_QuasiCertifProtocol-PT-06 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is S_QuasiCertifProtocol-PT-06, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r218st-ebro-143344930200867"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;