About the Execution of Marcie for S_QuasiCertifProtocol-PT-06
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
4491.550 | 65764.00 | 65030.00 | 20.00 | FTFFFFFFFFFFFFFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
................
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is S_QuasiCertifProtocol-PT-06, examination is ReachabilityBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r218st-ebro-143344930200866
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-0
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-1
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-10
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-11
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-12
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-13
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-14
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-15
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-2
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-3
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-4
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-5
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-6
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-7
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-8
FORMULA_NAME QuasiCertifProtocol-COL-06-ReachabilityBounds-9
=== Now, execution of the tool begins
BK_START 1433779039966
Model: S_QuasiCertifProtocol-PT-06
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityBounds.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 270 NrTr: 116 NrArc: 659)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m5sec
RS generation: 0m28sec
-> reachability set: #nodes 218170 (2.2e+05) #states 2,271,960 (6)
starting MCC model checker
--------------------------
checking: [[[[[[sum(maxVal(n1_2), maxVal(n1_3), maxVal(n1_4), maxVal(n1_5), maxVal(n1_6), maxVal(n1_1), maxVal(n1_0))<=2 & maxVal(CstopAbort)<=3] & [maxVal(SstopAbort)<=1 & sum(maxVal(CstopOK_2), maxVal(CstopOK_3), maxVal(CstopOK_4), maxVal(CstopOK_5), maxVal(CstopOK_6), maxVal(CstopOK_1), maxVal(CstopOK_0))<=3]] & sum(maxVal(CstopOK_2), maxVal(CstopOK_3), maxVal(CstopOK_4), maxVal(CstopOK_5), maxVal(CstopOK_6), maxVal(CstopOK_1), maxVal(CstopOK_0))<=2] & [maxVal(a1)<=1 & sum(maxVal(n6_4), maxVal(n6_3), maxVal(n6_6), maxVal(n6_5), maxVal(n6_0), maxVal(n6_2), maxVal(n6_1))<=1]] & sum(maxVal(s6_6), maxVal(s6_4), maxVal(s6_5), maxVal(s6_3), maxVal(s6_2), maxVal(s6_1), maxVal(s6_0))<=2] & [[sum(maxVal(s6_6), maxVal(s6_4), maxVal(s6_5), maxVal(s6_3), maxVal(s6_2), maxVal(s6_1), maxVal(s6_0))<=3 & [sum(maxVal(n5_6), maxVal(n5_1), maxVal(n5_0), maxVal(n5_3), maxVal(n5_2), maxVal(n5_5), maxVal(n5_4))<=1 & maxVal(AstopOK)<=3]] & sum(maxVal(s2_4), maxVal(s2_3), maxVal(s2_6), maxVal(s2_5), maxVal(s2_0), maxVal(s2_2), maxVal(s2_1))<=3]]
normalized: [[sum(maxVal(s6_6), maxVal(s6_4), maxVal(s6_5), maxVal(s6_3), maxVal(s6_2), maxVal(s6_1), maxVal(s6_0))<=2 & [[sum(maxVal(CstopOK_2), maxVal(CstopOK_3), maxVal(CstopOK_4), maxVal(CstopOK_5), maxVal(CstopOK_6), maxVal(CstopOK_1), maxVal(CstopOK_0))<=2 & [[sum(maxVal(n1_2), maxVal(n1_3), maxVal(n1_4), maxVal(n1_5), maxVal(n1_6), maxVal(n1_1), maxVal(n1_0))<=2 & maxVal(CstopAbort)<=3] & [maxVal(SstopAbort)<=1 & sum(maxVal(CstopOK_2), maxVal(CstopOK_3), maxVal(CstopOK_4), maxVal(CstopOK_5), maxVal(CstopOK_6), maxVal(CstopOK_1), maxVal(CstopOK_0))<=3]]] & [maxVal(a1)<=1 & sum(maxVal(n6_4), maxVal(n6_3), maxVal(n6_6), maxVal(n6_5), maxVal(n6_0), maxVal(n6_2), maxVal(n6_1))<=1]]] & [sum(maxVal(s2_4), maxVal(s2_3), maxVal(s2_6), maxVal(s2_5), maxVal(s2_0), maxVal(s2_2), maxVal(s2_1))<=3 & [sum(maxVal(s6_6), maxVal(s6_4), maxVal(s6_5), maxVal(s6_3), maxVal(s6_2), maxVal(s6_1), maxVal(s6_0))<=3 & [sum(maxVal(n5_6), maxVal(n5_1), maxVal(n5_0), maxVal(n5_3), maxVal(n5_2), maxVal(n5_5), maxVal(n5_4))<=1 & maxVal(AstopOK)<=3]]]]
abstracting: (1<=3) states: 2,271,960 (6)
abstracting: (7<=1) states: 0
abstracting: (7<=3) states: 0
abstracting: (7<=3) states: 0
abstracting: (7<=1) states: 0
abstracting: (1<=1) states: 2,271,960 (6)
abstracting: (7<=3) states: 0
abstracting: (3<=1) states: 0
abstracting: (3<=3) states: 2,271,960 (6)
abstracting: (7<=2) states: 0
abstracting: (7<=2) states: 0
abstracting: (7<=2) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(a5)<=2
normalized: maxVal(a5)<=2
abstracting: (1<=2) states: 2,271,960 (6)
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(n5_6), maxVal(n5_1), maxVal(n5_0), maxVal(n5_3), maxVal(n5_2), maxVal(n5_5), maxVal(n5_4))<=3 & [sum(maxVal(n6_4), maxVal(n6_3), maxVal(n6_6), maxVal(n6_5), maxVal(n6_0), maxVal(n6_2), maxVal(n6_1))<=2 & [maxVal(AstopAbort)<=1 & sum(maxVal(n8_3_5), maxVal(n8_2_5), maxVal(n8_1_5), maxVal(n8_0_5), maxVal(n8_0_6), maxVal(n8_6_5), maxVal(n8_5_5), maxVal(n8_4_5), maxVal(n8_4_6), maxVal(n8_3_6), maxVal(n8_2_6), maxVal(n8_1_6), maxVal(n8_6_6), maxVal(n8_5_6), maxVal(n8_0_3), maxVal(n8_1_3), maxVal(n8_5_2), maxVal(n8_6_2), maxVal(n8_4_3), maxVal(n8_5_3), maxVal(n8_2_3), maxVal(n8_3_3), maxVal(n8_1_4), maxVal(n8_2_4), maxVal(n8_6_3), maxVal(n8_0_4), maxVal(n8_5_4), maxVal(n8_6_4), maxVal(n8_3_4), maxVal(n8_4_4), maxVal(n8_1_1), maxVal(n8_0_1), maxVal(n8_3_1), maxVal(n8_2_1), maxVal(n8_4_0), maxVal(n8_3_0), maxVal(n8_6_0), maxVal(n8_5_0), maxVal(n8_2_2), maxVal(n8_1_2), maxVal(n8_4_2), maxVal(n8_3_2), maxVal(n8_5_1), maxVal(n8_4_1), maxVal(n8_0_2), maxVal(n8_6_1), maxVal(n8_0_0), maxVal(n8_1_0), maxVal(n8_2_0))<=3]]]
normalized: [[[maxVal(AstopAbort)<=1 & sum(maxVal(n8_3_5), maxVal(n8_2_5), maxVal(n8_1_5), maxVal(n8_0_5), maxVal(n8_0_6), maxVal(n8_6_5), maxVal(n8_5_5), maxVal(n8_4_5), maxVal(n8_4_6), maxVal(n8_3_6), maxVal(n8_2_6), maxVal(n8_1_6), maxVal(n8_6_6), maxVal(n8_5_6), maxVal(n8_0_3), maxVal(n8_1_3), maxVal(n8_5_2), maxVal(n8_6_2), maxVal(n8_4_3), maxVal(n8_5_3), maxVal(n8_2_3), maxVal(n8_3_3), maxVal(n8_1_4), maxVal(n8_2_4), maxVal(n8_6_3), maxVal(n8_0_4), maxVal(n8_5_4), maxVal(n8_6_4), maxVal(n8_3_4), maxVal(n8_4_4), maxVal(n8_1_1), maxVal(n8_0_1), maxVal(n8_3_1), maxVal(n8_2_1), maxVal(n8_4_0), maxVal(n8_3_0), maxVal(n8_6_0), maxVal(n8_5_0), maxVal(n8_2_2), maxVal(n8_1_2), maxVal(n8_4_2), maxVal(n8_3_2), maxVal(n8_5_1), maxVal(n8_4_1), maxVal(n8_0_2), maxVal(n8_6_1), maxVal(n8_0_0), maxVal(n8_1_0), maxVal(n8_2_0))<=3] & sum(maxVal(n6_4), maxVal(n6_3), maxVal(n6_6), maxVal(n6_5), maxVal(n6_0), maxVal(n6_2), maxVal(n6_1))<=2] & sum(maxVal(n5_6), maxVal(n5_1), maxVal(n5_0), maxVal(n5_3), maxVal(n5_2), maxVal(n5_5), maxVal(n5_4))<=3]
abstracting: (7<=3) states: 0
abstracting: (7<=2) states: 0
abstracting: (49<=3) states: 0
abstracting: (1<=1) states: 2,271,960 (6)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(n5_6), maxVal(n5_1), maxVal(n5_0), maxVal(n5_3), maxVal(n5_2), maxVal(n5_5), maxVal(n5_4))<=1
normalized: sum(maxVal(n5_6), maxVal(n5_1), maxVal(n5_0), maxVal(n5_3), maxVal(n5_2), maxVal(n5_5), maxVal(n5_4))<=1
abstracting: (7<=1) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(s5_6), maxVal(s5_4), maxVal(s5_5), maxVal(s5_2), maxVal(s5_3), maxVal(s5_0), maxVal(s5_1))<=2 & [[sum(maxVal(Sstart_4), maxVal(Sstart_5), maxVal(Sstart_6), maxVal(Sstart_0), maxVal(Sstart_1), maxVal(Sstart_2), maxVal(Sstart_3))<=1 & maxVal(a5)<=2] & [[sum(maxVal(n3_5), maxVal(n3_4), maxVal(n3_6), maxVal(n3_0), maxVal(n3_1), maxVal(n3_2), maxVal(n3_3))<=2 & maxVal(SstopAbort)<=2] & [[sum(maxVal(Cstart_0), maxVal(Cstart_1), maxVal(Cstart_6), maxVal(Cstart_2), maxVal(Cstart_3), maxVal(Cstart_4), maxVal(Cstart_5))<=2 & [sum(maxVal(SstopOK_5), maxVal(SstopOK_4), maxVal(SstopOK_6), maxVal(SstopOK_1), maxVal(SstopOK_0), maxVal(SstopOK_3), maxVal(SstopOK_2))<=1 & sum(maxVal(n8_3_5), maxVal(n8_2_5), maxVal(n8_1_5), maxVal(n8_0_5), maxVal(n8_0_6), maxVal(n8_6_5), maxVal(n8_5_5), maxVal(n8_4_5), maxVal(n8_4_6), maxVal(n8_3_6), maxVal(n8_2_6), maxVal(n8_1_6), maxVal(n8_6_6), maxVal(n8_5_6), maxVal(n8_0_3), maxVal(n8_1_3), maxVal(n8_5_2), maxVal(n8_6_2), maxVal(n8_4_3), maxVal(n8_5_3), maxVal(n8_2_3), maxVal(n8_3_3), maxVal(n8_1_4), maxVal(n8_2_4), maxVal(n8_6_3), maxVal(n8_0_4), maxVal(n8_5_4), maxVal(n8_6_4), maxVal(n8_3_4), maxVal(n8_4_4), maxVal(n8_1_1), maxVal(n8_0_1), maxVal(n8_3_1), maxVal(n8_2_1), maxVal(n8_4_0), maxVal(n8_3_0), maxVal(n8_6_0), maxVal(n8_5_0), maxVal(n8_2_2), maxVal(n8_1_2), maxVal(n8_4_2), maxVal(n8_3_2), maxVal(n8_5_1), maxVal(n8_4_1), maxVal(n8_0_2), maxVal(n8_6_1), maxVal(n8_0_0), maxVal(n8_1_0), maxVal(n8_2_0))<=2]] & maxVal(malicious_reservoir)<=3]]]]
normalized: [[[[[[sum(maxVal(SstopOK_5), maxVal(SstopOK_4), maxVal(SstopOK_6), maxVal(SstopOK_1), maxVal(SstopOK_0), maxVal(SstopOK_3), maxVal(SstopOK_2))<=1 & sum(maxVal(n8_3_5), maxVal(n8_2_5), maxVal(n8_1_5), maxVal(n8_0_5), maxVal(n8_0_6), maxVal(n8_6_5), maxVal(n8_5_5), maxVal(n8_4_5), maxVal(n8_4_6), maxVal(n8_3_6), maxVal(n8_2_6), maxVal(n8_1_6), maxVal(n8_6_6), maxVal(n8_5_6), maxVal(n8_0_3), maxVal(n8_1_3), maxVal(n8_5_2), maxVal(n8_6_2), maxVal(n8_4_3), maxVal(n8_5_3), maxVal(n8_2_3), maxVal(n8_3_3), maxVal(n8_1_4), maxVal(n8_2_4), maxVal(n8_6_3), maxVal(n8_0_4), maxVal(n8_5_4), maxVal(n8_6_4), maxVal(n8_3_4), maxVal(n8_4_4), maxVal(n8_1_1), maxVal(n8_0_1), maxVal(n8_3_1), maxVal(n8_2_1), maxVal(n8_4_0), maxVal(n8_3_0), maxVal(n8_6_0), maxVal(n8_5_0), maxVal(n8_2_2), maxVal(n8_1_2), maxVal(n8_4_2), maxVal(n8_3_2), maxVal(n8_5_1), maxVal(n8_4_1), maxVal(n8_0_2), maxVal(n8_6_1), maxVal(n8_0_0), maxVal(n8_1_0), maxVal(n8_2_0))<=2] & sum(maxVal(Cstart_0), maxVal(Cstart_1), maxVal(Cstart_6), maxVal(Cstart_2), maxVal(Cstart_3), maxVal(Cstart_4), maxVal(Cstart_5))<=2] & maxVal(malicious_reservoir)<=3] & [sum(maxVal(n3_5), maxVal(n3_4), maxVal(n3_6), maxVal(n3_0), maxVal(n3_1), maxVal(n3_2), maxVal(n3_3))<=2 & maxVal(SstopAbort)<=2]] & [sum(maxVal(Sstart_4), maxVal(Sstart_5), maxVal(Sstart_6), maxVal(Sstart_0), maxVal(Sstart_1), maxVal(Sstart_2), maxVal(Sstart_3))<=1 & maxVal(a5)<=2]] & sum(maxVal(s5_6), maxVal(s5_4), maxVal(s5_5), maxVal(s5_2), maxVal(s5_3), maxVal(s5_0), maxVal(s5_1))<=2]
abstracting: (7<=2) states: 0
abstracting: (1<=2) states: 2,271,960 (6)
abstracting: (7<=1) states: 0
abstracting: (3<=2) states: 0
abstracting: (7<=2) states: 0
abstracting: (3<=3) states: 2,271,960 (6)
abstracting: (7<=2) states: 0
abstracting: (49<=2) states: 0
abstracting: (7<=1) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(CstopOK_2), maxVal(CstopOK_3), maxVal(CstopOK_4), maxVal(CstopOK_5), maxVal(CstopOK_6), maxVal(CstopOK_1), maxVal(CstopOK_0))<=2
normalized: sum(maxVal(CstopOK_2), maxVal(CstopOK_3), maxVal(CstopOK_4), maxVal(CstopOK_5), maxVal(CstopOK_6), maxVal(CstopOK_1), maxVal(CstopOK_0))<=2
abstracting: (7<=2) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(s4_6), maxVal(s4_5), maxVal(s4_3), maxVal(s4_4), maxVal(s4_1), maxVal(s4_2), maxVal(s4_0))<=3
normalized: sum(maxVal(s4_6), maxVal(s4_5), maxVal(s4_3), maxVal(s4_4), maxVal(s4_1), maxVal(s4_2), maxVal(s4_0))<=3
abstracting: (7<=3) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[maxVal(malicious_reservoir)<=1 & [maxVal(a2)<=3 & [[[sum(maxVal(s6_6), maxVal(s6_4), maxVal(s6_5), maxVal(s6_3), maxVal(s6_2), maxVal(s6_1), maxVal(s6_0))<=1 & maxVal(CstopAbort)<=3] & sum(maxVal(Cstart_0), maxVal(Cstart_1), maxVal(Cstart_6), maxVal(Cstart_2), maxVal(Cstart_3), maxVal(Cstart_4), maxVal(Cstart_5))<=3] & maxVal(a2)<=2]]] & maxVal(AstopAbort)<=1]
normalized: [maxVal(AstopAbort)<=1 & [[[maxVal(a2)<=2 & [sum(maxVal(Cstart_0), maxVal(Cstart_1), maxVal(Cstart_6), maxVal(Cstart_2), maxVal(Cstart_3), maxVal(Cstart_4), maxVal(Cstart_5))<=3 & [sum(maxVal(s6_6), maxVal(s6_4), maxVal(s6_5), maxVal(s6_3), maxVal(s6_2), maxVal(s6_1), maxVal(s6_0))<=1 & maxVal(CstopAbort)<=3]]] & maxVal(a2)<=3] & maxVal(malicious_reservoir)<=1]]
abstracting: (3<=1) states: 0
abstracting: (1<=3) states: 2,271,960 (6)
abstracting: (3<=3) states: 2,271,960 (6)
abstracting: (7<=1) states: 0
abstracting: (7<=3) states: 0
abstracting: (1<=2) states: 2,271,960 (6)
abstracting: (1<=1) states: 2,271,960 (6)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(n7_5_6), maxVal(n7_6_6), maxVal(n7_1_6), maxVal(n7_2_6), maxVal(n7_3_6), maxVal(n7_4_6), maxVal(n7_6_4), maxVal(n7_5_4), maxVal(n7_4_4), maxVal(n7_3_4), maxVal(n7_2_4), maxVal(n7_1_4), maxVal(n7_0_4), maxVal(n7_6_3), maxVal(n7_0_6), maxVal(n7_6_5), maxVal(n7_5_5), maxVal(n7_4_5), maxVal(n7_3_5), maxVal(n7_2_5), maxVal(n7_1_5), maxVal(n7_0_5), maxVal(n7_3_2), maxVal(n7_4_2), maxVal(n7_1_2), maxVal(n7_2_2), maxVal(n7_6_1), maxVal(n7_0_2), maxVal(n7_4_1), maxVal(n7_5_1), maxVal(n7_4_3), maxVal(n7_5_3), maxVal(n7_2_3), maxVal(n7_3_3), maxVal(n7_0_3), maxVal(n7_1_3), maxVal(n7_5_2), maxVal(n7_6_2), maxVal(n7_3_0), maxVal(n7_4_0), maxVal(n7_5_0), maxVal(n7_6_0), maxVal(n7_0_1), maxVal(n7_1_1), maxVal(n7_2_1), maxVal(n7_3_1), maxVal(n7_0_0), maxVal(n7_1_0), maxVal(n7_2_0))<=2
normalized: sum(maxVal(n7_5_6), maxVal(n7_6_6), maxVal(n7_1_6), maxVal(n7_2_6), maxVal(n7_3_6), maxVal(n7_4_6), maxVal(n7_6_4), maxVal(n7_5_4), maxVal(n7_4_4), maxVal(n7_3_4), maxVal(n7_2_4), maxVal(n7_1_4), maxVal(n7_0_4), maxVal(n7_6_3), maxVal(n7_0_6), maxVal(n7_6_5), maxVal(n7_5_5), maxVal(n7_4_5), maxVal(n7_3_5), maxVal(n7_2_5), maxVal(n7_1_5), maxVal(n7_0_5), maxVal(n7_3_2), maxVal(n7_4_2), maxVal(n7_1_2), maxVal(n7_2_2), maxVal(n7_6_1), maxVal(n7_0_2), maxVal(n7_4_1), maxVal(n7_5_1), maxVal(n7_4_3), maxVal(n7_5_3), maxVal(n7_2_3), maxVal(n7_3_3), maxVal(n7_0_3), maxVal(n7_1_3), maxVal(n7_5_2), maxVal(n7_6_2), maxVal(n7_3_0), maxVal(n7_4_0), maxVal(n7_5_0), maxVal(n7_6_0), maxVal(n7_0_1), maxVal(n7_1_1), maxVal(n7_2_1), maxVal(n7_3_1), maxVal(n7_0_0), maxVal(n7_1_0), maxVal(n7_2_0))<=2
abstracting: (49<=2) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(s5_6), maxVal(s5_4), maxVal(s5_5), maxVal(s5_2), maxVal(s5_3), maxVal(s5_0), maxVal(s5_1))<=2 & [[[[sum(maxVal(SstopOK_5), maxVal(SstopOK_4), maxVal(SstopOK_6), maxVal(SstopOK_1), maxVal(SstopOK_0), maxVal(SstopOK_3), maxVal(SstopOK_2))<=1 & [sum(maxVal(n1_2), maxVal(n1_3), maxVal(n1_4), maxVal(n1_5), maxVal(n1_6), maxVal(n1_1), maxVal(n1_0))<=1 & maxVal(a3)<=2]] & maxVal(a5)<=1] & [[sum(maxVal(Sstart_4), maxVal(Sstart_5), maxVal(Sstart_6), maxVal(Sstart_0), maxVal(Sstart_1), maxVal(Sstart_2), maxVal(Sstart_3))<=2 & [sum(maxVal(s2_4), maxVal(s2_3), maxVal(s2_6), maxVal(s2_5), maxVal(s2_0), maxVal(s2_2), maxVal(s2_1))<=3 & sum(maxVal(n7_5_6), maxVal(n7_6_6), maxVal(n7_1_6), maxVal(n7_2_6), maxVal(n7_3_6), maxVal(n7_4_6), maxVal(n7_6_4), maxVal(n7_5_4), maxVal(n7_4_4), maxVal(n7_3_4), maxVal(n7_2_4), maxVal(n7_1_4), maxVal(n7_0_4), maxVal(n7_6_3), maxVal(n7_0_6), maxVal(n7_6_5), maxVal(n7_5_5), maxVal(n7_4_5), maxVal(n7_3_5), maxVal(n7_2_5), maxVal(n7_1_5), maxVal(n7_0_5), maxVal(n7_3_2), maxVal(n7_4_2), maxVal(n7_1_2), maxVal(n7_2_2), maxVal(n7_6_1), maxVal(n7_0_2), maxVal(n7_4_1), maxVal(n7_5_1), maxVal(n7_4_3), maxVal(n7_5_3), maxVal(n7_2_3), maxVal(n7_3_3), maxVal(n7_0_3), maxVal(n7_1_3), maxVal(n7_5_2), maxVal(n7_6_2), maxVal(n7_3_0), maxVal(n7_4_0), maxVal(n7_5_0), maxVal(n7_6_0), maxVal(n7_0_1), maxVal(n7_1_1), maxVal(n7_2_1), maxVal(n7_3_1), maxVal(n7_0_0), maxVal(n7_1_0), maxVal(n7_2_0))<=1]] & sum(maxVal(n9_2_6), maxVal(n9_1_6), maxVal(n9_4_6), maxVal(n9_3_6), maxVal(n9_6_6), maxVal(n9_5_6), maxVal(n9_1_5), maxVal(n9_0_5), maxVal(n9_3_5), maxVal(n9_2_5), maxVal(n9_5_5), maxVal(n9_4_5), maxVal(n9_0_6), maxVal(n9_6_5), maxVal(n9_1_4), maxVal(n9_2_4), maxVal(n9_6_3), maxVal(n9_0_4), maxVal(n9_5_4), maxVal(n9_6_4), maxVal(n9_3_4), maxVal(n9_4_4), maxVal(n9_0_3), maxVal(n9_1_3), maxVal(n9_5_2), maxVal(n9_6_2), maxVal(n9_4_3), maxVal(n9_5_3), maxVal(n9_2_3), maxVal(n9_3_3), maxVal(n9_0_2), maxVal(n9_6_1), maxVal(n9_5_1), maxVal(n9_4_1), maxVal(n9_4_2), maxVal(n9_3_2), maxVal(n9_2_2), maxVal(n9_1_2), maxVal(n9_6_0), maxVal(n9_5_0), maxVal(n9_4_0), maxVal(n9_3_0), maxVal(n9_3_1), maxVal(n9_2_1), maxVal(n9_1_1), maxVal(n9_0_1), maxVal(n9_0_0), maxVal(n9_1_0), maxVal(n9_2_0))<=3]] & [maxVal(a1)<=3 & sum(maxVal(c1_6), maxVal(c1_5), maxVal(c1_4), maxVal(c1_3), maxVal(c1_2), maxVal(c1_1), maxVal(c1_0))<=2]]]
normalized: [[[maxVal(a1)<=3 & sum(maxVal(c1_6), maxVal(c1_5), maxVal(c1_4), maxVal(c1_3), maxVal(c1_2), maxVal(c1_1), maxVal(c1_0))<=2] & [[[[sum(maxVal(s2_4), maxVal(s2_3), maxVal(s2_6), maxVal(s2_5), maxVal(s2_0), maxVal(s2_2), maxVal(s2_1))<=3 & sum(maxVal(n7_5_6), maxVal(n7_6_6), maxVal(n7_1_6), maxVal(n7_2_6), maxVal(n7_3_6), maxVal(n7_4_6), maxVal(n7_6_4), maxVal(n7_5_4), maxVal(n7_4_4), maxVal(n7_3_4), maxVal(n7_2_4), maxVal(n7_1_4), maxVal(n7_0_4), maxVal(n7_6_3), maxVal(n7_0_6), maxVal(n7_6_5), maxVal(n7_5_5), maxVal(n7_4_5), maxVal(n7_3_5), maxVal(n7_2_5), maxVal(n7_1_5), maxVal(n7_0_5), maxVal(n7_3_2), maxVal(n7_4_2), maxVal(n7_1_2), maxVal(n7_2_2), maxVal(n7_6_1), maxVal(n7_0_2), maxVal(n7_4_1), maxVal(n7_5_1), maxVal(n7_4_3), maxVal(n7_5_3), maxVal(n7_2_3), maxVal(n7_3_3), maxVal(n7_0_3), maxVal(n7_1_3), maxVal(n7_5_2), maxVal(n7_6_2), maxVal(n7_3_0), maxVal(n7_4_0), maxVal(n7_5_0), maxVal(n7_6_0), maxVal(n7_0_1), maxVal(n7_1_1), maxVal(n7_2_1), maxVal(n7_3_1), maxVal(n7_0_0), maxVal(n7_1_0), maxVal(n7_2_0))<=1] & sum(maxVal(Sstart_4), maxVal(Sstart_5), maxVal(Sstart_6), maxVal(Sstart_0), maxVal(Sstart_1), maxVal(Sstart_2), maxVal(Sstart_3))<=2] & sum(maxVal(n9_2_6), maxVal(n9_1_6), maxVal(n9_4_6), maxVal(n9_3_6), maxVal(n9_6_6), maxVal(n9_5_6), maxVal(n9_1_5), maxVal(n9_0_5), maxVal(n9_3_5), maxVal(n9_2_5), maxVal(n9_5_5), maxVal(n9_4_5), maxVal(n9_0_6), maxVal(n9_6_5), maxVal(n9_1_4), maxVal(n9_2_4), maxVal(n9_6_3), maxVal(n9_0_4), maxVal(n9_5_4), maxVal(n9_6_4), maxVal(n9_3_4), maxVal(n9_4_4), maxVal(n9_0_3), maxVal(n9_1_3), maxVal(n9_5_2), maxVal(n9_6_2), maxVal(n9_4_3), maxVal(n9_5_3), maxVal(n9_2_3), maxVal(n9_3_3), maxVal(n9_0_2), maxVal(n9_6_1), maxVal(n9_5_1), maxVal(n9_4_1), maxVal(n9_4_2), maxVal(n9_3_2), maxVal(n9_2_2), maxVal(n9_1_2), maxVal(n9_6_0), maxVal(n9_5_0), maxVal(n9_4_0), maxVal(n9_3_0), maxVal(n9_3_1), maxVal(n9_2_1), maxVal(n9_1_1), maxVal(n9_0_1), maxVal(n9_0_0), maxVal(n9_1_0), maxVal(n9_2_0))<=3] & [[[sum(maxVal(n1_2), maxVal(n1_3), maxVal(n1_4), maxVal(n1_5), maxVal(n1_6), maxVal(n1_1), maxVal(n1_0))<=1 & maxVal(a3)<=2] & sum(maxVal(SstopOK_5), maxVal(SstopOK_4), maxVal(SstopOK_6), maxVal(SstopOK_1), maxVal(SstopOK_0), maxVal(SstopOK_3), maxVal(SstopOK_2))<=1] & maxVal(a5)<=1]]] & sum(maxVal(s5_6), maxVal(s5_4), maxVal(s5_5), maxVal(s5_2), maxVal(s5_3), maxVal(s5_0), maxVal(s5_1))<=2]
abstracting: (7<=2) states: 0
abstracting: (1<=1) states: 2,271,960 (6)
abstracting: (7<=1) states: 0
abstracting: (1<=2) states: 2,271,960 (6)
abstracting: (7<=1) states: 0
abstracting: (49<=3) states: 0
abstracting: (7<=2) states: 0
abstracting: (49<=1) states: 0
abstracting: (7<=3) states: 0
abstracting: (7<=2) states: 0
abstracting: (1<=3) states: 2,271,960 (6)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(n5_6), maxVal(n5_1), maxVal(n5_0), maxVal(n5_3), maxVal(n5_2), maxVal(n5_5), maxVal(n5_4))<=2 & [maxVal(a5)<=1 & [[[sum(maxVal(n6_4), maxVal(n6_3), maxVal(n6_6), maxVal(n6_5), maxVal(n6_0), maxVal(n6_2), maxVal(n6_1))<=2 & sum(maxVal(n4_0), maxVal(n4_2), maxVal(n4_1), maxVal(n4_4), maxVal(n4_3), maxVal(n4_6), maxVal(n4_5))<=3] & [[sum(maxVal(n1_2), maxVal(n1_3), maxVal(n1_4), maxVal(n1_5), maxVal(n1_6), maxVal(n1_1), maxVal(n1_0))<=3 & sum(maxVal(s2_4), maxVal(s2_3), maxVal(s2_6), maxVal(s2_5), maxVal(s2_0), maxVal(s2_2), maxVal(s2_1))<=2] & sum(maxVal(Cstart_0), maxVal(Cstart_1), maxVal(Cstart_6), maxVal(Cstart_2), maxVal(Cstart_3), maxVal(Cstart_4), maxVal(Cstart_5))<=1]] & sum(maxVal(n5_6), maxVal(n5_1), maxVal(n5_0), maxVal(n5_3), maxVal(n5_2), maxVal(n5_5), maxVal(n5_4))<=1]]]
normalized: [[[[[[sum(maxVal(n1_2), maxVal(n1_3), maxVal(n1_4), maxVal(n1_5), maxVal(n1_6), maxVal(n1_1), maxVal(n1_0))<=3 & sum(maxVal(s2_4), maxVal(s2_3), maxVal(s2_6), maxVal(s2_5), maxVal(s2_0), maxVal(s2_2), maxVal(s2_1))<=2] & sum(maxVal(Cstart_0), maxVal(Cstart_1), maxVal(Cstart_6), maxVal(Cstart_2), maxVal(Cstart_3), maxVal(Cstart_4), maxVal(Cstart_5))<=1] & [sum(maxVal(n6_4), maxVal(n6_3), maxVal(n6_6), maxVal(n6_5), maxVal(n6_0), maxVal(n6_2), maxVal(n6_1))<=2 & sum(maxVal(n4_0), maxVal(n4_2), maxVal(n4_1), maxVal(n4_4), maxVal(n4_3), maxVal(n4_6), maxVal(n4_5))<=3]] & sum(maxVal(n5_6), maxVal(n5_1), maxVal(n5_0), maxVal(n5_3), maxVal(n5_2), maxVal(n5_5), maxVal(n5_4))<=1] & maxVal(a5)<=1] & sum(maxVal(n5_6), maxVal(n5_1), maxVal(n5_0), maxVal(n5_3), maxVal(n5_2), maxVal(n5_5), maxVal(n5_4))<=2]
abstracting: (7<=2) states: 0
abstracting: (1<=1) states: 2,271,960 (6)
abstracting: (7<=1) states: 0
abstracting: (7<=3) states: 0
abstracting: (7<=2) states: 0
abstracting: (7<=1) states: 0
abstracting: (7<=2) states: 0
abstracting: (7<=3) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(s6_6), maxVal(s6_4), maxVal(s6_5), maxVal(s6_3), maxVal(s6_2), maxVal(s6_1), maxVal(s6_0))<=1 & maxVal(a5)<=3]
normalized: [sum(maxVal(s6_6), maxVal(s6_4), maxVal(s6_5), maxVal(s6_3), maxVal(s6_2), maxVal(s6_1), maxVal(s6_0))<=1 & maxVal(a5)<=3]
abstracting: (1<=3) states: 2,271,960 (6)
abstracting: (7<=1) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(s2_4), maxVal(s2_3), maxVal(s2_6), maxVal(s2_5), maxVal(s2_0), maxVal(s2_2), maxVal(s2_1))<=2 & maxVal(CstopAbort)<=1]
normalized: [sum(maxVal(s2_4), maxVal(s2_3), maxVal(s2_6), maxVal(s2_5), maxVal(s2_0), maxVal(s2_2), maxVal(s2_1))<=2 & maxVal(CstopAbort)<=1]
abstracting: (3<=1) states: 0
abstracting: (7<=2) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(n9_2_6), maxVal(n9_1_6), maxVal(n9_4_6), maxVal(n9_3_6), maxVal(n9_6_6), maxVal(n9_5_6), maxVal(n9_1_5), maxVal(n9_0_5), maxVal(n9_3_5), maxVal(n9_2_5), maxVal(n9_5_5), maxVal(n9_4_5), maxVal(n9_0_6), maxVal(n9_6_5), maxVal(n9_1_4), maxVal(n9_2_4), maxVal(n9_6_3), maxVal(n9_0_4), maxVal(n9_5_4), maxVal(n9_6_4), maxVal(n9_3_4), maxVal(n9_4_4), maxVal(n9_0_3), maxVal(n9_1_3), maxVal(n9_5_2), maxVal(n9_6_2), maxVal(n9_4_3), maxVal(n9_5_3), maxVal(n9_2_3), maxVal(n9_3_3), maxVal(n9_0_2), maxVal(n9_6_1), maxVal(n9_5_1), maxVal(n9_4_1), maxVal(n9_4_2), maxVal(n9_3_2), maxVal(n9_2_2), maxVal(n9_1_2), maxVal(n9_6_0), maxVal(n9_5_0), maxVal(n9_4_0), maxVal(n9_3_0), maxVal(n9_3_1), maxVal(n9_2_1), maxVal(n9_1_1), maxVal(n9_0_1), maxVal(n9_0_0), maxVal(n9_1_0), maxVal(n9_2_0))<=1 & sum(maxVal(Sstart_4), maxVal(Sstart_5), maxVal(Sstart_6), maxVal(Sstart_0), maxVal(Sstart_1), maxVal(Sstart_2), maxVal(Sstart_3))<=3]
normalized: [sum(maxVal(n9_2_6), maxVal(n9_1_6), maxVal(n9_4_6), maxVal(n9_3_6), maxVal(n9_6_6), maxVal(n9_5_6), maxVal(n9_1_5), maxVal(n9_0_5), maxVal(n9_3_5), maxVal(n9_2_5), maxVal(n9_5_5), maxVal(n9_4_5), maxVal(n9_0_6), maxVal(n9_6_5), maxVal(n9_1_4), maxVal(n9_2_4), maxVal(n9_6_3), maxVal(n9_0_4), maxVal(n9_5_4), maxVal(n9_6_4), maxVal(n9_3_4), maxVal(n9_4_4), maxVal(n9_0_3), maxVal(n9_1_3), maxVal(n9_5_2), maxVal(n9_6_2), maxVal(n9_4_3), maxVal(n9_5_3), maxVal(n9_2_3), maxVal(n9_3_3), maxVal(n9_0_2), maxVal(n9_6_1), maxVal(n9_5_1), maxVal(n9_4_1), maxVal(n9_4_2), maxVal(n9_3_2), maxVal(n9_2_2), maxVal(n9_1_2), maxVal(n9_6_0), maxVal(n9_5_0), maxVal(n9_4_0), maxVal(n9_3_0), maxVal(n9_3_1), maxVal(n9_2_1), maxVal(n9_1_1), maxVal(n9_0_1), maxVal(n9_0_0), maxVal(n9_1_0), maxVal(n9_2_0))<=1 & sum(maxVal(Sstart_4), maxVal(Sstart_5), maxVal(Sstart_6), maxVal(Sstart_0), maxVal(Sstart_1), maxVal(Sstart_2), maxVal(Sstart_3))<=3]
abstracting: (7<=3) states: 0
abstracting: (49<=1) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(n6_4), maxVal(n6_3), maxVal(n6_6), maxVal(n6_5), maxVal(n6_0), maxVal(n6_2), maxVal(n6_1))<=2
normalized: sum(maxVal(n6_4), maxVal(n6_3), maxVal(n6_6), maxVal(n6_5), maxVal(n6_0), maxVal(n6_2), maxVal(n6_1))<=2
abstracting: (7<=2) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(s4_6), maxVal(s4_5), maxVal(s4_3), maxVal(s4_4), maxVal(s4_1), maxVal(s4_2), maxVal(s4_0))<=1
normalized: sum(maxVal(s4_6), maxVal(s4_5), maxVal(s4_3), maxVal(s4_4), maxVal(s4_1), maxVal(s4_2), maxVal(s4_0))<=1
abstracting: (7<=1) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-06-ReachabilityBounds-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 1m5sec
BK_STOP 1433779105730
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
84051 117217 137672 218170
iterations count:4068 (35), effective:116 (1)
initing FirstDep: 0m0sec
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_QuasiCertifProtocol-PT-06"
export BK_EXAMINATION="ReachabilityBounds"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/users/gast00/fkordon/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/S_QuasiCertifProtocol-PT-06.tgz
mv S_QuasiCertifProtocol-PT-06 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is S_QuasiCertifProtocol-PT-06, examination is ReachabilityBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r218st-ebro-143344930200866"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityBounds" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;