About the Execution of Marcie for S_Philosophers-PT-000010
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3973.920 | 11589.00 | 11029.00 | 10.20 | TFFTFFFTTFFTTFFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.........
=====================================================================
Generated by BenchKit 2-2270
Executing tool marcie
Input is S_Philosophers-PT-000010, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r204st-blw3-143341204900574
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-0
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-1
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-10
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-11
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-12
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-13
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-14
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-15
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-2
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-3
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-4
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-5
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-6
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-7
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-8
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-9
=== Now, execution of the tool begins
BK_START 1433658226470
Model: S_Philosophers-PT-000010
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 50 NrTr: 50 NrArc: 160)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m3sec
RS generation: 0m0sec
-> reachability set: #nodes 240 (2.4e+02) #states 59,049 (4)
starting MCC model checker
--------------------------
checking: [~ [A [1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) U 1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]] & sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]
normalized: [sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2) & ~ [[~ [EG [~ [1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]] & ~ [E [~ [1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] U [~ [1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] & ~ [1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]]]]]]
abstracting: (1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 43,922 (4)
abstracting: (1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,047 (4)
abstracting: (1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,047 (4)
abstracting: (1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 43,922 (4)
.........
EG iterations: 9
abstracting: (sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 59,049 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [A [sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) U 2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]
normalized: ~ [E [true U ~ [[~ [EG [~ [2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]] & ~ [E [~ [sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)] U [~ [2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] & ~ [sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]]]]]]]
abstracting: (sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 34,001 (4)
abstracting: (2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 58,857 (4)
abstracting: (sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 34,001 (4)
abstracting: (2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 58,857 (4)
...
EG iterations: 3
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [EX [~ [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]
normalized: E [true U EX [~ [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]
abstracting: (sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 53,082 (4)
.-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AF [[EF [sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)] & AG [3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]
normalized: ~ [EG [~ [[~ [E [true U ~ [3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]] & E [true U sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]]]]
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 59,049 (4)
abstracting: (3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 41,385 (4)
EG iterations: 0
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: ~ [~ [[2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) & AG [1<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]]
normalized: [2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) & ~ [E [true U ~ [1<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]]
abstracting: (1<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 58,025 (4)
abstracting: (2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 58,857 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[EX [sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)] | EX [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]
normalized: ~ [E [true U ~ [[EX [sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)] | EX [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]]]
abstracting: (sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 53,082 (4)
.abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 59,049 (4)
.-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [2<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]
normalized: E [true U 2<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]
abstracting: (2<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 18,082 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [~ [[EF [2<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)] & ~ [[sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) & 2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]]] | 3<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]
normalized: [3<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2) | ~ [[E [true U 2<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)] & ~ [[sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) & 2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]]]]
abstracting: (2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 38,393 (4)
abstracting: (sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,049 (4)
abstracting: (2<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 18,082 (4)
abstracting: (3<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 22,948 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: E [1<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2) U AG [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]
normalized: E [1<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2) U ~ [E [true U ~ [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]]
abstracting: (sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 53,082 (4)
abstracting: (1<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 52,323 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [AG [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] | AG [sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]
normalized: [~ [E [true U ~ [sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]] | ~ [E [true U ~ [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]]
abstracting: (sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,049 (4)
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 59,049 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [AG [EF [1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]] | A [[1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) | sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] U [sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) & 2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]]
normalized: [[~ [EG [~ [[sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) & 2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]]] & ~ [E [~ [[1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) | sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]] U [~ [[1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) | sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]] & ~ [[sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) & 2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]]]]] | ~ [E [true U ~ [E [true U 1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]]]]
abstracting: (1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 43,922 (4)
abstracting: (2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 38,393 (4)
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 12,519 (4)
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 52,083 (4)
abstracting: (1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 52,323 (4)
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 52,083 (4)
abstracting: (1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 52,323 (4)
abstracting: (2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 38,393 (4)
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 12,519 (4)
...
EG iterations: 3
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: E [AX [sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)] U ~ [1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]
normalized: E [~ [EX [~ [sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]]] U ~ [1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]
abstracting: (1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,047 (4)
abstracting: (sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 59,049 (4)
.-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: ~ [E [[2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)] U [3<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) & 3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]]
normalized: ~ [E [[2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)] U [3<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) & 3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]]
abstracting: (3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 3,387 (3)
abstracting: (3<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 56,412 (4)
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 12,519 (4)
abstracting: (2<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 58,857 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [AX [[3<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) | 3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]]
normalized: ~ [E [true U EX [~ [[3<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) | 3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]]]]
abstracting: (3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 3,387 (3)
abstracting: (3<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 56,412 (4)
.-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AX [AG [[2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) | 3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]
normalized: ~ [EX [E [true U ~ [[2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) | 3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]]]
abstracting: (3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 41,385 (4)
abstracting: (2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 52,905 (4)
.-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) & [[EX [3<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)] | EF [sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]] | [2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) & [[2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] & [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]]]]]
normalized: [1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) & [[EX [3<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)] | E [true U sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]] | [2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) & [[2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] & [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]]]]]
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 22,606 (4)
abstracting: (sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 53,082 (4)
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 52,083 (4)
abstracting: (2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 52,905 (4)
abstracting: (2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 38,393 (4)
abstracting: (sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 12,599 (4)
abstracting: (3<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 22,948 (4)
.abstracting: (1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,047 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 0m11sec
BK_STOP 1433658238059
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
iterations count:263 (5), effective:30 (0)
initing FirstDep: 0m0sec
iterations count:50 (1), effective:0 (0)
iterations count:254 (5), effective:41 (0)
iterations count:447 (8), effective:72 (1)
iterations count:811 (16), effective:142 (2)
iterations count:50 (1), effective:0 (0)
iterations count:370 (7), effective:65 (1)
iterations count:561 (11), effective:101 (2)
iterations count:832 (16), effective:132 (2)
iterations count:832 (16), effective:132 (2)
iterations count:883 (17), effective:155 (3)
iterations count:453 (9), effective:58 (1)
iterations count:217 (4), effective:29 (0)
iterations count:754 (15), effective:126 (2)
iterations count:754 (15), effective:126 (2)
502
iterations count:1106 (22), effective:180 (3)
iterations count:537 (10), effective:95 (1)
iterations count:460 (9), effective:82 (1)
iterations count:661 (13), effective:108 (2)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_Philosophers-PT-000010"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/user/u8/hulinhub/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/S_Philosophers-PT-000010.tgz
mv S_Philosophers-PT-000010 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2270"
echo " Executing tool marcie"
echo " Input is S_Philosophers-PT-000010, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r204st-blw3-143341204900574"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;