About the Execution of Marcie for S_Peterson-PT-2
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3968.080 | 4963.00 | 5030.00 | 10.00 | FFFFFFFFFFFFFFFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.........
=====================================================================
Generated by BenchKit 2-2270
Executing tool marcie
Input is S_Peterson-PT-2, examination is ReachabilityBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r204st-blw3-143341204700320
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-0
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-1
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-10
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-11
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-12
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-13
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-14
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-15
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-2
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-3
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-4
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-5
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-6
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-7
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-8
FORMULA_NAME Peterson-COL-2-ReachabilityBounds-9
=== Now, execution of the tool begins
BK_START 1433645908643
Model: S_Peterson-PT-2
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityBounds.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 102 NrTr: 126 NrArc: 384)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m3sec
RS generation: 0m0sec
-> reachability set: #nodes 2693 (2.7e+03) #states 20,754 (4)
starting MCC model checker
--------------------------
checking: sum(maxVal(WantSection_0_F), maxVal(WantSection_1_F), maxVal(WantSection_2_F), maxVal(WantSection_0_T), maxVal(WantSection_2_T), maxVal(WantSection_1_T))<=2
normalized: sum(maxVal(WantSection_0_F), maxVal(WantSection_1_F), maxVal(WantSection_2_F), maxVal(WantSection_0_T), maxVal(WantSection_2_T), maxVal(WantSection_1_T))<=2
abstracting: (6<=2) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[sum(maxVal(WantSection_0_F), maxVal(WantSection_1_F), maxVal(WantSection_2_F), maxVal(WantSection_0_T), maxVal(WantSection_2_T), maxVal(WantSection_1_T))<=2 & [sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=1 & sum(maxVal(TestAlone_1_0_2), maxVal(TestAlone_0_1_2), maxVal(TestAlone_1_1_2), maxVal(TestAlone_2_0_1), maxVal(TestAlone_0_1_1), maxVal(TestAlone_2_1_1), maxVal(TestAlone_0_0_2), maxVal(TestAlone_2_0_0), maxVal(TestAlone_1_1_0), maxVal(TestAlone_2_1_0), maxVal(TestAlone_0_0_1), maxVal(TestAlone_1_0_0))<=3]] & sum(maxVal(BeginLoop_2_1_2), maxVal(BeginLoop_2_0_2), maxVal(BeginLoop_1_0_2), maxVal(BeginLoop_1_1_2), maxVal(BeginLoop_0_1_2), maxVal(BeginLoop_1_1_1), maxVal(BeginLoop_0_1_1), maxVal(BeginLoop_0_0_2), maxVal(BeginLoop_2_1_1), maxVal(BeginLoop_0_0_1), maxVal(BeginLoop_2_1_0), maxVal(BeginLoop_2_0_1), maxVal(BeginLoop_1_0_1), maxVal(BeginLoop_0_1_0), maxVal(BeginLoop_1_1_0), maxVal(BeginLoop_1_0_0), maxVal(BeginLoop_2_0_0), maxVal(BeginLoop_0_0_0))<=1]
normalized: [sum(maxVal(BeginLoop_2_1_2), maxVal(BeginLoop_2_0_2), maxVal(BeginLoop_1_0_2), maxVal(BeginLoop_1_1_2), maxVal(BeginLoop_0_1_2), maxVal(BeginLoop_1_1_1), maxVal(BeginLoop_0_1_1), maxVal(BeginLoop_0_0_2), maxVal(BeginLoop_2_1_1), maxVal(BeginLoop_0_0_1), maxVal(BeginLoop_2_1_0), maxVal(BeginLoop_2_0_1), maxVal(BeginLoop_1_0_1), maxVal(BeginLoop_0_1_0), maxVal(BeginLoop_1_1_0), maxVal(BeginLoop_1_0_0), maxVal(BeginLoop_2_0_0), maxVal(BeginLoop_0_0_0))<=1 & [sum(maxVal(WantSection_0_F), maxVal(WantSection_1_F), maxVal(WantSection_2_F), maxVal(WantSection_0_T), maxVal(WantSection_2_T), maxVal(WantSection_1_T))<=2 & [sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=1 & sum(maxVal(TestAlone_1_0_2), maxVal(TestAlone_0_1_2), maxVal(TestAlone_1_1_2), maxVal(TestAlone_2_0_1), maxVal(TestAlone_0_1_1), maxVal(TestAlone_2_1_1), maxVal(TestAlone_0_0_2), maxVal(TestAlone_2_0_0), maxVal(TestAlone_1_1_0), maxVal(TestAlone_2_1_0), maxVal(TestAlone_0_0_1), maxVal(TestAlone_1_0_0))<=3]]]
abstracting: (12<=3) states: 0
abstracting: (3<=1) states: 0
abstracting: (6<=2) states: 0
abstracting: (18<=1) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(WantSection_0_F), maxVal(WantSection_1_F), maxVal(WantSection_2_F), maxVal(WantSection_0_T), maxVal(WantSection_2_T), maxVal(WantSection_1_T))<=3
normalized: sum(maxVal(WantSection_0_F), maxVal(WantSection_1_F), maxVal(WantSection_2_F), maxVal(WantSection_0_T), maxVal(WantSection_2_T), maxVal(WantSection_1_T))<=3
abstracting: (6<=3) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=1
normalized: sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=1
abstracting: (3<=1) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=1
normalized: sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=1
abstracting: (6<=1) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[sum(maxVal(BeginLoop_2_1_2), maxVal(BeginLoop_2_0_2), maxVal(BeginLoop_1_0_2), maxVal(BeginLoop_1_1_2), maxVal(BeginLoop_0_1_2), maxVal(BeginLoop_1_1_1), maxVal(BeginLoop_0_1_1), maxVal(BeginLoop_0_0_2), maxVal(BeginLoop_2_1_1), maxVal(BeginLoop_0_0_1), maxVal(BeginLoop_2_1_0), maxVal(BeginLoop_2_0_1), maxVal(BeginLoop_1_0_1), maxVal(BeginLoop_0_1_0), maxVal(BeginLoop_1_1_0), maxVal(BeginLoop_1_0_0), maxVal(BeginLoop_2_0_0), maxVal(BeginLoop_0_0_0))<=2 & [[[[sum(maxVal(TestAlone_1_0_2), maxVal(TestAlone_0_1_2), maxVal(TestAlone_1_1_2), maxVal(TestAlone_2_0_1), maxVal(TestAlone_0_1_1), maxVal(TestAlone_2_1_1), maxVal(TestAlone_0_0_2), maxVal(TestAlone_2_0_0), maxVal(TestAlone_1_1_0), maxVal(TestAlone_2_1_0), maxVal(TestAlone_0_0_1), maxVal(TestAlone_1_0_0))<=2 & sum(maxVal(IsEndLoop_2_1_2), maxVal(IsEndLoop_0_1_2), maxVal(IsEndLoop_1_1_2), maxVal(IsEndLoop_1_0_2), maxVal(IsEndLoop_2_0_2), maxVal(IsEndLoop_0_0_2), maxVal(IsEndLoop_2_1_1), maxVal(IsEndLoop_1_1_1), maxVal(IsEndLoop_0_1_1), maxVal(IsEndLoop_2_0_1), maxVal(IsEndLoop_1_0_1), maxVal(IsEndLoop_0_0_1), maxVal(IsEndLoop_2_1_0), maxVal(IsEndLoop_1_1_0), maxVal(IsEndLoop_0_1_0), maxVal(IsEndLoop_2_0_0), maxVal(IsEndLoop_1_0_0), maxVal(IsEndLoop_0_0_0))<=3] & sum(maxVal(Idle_1), maxVal(Idle_2), maxVal(Idle_0))<=1] & sum(maxVal(EndTurn_2_1), maxVal(EndTurn_0_1), maxVal(EndTurn_1_1), maxVal(EndTurn_1_0), maxVal(EndTurn_2_0), maxVal(EndTurn_0_0))<=2] & [sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=2 & [[sum(maxVal(Idle_1), maxVal(Idle_2), maxVal(Idle_0))<=3 & sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=2] & sum(maxVal(IsEndLoop_2_1_2), maxVal(IsEndLoop_0_1_2), maxVal(IsEndLoop_1_1_2), maxVal(IsEndLoop_1_0_2), maxVal(IsEndLoop_2_0_2), maxVal(IsEndLoop_0_0_2), maxVal(IsEndLoop_2_1_1), maxVal(IsEndLoop_1_1_1), maxVal(IsEndLoop_0_1_1), maxVal(IsEndLoop_2_0_1), maxVal(IsEndLoop_1_0_1), maxVal(IsEndLoop_0_0_1), maxVal(IsEndLoop_2_1_0), maxVal(IsEndLoop_1_1_0), maxVal(IsEndLoop_0_1_0), maxVal(IsEndLoop_2_0_0), maxVal(IsEndLoop_1_0_0), maxVal(IsEndLoop_0_0_0))<=2]]]] & sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=3]
normalized: [[sum(maxVal(BeginLoop_2_1_2), maxVal(BeginLoop_2_0_2), maxVal(BeginLoop_1_0_2), maxVal(BeginLoop_1_1_2), maxVal(BeginLoop_0_1_2), maxVal(BeginLoop_1_1_1), maxVal(BeginLoop_0_1_1), maxVal(BeginLoop_0_0_2), maxVal(BeginLoop_2_1_1), maxVal(BeginLoop_0_0_1), maxVal(BeginLoop_2_1_0), maxVal(BeginLoop_2_0_1), maxVal(BeginLoop_1_0_1), maxVal(BeginLoop_0_1_0), maxVal(BeginLoop_1_1_0), maxVal(BeginLoop_1_0_0), maxVal(BeginLoop_2_0_0), maxVal(BeginLoop_0_0_0))<=2 & [[sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=2 & [[sum(maxVal(Idle_1), maxVal(Idle_2), maxVal(Idle_0))<=3 & sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=2] & sum(maxVal(IsEndLoop_2_1_2), maxVal(IsEndLoop_0_1_2), maxVal(IsEndLoop_1_1_2), maxVal(IsEndLoop_1_0_2), maxVal(IsEndLoop_2_0_2), maxVal(IsEndLoop_0_0_2), maxVal(IsEndLoop_2_1_1), maxVal(IsEndLoop_1_1_1), maxVal(IsEndLoop_0_1_1), maxVal(IsEndLoop_2_0_1), maxVal(IsEndLoop_1_0_1), maxVal(IsEndLoop_0_0_1), maxVal(IsEndLoop_2_1_0), maxVal(IsEndLoop_1_1_0), maxVal(IsEndLoop_0_1_0), maxVal(IsEndLoop_2_0_0), maxVal(IsEndLoop_1_0_0), maxVal(IsEndLoop_0_0_0))<=2]] & [sum(maxVal(EndTurn_2_1), maxVal(EndTurn_0_1), maxVal(EndTurn_1_1), maxVal(EndTurn_1_0), maxVal(EndTurn_2_0), maxVal(EndTurn_0_0))<=2 & [sum(maxVal(Idle_1), maxVal(Idle_2), maxVal(Idle_0))<=1 & [sum(maxVal(TestAlone_1_0_2), maxVal(TestAlone_0_1_2), maxVal(TestAlone_1_1_2), maxVal(TestAlone_2_0_1), maxVal(TestAlone_0_1_1), maxVal(TestAlone_2_1_1), maxVal(TestAlone_0_0_2), maxVal(TestAlone_2_0_0), maxVal(TestAlone_1_1_0), maxVal(TestAlone_2_1_0), maxVal(TestAlone_0_0_1), maxVal(TestAlone_1_0_0))<=2 & sum(maxVal(IsEndLoop_2_1_2), maxVal(IsEndLoop_0_1_2), maxVal(IsEndLoop_1_1_2), maxVal(IsEndLoop_1_0_2), maxVal(IsEndLoop_2_0_2), maxVal(IsEndLoop_0_0_2), maxVal(IsEndLoop_2_1_1), maxVal(IsEndLoop_1_1_1), maxVal(IsEndLoop_0_1_1), maxVal(IsEndLoop_2_0_1), maxVal(IsEndLoop_1_0_1), maxVal(IsEndLoop_0_0_1), maxVal(IsEndLoop_2_1_0), maxVal(IsEndLoop_1_1_0), maxVal(IsEndLoop_0_1_0), maxVal(IsEndLoop_2_0_0), maxVal(IsEndLoop_1_0_0), maxVal(IsEndLoop_0_0_0))<=3]]]]] & sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=3]
abstracting: (3<=3) states: 20,754 (4)
abstracting: (18<=3) states: 0
abstracting: (12<=2) states: 0
abstracting: (3<=1) states: 0
abstracting: (6<=2) states: 0
abstracting: (18<=2) states: 0
abstracting: (3<=2) states: 0
abstracting: (3<=3) states: 20,754 (4)
abstracting: (3<=2) states: 0
abstracting: (18<=2) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=3
normalized: sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=3
abstracting: (6<=3) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=2 & [sum(maxVal(TestTurn_1_1), maxVal(TestTurn_0_1), maxVal(TestTurn_2_0), maxVal(TestTurn_1_0), maxVal(TestTurn_2_1), maxVal(TestTurn_0_0))<=1 & sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=3]]
normalized: [sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=2 & [sum(maxVal(TestTurn_1_1), maxVal(TestTurn_0_1), maxVal(TestTurn_2_0), maxVal(TestTurn_1_0), maxVal(TestTurn_2_1), maxVal(TestTurn_0_0))<=1 & sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=3]]
abstracting: (6<=3) states: 0
abstracting: (6<=1) states: 0
abstracting: (6<=2) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(TestTurn_1_1), maxVal(TestTurn_0_1), maxVal(TestTurn_2_0), maxVal(TestTurn_1_0), maxVal(TestTurn_2_1), maxVal(TestTurn_0_0))<=1
normalized: sum(maxVal(TestTurn_1_1), maxVal(TestTurn_0_1), maxVal(TestTurn_2_0), maxVal(TestTurn_1_0), maxVal(TestTurn_2_1), maxVal(TestTurn_0_0))<=1
abstracting: (6<=1) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=2 & sum(maxVal(BeginLoop_2_1_2), maxVal(BeginLoop_2_0_2), maxVal(BeginLoop_1_0_2), maxVal(BeginLoop_1_1_2), maxVal(BeginLoop_0_1_2), maxVal(BeginLoop_1_1_1), maxVal(BeginLoop_0_1_1), maxVal(BeginLoop_0_0_2), maxVal(BeginLoop_2_1_1), maxVal(BeginLoop_0_0_1), maxVal(BeginLoop_2_1_0), maxVal(BeginLoop_2_0_1), maxVal(BeginLoop_1_0_1), maxVal(BeginLoop_0_1_0), maxVal(BeginLoop_1_1_0), maxVal(BeginLoop_1_0_0), maxVal(BeginLoop_2_0_0), maxVal(BeginLoop_0_0_0))<=3] & [[[sum(maxVal(Idle_1), maxVal(Idle_2), maxVal(Idle_0))<=1 & sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=3] & sum(maxVal(TestAlone_1_0_2), maxVal(TestAlone_0_1_2), maxVal(TestAlone_1_1_2), maxVal(TestAlone_2_0_1), maxVal(TestAlone_0_1_1), maxVal(TestAlone_2_1_1), maxVal(TestAlone_0_0_2), maxVal(TestAlone_2_0_0), maxVal(TestAlone_1_1_0), maxVal(TestAlone_2_1_0), maxVal(TestAlone_0_0_1), maxVal(TestAlone_1_0_0))<=2] & [sum(maxVal(Turn_1_1), maxVal(Turn_0_2), maxVal(Turn_1_0), maxVal(Turn_0_1), maxVal(Turn_1_2), maxVal(Turn_0_0))<=2 & [[sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=2 & sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=3] & sum(maxVal(BeginLoop_2_1_2), maxVal(BeginLoop_2_0_2), maxVal(BeginLoop_1_0_2), maxVal(BeginLoop_1_1_2), maxVal(BeginLoop_0_1_2), maxVal(BeginLoop_1_1_1), maxVal(BeginLoop_0_1_1), maxVal(BeginLoop_0_0_2), maxVal(BeginLoop_2_1_1), maxVal(BeginLoop_0_0_1), maxVal(BeginLoop_2_1_0), maxVal(BeginLoop_2_0_1), maxVal(BeginLoop_1_0_1), maxVal(BeginLoop_0_1_0), maxVal(BeginLoop_1_1_0), maxVal(BeginLoop_1_0_0), maxVal(BeginLoop_2_0_0), maxVal(BeginLoop_0_0_0))<=3]]]] & [sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=3 & sum(maxVal(TestAlone_1_0_2), maxVal(TestAlone_0_1_2), maxVal(TestAlone_1_1_2), maxVal(TestAlone_2_0_1), maxVal(TestAlone_0_1_1), maxVal(TestAlone_2_1_1), maxVal(TestAlone_0_0_2), maxVal(TestAlone_2_0_0), maxVal(TestAlone_1_1_0), maxVal(TestAlone_2_1_0), maxVal(TestAlone_0_0_1), maxVal(TestAlone_1_0_0))<=3]]
normalized: [[[sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=2 & sum(maxVal(BeginLoop_2_1_2), maxVal(BeginLoop_2_0_2), maxVal(BeginLoop_1_0_2), maxVal(BeginLoop_1_1_2), maxVal(BeginLoop_0_1_2), maxVal(BeginLoop_1_1_1), maxVal(BeginLoop_0_1_1), maxVal(BeginLoop_0_0_2), maxVal(BeginLoop_2_1_1), maxVal(BeginLoop_0_0_1), maxVal(BeginLoop_2_1_0), maxVal(BeginLoop_2_0_1), maxVal(BeginLoop_1_0_1), maxVal(BeginLoop_0_1_0), maxVal(BeginLoop_1_1_0), maxVal(BeginLoop_1_0_0), maxVal(BeginLoop_2_0_0), maxVal(BeginLoop_0_0_0))<=3] & [[sum(maxVal(TestAlone_1_0_2), maxVal(TestAlone_0_1_2), maxVal(TestAlone_1_1_2), maxVal(TestAlone_2_0_1), maxVal(TestAlone_0_1_1), maxVal(TestAlone_2_1_1), maxVal(TestAlone_0_0_2), maxVal(TestAlone_2_0_0), maxVal(TestAlone_1_1_0), maxVal(TestAlone_2_1_0), maxVal(TestAlone_0_0_1), maxVal(TestAlone_1_0_0))<=2 & [sum(maxVal(Idle_1), maxVal(Idle_2), maxVal(Idle_0))<=1 & sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=3]] & [sum(maxVal(Turn_1_1), maxVal(Turn_0_2), maxVal(Turn_1_0), maxVal(Turn_0_1), maxVal(Turn_1_2), maxVal(Turn_0_0))<=2 & [sum(maxVal(BeginLoop_2_1_2), maxVal(BeginLoop_2_0_2), maxVal(BeginLoop_1_0_2), maxVal(BeginLoop_1_1_2), maxVal(BeginLoop_0_1_2), maxVal(BeginLoop_1_1_1), maxVal(BeginLoop_0_1_1), maxVal(BeginLoop_0_0_2), maxVal(BeginLoop_2_1_1), maxVal(BeginLoop_0_0_1), maxVal(BeginLoop_2_1_0), maxVal(BeginLoop_2_0_1), maxVal(BeginLoop_1_0_1), maxVal(BeginLoop_0_1_0), maxVal(BeginLoop_1_1_0), maxVal(BeginLoop_1_0_0), maxVal(BeginLoop_2_0_0), maxVal(BeginLoop_0_0_0))<=3 & [sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=2 & sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=3]]]]] & [sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=3 & sum(maxVal(TestAlone_1_0_2), maxVal(TestAlone_0_1_2), maxVal(TestAlone_1_1_2), maxVal(TestAlone_2_0_1), maxVal(TestAlone_0_1_1), maxVal(TestAlone_2_1_1), maxVal(TestAlone_0_0_2), maxVal(TestAlone_2_0_0), maxVal(TestAlone_1_1_0), maxVal(TestAlone_2_1_0), maxVal(TestAlone_0_0_1), maxVal(TestAlone_1_0_0))<=3]]
abstracting: (12<=3) states: 0
abstracting: (6<=3) states: 0
abstracting: (3<=3) states: 20,754 (4)
abstracting: (3<=2) states: 0
abstracting: (18<=3) states: 0
abstracting: (6<=2) states: 0
abstracting: (3<=3) states: 20,754 (4)
abstracting: (3<=1) states: 0
abstracting: (12<=2) states: 0
abstracting: (18<=3) states: 0
abstracting: (3<=2) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(EndTurn_2_1), maxVal(EndTurn_0_1), maxVal(EndTurn_1_1), maxVal(EndTurn_1_0), maxVal(EndTurn_2_0), maxVal(EndTurn_0_0))<=1
normalized: sum(maxVal(EndTurn_2_1), maxVal(EndTurn_0_1), maxVal(EndTurn_1_1), maxVal(EndTurn_1_0), maxVal(EndTurn_2_0), maxVal(EndTurn_0_0))<=1
abstracting: (6<=1) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=1 & [[[sum(maxVal(IsEndLoop_2_1_2), maxVal(IsEndLoop_0_1_2), maxVal(IsEndLoop_1_1_2), maxVal(IsEndLoop_1_0_2), maxVal(IsEndLoop_2_0_2), maxVal(IsEndLoop_0_0_2), maxVal(IsEndLoop_2_1_1), maxVal(IsEndLoop_1_1_1), maxVal(IsEndLoop_0_1_1), maxVal(IsEndLoop_2_0_1), maxVal(IsEndLoop_1_0_1), maxVal(IsEndLoop_0_0_1), maxVal(IsEndLoop_2_1_0), maxVal(IsEndLoop_1_1_0), maxVal(IsEndLoop_0_1_0), maxVal(IsEndLoop_2_0_0), maxVal(IsEndLoop_1_0_0), maxVal(IsEndLoop_0_0_0))<=3 & sum(maxVal(Idle_1), maxVal(Idle_2), maxVal(Idle_0))<=2] & [sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=2 & [sum(maxVal(IsEndLoop_2_1_2), maxVal(IsEndLoop_0_1_2), maxVal(IsEndLoop_1_1_2), maxVal(IsEndLoop_1_0_2), maxVal(IsEndLoop_2_0_2), maxVal(IsEndLoop_0_0_2), maxVal(IsEndLoop_2_1_1), maxVal(IsEndLoop_1_1_1), maxVal(IsEndLoop_0_1_1), maxVal(IsEndLoop_2_0_1), maxVal(IsEndLoop_1_0_1), maxVal(IsEndLoop_0_0_1), maxVal(IsEndLoop_2_1_0), maxVal(IsEndLoop_1_1_0), maxVal(IsEndLoop_0_1_0), maxVal(IsEndLoop_2_0_0), maxVal(IsEndLoop_1_0_0), maxVal(IsEndLoop_0_0_0))<=2 & sum(maxVal(EndTurn_2_1), maxVal(EndTurn_0_1), maxVal(EndTurn_1_1), maxVal(EndTurn_1_0), maxVal(EndTurn_2_0), maxVal(EndTurn_0_0))<=2]]] & sum(maxVal(IsEndLoop_2_1_2), maxVal(IsEndLoop_0_1_2), maxVal(IsEndLoop_1_1_2), maxVal(IsEndLoop_1_0_2), maxVal(IsEndLoop_2_0_2), maxVal(IsEndLoop_0_0_2), maxVal(IsEndLoop_2_1_1), maxVal(IsEndLoop_1_1_1), maxVal(IsEndLoop_0_1_1), maxVal(IsEndLoop_2_0_1), maxVal(IsEndLoop_1_0_1), maxVal(IsEndLoop_0_0_1), maxVal(IsEndLoop_2_1_0), maxVal(IsEndLoop_1_1_0), maxVal(IsEndLoop_0_1_0), maxVal(IsEndLoop_2_0_0), maxVal(IsEndLoop_1_0_0), maxVal(IsEndLoop_0_0_0))<=3]] & sum(maxVal(IsEndLoop_2_1_2), maxVal(IsEndLoop_0_1_2), maxVal(IsEndLoop_1_1_2), maxVal(IsEndLoop_1_0_2), maxVal(IsEndLoop_2_0_2), maxVal(IsEndLoop_0_0_2), maxVal(IsEndLoop_2_1_1), maxVal(IsEndLoop_1_1_1), maxVal(IsEndLoop_0_1_1), maxVal(IsEndLoop_2_0_1), maxVal(IsEndLoop_1_0_1), maxVal(IsEndLoop_0_0_1), maxVal(IsEndLoop_2_1_0), maxVal(IsEndLoop_1_1_0), maxVal(IsEndLoop_0_1_0), maxVal(IsEndLoop_2_0_0), maxVal(IsEndLoop_1_0_0), maxVal(IsEndLoop_0_0_0))<=1]
normalized: [sum(maxVal(IsEndLoop_2_1_2), maxVal(IsEndLoop_0_1_2), maxVal(IsEndLoop_1_1_2), maxVal(IsEndLoop_1_0_2), maxVal(IsEndLoop_2_0_2), maxVal(IsEndLoop_0_0_2), maxVal(IsEndLoop_2_1_1), maxVal(IsEndLoop_1_1_1), maxVal(IsEndLoop_0_1_1), maxVal(IsEndLoop_2_0_1), maxVal(IsEndLoop_1_0_1), maxVal(IsEndLoop_0_0_1), maxVal(IsEndLoop_2_1_0), maxVal(IsEndLoop_1_1_0), maxVal(IsEndLoop_0_1_0), maxVal(IsEndLoop_2_0_0), maxVal(IsEndLoop_1_0_0), maxVal(IsEndLoop_0_0_0))<=1 & [sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=1 & [sum(maxVal(IsEndLoop_2_1_2), maxVal(IsEndLoop_0_1_2), maxVal(IsEndLoop_1_1_2), maxVal(IsEndLoop_1_0_2), maxVal(IsEndLoop_2_0_2), maxVal(IsEndLoop_0_0_2), maxVal(IsEndLoop_2_1_1), maxVal(IsEndLoop_1_1_1), maxVal(IsEndLoop_0_1_1), maxVal(IsEndLoop_2_0_1), maxVal(IsEndLoop_1_0_1), maxVal(IsEndLoop_0_0_1), maxVal(IsEndLoop_2_1_0), maxVal(IsEndLoop_1_1_0), maxVal(IsEndLoop_0_1_0), maxVal(IsEndLoop_2_0_0), maxVal(IsEndLoop_1_0_0), maxVal(IsEndLoop_0_0_0))<=3 & [[sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=2 & [sum(maxVal(IsEndLoop_2_1_2), maxVal(IsEndLoop_0_1_2), maxVal(IsEndLoop_1_1_2), maxVal(IsEndLoop_1_0_2), maxVal(IsEndLoop_2_0_2), maxVal(IsEndLoop_0_0_2), maxVal(IsEndLoop_2_1_1), maxVal(IsEndLoop_1_1_1), maxVal(IsEndLoop_0_1_1), maxVal(IsEndLoop_2_0_1), maxVal(IsEndLoop_1_0_1), maxVal(IsEndLoop_0_0_1), maxVal(IsEndLoop_2_1_0), maxVal(IsEndLoop_1_1_0), maxVal(IsEndLoop_0_1_0), maxVal(IsEndLoop_2_0_0), maxVal(IsEndLoop_1_0_0), maxVal(IsEndLoop_0_0_0))<=2 & sum(maxVal(EndTurn_2_1), maxVal(EndTurn_0_1), maxVal(EndTurn_1_1), maxVal(EndTurn_1_0), maxVal(EndTurn_2_0), maxVal(EndTurn_0_0))<=2]] & [sum(maxVal(IsEndLoop_2_1_2), maxVal(IsEndLoop_0_1_2), maxVal(IsEndLoop_1_1_2), maxVal(IsEndLoop_1_0_2), maxVal(IsEndLoop_2_0_2), maxVal(IsEndLoop_0_0_2), maxVal(IsEndLoop_2_1_1), maxVal(IsEndLoop_1_1_1), maxVal(IsEndLoop_0_1_1), maxVal(IsEndLoop_2_0_1), maxVal(IsEndLoop_1_0_1), maxVal(IsEndLoop_0_0_1), maxVal(IsEndLoop_2_1_0), maxVal(IsEndLoop_1_1_0), maxVal(IsEndLoop_0_1_0), maxVal(IsEndLoop_2_0_0), maxVal(IsEndLoop_1_0_0), maxVal(IsEndLoop_0_0_0))<=3 & sum(maxVal(Idle_1), maxVal(Idle_2), maxVal(Idle_0))<=2]]]]]
abstracting: (3<=2) states: 0
abstracting: (18<=3) states: 0
abstracting: (6<=2) states: 0
abstracting: (18<=2) states: 0
abstracting: (6<=2) states: 0
abstracting: (18<=3) states: 0
abstracting: (3<=1) states: 0
abstracting: (18<=1) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[sum(maxVal(EndTurn_2_1), maxVal(EndTurn_0_1), maxVal(EndTurn_1_1), maxVal(EndTurn_1_0), maxVal(EndTurn_2_0), maxVal(EndTurn_0_0))<=1 & sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=2] & [sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=2 & sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=1]]
normalized: [[sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=2 & sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=1] & [sum(maxVal(EndTurn_2_1), maxVal(EndTurn_0_1), maxVal(EndTurn_1_1), maxVal(EndTurn_1_0), maxVal(EndTurn_2_0), maxVal(EndTurn_0_0))<=1 & sum(maxVal(CS_2), maxVal(CS_1), maxVal(CS_0))<=2]]
abstracting: (3<=2) states: 0
abstracting: (6<=1) states: 0
abstracting: (6<=1) states: 0
abstracting: (6<=2) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=3 & [sum(maxVal(TestIdentity_1_0_2), maxVal(TestIdentity_2_0_2), maxVal(TestIdentity_2_1_1), maxVal(TestIdentity_0_0_2), maxVal(TestIdentity_2_1_2), maxVal(TestIdentity_0_1_2), maxVal(TestIdentity_1_1_2), maxVal(TestIdentity_0_0_1), maxVal(TestIdentity_2_1_0), maxVal(TestIdentity_1_1_0), maxVal(TestIdentity_0_1_0), maxVal(TestIdentity_1_1_1), maxVal(TestIdentity_0_1_1), maxVal(TestIdentity_2_0_1), maxVal(TestIdentity_1_0_1), maxVal(TestIdentity_2_0_0), maxVal(TestIdentity_1_0_0), maxVal(TestIdentity_0_0_0))<=1 & sum(maxVal(TestTurn_1_1), maxVal(TestTurn_0_1), maxVal(TestTurn_2_0), maxVal(TestTurn_1_0), maxVal(TestTurn_2_1), maxVal(TestTurn_0_0))<=1]]
normalized: [[sum(maxVal(TestIdentity_1_0_2), maxVal(TestIdentity_2_0_2), maxVal(TestIdentity_2_1_1), maxVal(TestIdentity_0_0_2), maxVal(TestIdentity_2_1_2), maxVal(TestIdentity_0_1_2), maxVal(TestIdentity_1_1_2), maxVal(TestIdentity_0_0_1), maxVal(TestIdentity_2_1_0), maxVal(TestIdentity_1_1_0), maxVal(TestIdentity_0_1_0), maxVal(TestIdentity_1_1_1), maxVal(TestIdentity_0_1_1), maxVal(TestIdentity_2_0_1), maxVal(TestIdentity_1_0_1), maxVal(TestIdentity_2_0_0), maxVal(TestIdentity_1_0_0), maxVal(TestIdentity_0_0_0))<=1 & sum(maxVal(TestTurn_1_1), maxVal(TestTurn_0_1), maxVal(TestTurn_2_0), maxVal(TestTurn_1_0), maxVal(TestTurn_2_1), maxVal(TestTurn_0_0))<=1] & sum(maxVal(AskForSection_1_0), maxVal(AskForSection_0_0), maxVal(AskForSection_0_1), maxVal(AskForSection_2_0), maxVal(AskForSection_2_1), maxVal(AskForSection_1_1))<=3]
abstracting: (6<=3) states: 0
abstracting: (6<=1) states: 0
abstracting: (18<=1) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(TestAlone_1_0_2), maxVal(TestAlone_0_1_2), maxVal(TestAlone_1_1_2), maxVal(TestAlone_2_0_1), maxVal(TestAlone_0_1_1), maxVal(TestAlone_2_1_1), maxVal(TestAlone_0_0_2), maxVal(TestAlone_2_0_0), maxVal(TestAlone_1_1_0), maxVal(TestAlone_2_1_0), maxVal(TestAlone_0_0_1), maxVal(TestAlone_1_0_0))<=2
normalized: sum(maxVal(TestAlone_1_0_2), maxVal(TestAlone_0_1_2), maxVal(TestAlone_1_1_2), maxVal(TestAlone_2_0_1), maxVal(TestAlone_0_1_1), maxVal(TestAlone_2_1_1), maxVal(TestAlone_0_0_2), maxVal(TestAlone_2_0_0), maxVal(TestAlone_1_1_0), maxVal(TestAlone_2_1_0), maxVal(TestAlone_0_0_1), maxVal(TestAlone_1_0_0))<=2
abstracting: (12<=2) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(Idle_1), maxVal(Idle_2), maxVal(Idle_0))<=2
normalized: sum(maxVal(Idle_1), maxVal(Idle_2), maxVal(Idle_0))<=2
abstracting: (3<=2) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityBounds-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 0m4sec
BK_STOP 1433645913606
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
604 1142 1317 1628 2242 2679 2577
iterations count:7649 (60), effective:730 (5)
initing FirstDep: 0m0sec
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_Peterson-PT-2"
export BK_EXAMINATION="ReachabilityBounds"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/user/u8/hulinhub/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/S_Peterson-PT-2.tgz
mv S_Peterson-PT-2 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2270"
echo " Executing tool marcie"
echo " Input is S_Peterson-PT-2, examination is ReachabilityBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r204st-blw3-143341204700320"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityBounds" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;