About the Execution of Marcie for BridgeAndVehicles-PT-V20P20N20
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
4986.970 | 908619.00 | 907980.00 | 40.00 | FFFFFTFFFFFFFFFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
..............
=====================================================================
Generated by BenchKit 2-2270
Executing tool marcie
Input is BridgeAndVehicles-PT-V20P20N20, examination is ReachabilityBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r190su-smll-143330904700346
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-0
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-1
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-10
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-11
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-12
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-13
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-14
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-15
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-2
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-3
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-4
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-5
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-6
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-7
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-8
FORMULA_NAME BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-9
=== Now, execution of the tool begins
BK_START 1433590115023
Model: BridgeAndVehicles-PT-V20P20N20
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityBounds.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 78 NrTr: 968 NrArc: 7350)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m3sec
RS generation: 14m8sec
-> reachability set: #nodes 2128337 (2.1e+06) #states 9,783,606 (6)
starting MCC model checker
--------------------------
checking: [maxVal(SORTI_A)<=2 & [sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=3 & maxVal(ROUTE_B)<=3]]
normalized: [maxVal(SORTI_A)<=2 & [sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=3 & maxVal(ROUTE_B)<=3]]
abstracting: (20<=3) states: 0
abstracting: (21<=3) states: 0
abstracting: (20<=2) states: 0
-> the formula is FALSE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=3 & maxVal(ATTENTE_A)<=3]
normalized: [sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=3 & maxVal(ATTENTE_A)<=3]
abstracting: (20<=3) states: 0
abstracting: (2<=3) states: 9,783,606 (6)
-> the formula is FALSE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=3
normalized: sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=3
abstracting: (21<=3) states: 0
-> the formula is FALSE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=1 & [[[[maxVal(ROUTE_A)<=1 & sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=3] & maxVal(SUR_PONT_B)<=2] & [maxVal(ATTENTE_A)<=2 & maxVal(ATTENTE_B)<=2]] & sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=2]]
normalized: [[sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=2 & [[maxVal(ATTENTE_A)<=2 & maxVal(ATTENTE_B)<=2] & [maxVal(SUR_PONT_B)<=2 & [maxVal(ROUTE_A)<=1 & sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=3]]]] & sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=1]
abstracting: (21<=1) states: 0
abstracting: (2<=3) states: 9,783,606 (6)
abstracting: (20<=1) states: 0
abstracting: (20<=2) states: 0
abstracting: (20<=2) states: 0
abstracting: (20<=2) states: 0
abstracting: (2<=2) states: 9,783,606 (6)
-> the formula is FALSE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(SUR_PONT_B)<=2 & [[[maxVal(ROUTE_B)<=3 & [[maxVal(ROUTE_B)<=2 & maxVal(SUR_PONT_A)<=1] & [maxVal(SORTI_B)<=3 & maxVal(ATTENTE_A)<=1]]] & [maxVal(SORTI_A)<=1 & [[sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=2 & maxVal(ROUTE_A)<=1] & maxVal(SORTI_B)<=1]]] & maxVal(ATTENTE_B)<=3]]
normalized: [maxVal(SUR_PONT_B)<=2 & [maxVal(ATTENTE_B)<=3 & [[maxVal(ROUTE_B)<=3 & [[maxVal(ROUTE_B)<=2 & maxVal(SUR_PONT_A)<=1] & [maxVal(SORTI_B)<=3 & maxVal(ATTENTE_A)<=1]]] & [maxVal(SORTI_A)<=1 & [maxVal(SORTI_B)<=1 & [sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=2 & maxVal(ROUTE_A)<=1]]]]]]
abstracting: (20<=1) states: 0
abstracting: (2<=2) states: 9,783,606 (6)
abstracting: (20<=1) states: 0
abstracting: (20<=1) states: 0
abstracting: (20<=1) states: 0
abstracting: (20<=3) states: 0
abstracting: (20<=1) states: 0
abstracting: (20<=2) states: 0
abstracting: (20<=3) states: 0
abstracting: (20<=3) states: 0
abstracting: (20<=2) states: 0
-> the formula is FALSE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[[[[sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=1 & maxVal(SUR_PONT_A)<=3] & maxVal(SUR_PONT_A)<=3] & sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=3] & sum(maxVal(COMPTEUR_20), maxVal(COMPTEUR_19), maxVal(COMPTEUR_18), maxVal(COMPTEUR_17), maxVal(COMPTEUR_16), maxVal(COMPTEUR_15), maxVal(COMPTEUR_14), maxVal(COMPTEUR_13), maxVal(COMPTEUR_12), maxVal(COMPTEUR_11), maxVal(COMPTEUR_10), maxVal(COMPTEUR_9), maxVal(COMPTEUR_8), maxVal(COMPTEUR_7), maxVal(COMPTEUR_6), maxVal(COMPTEUR_5), maxVal(COMPTEUR_4), maxVal(COMPTEUR_3), maxVal(COMPTEUR_2), maxVal(COMPTEUR_1), maxVal(COMPTEUR_0))<=3] & sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=1] & sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=1]
normalized: [sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=1 & [sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=1 & [[[maxVal(SUR_PONT_A)<=3 & [sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=1 & maxVal(SUR_PONT_A)<=3]] & sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=3] & sum(maxVal(COMPTEUR_20), maxVal(COMPTEUR_19), maxVal(COMPTEUR_18), maxVal(COMPTEUR_17), maxVal(COMPTEUR_16), maxVal(COMPTEUR_15), maxVal(COMPTEUR_14), maxVal(COMPTEUR_13), maxVal(COMPTEUR_12), maxVal(COMPTEUR_11), maxVal(COMPTEUR_10), maxVal(COMPTEUR_9), maxVal(COMPTEUR_8), maxVal(COMPTEUR_7), maxVal(COMPTEUR_6), maxVal(COMPTEUR_5), maxVal(COMPTEUR_4), maxVal(COMPTEUR_3), maxVal(COMPTEUR_2), maxVal(COMPTEUR_1), maxVal(COMPTEUR_0))<=3]]]
abstracting: (21<=3) states: 0
abstracting: (21<=3) states: 0
abstracting: (20<=3) states: 0
abstracting: (21<=1) states: 0
abstracting: (20<=3) states: 0
abstracting: (2<=1) states: 0
abstracting: (2<=1) states: 0
-> the formula is FALSE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(COMPTEUR_20), maxVal(COMPTEUR_19), maxVal(COMPTEUR_18), maxVal(COMPTEUR_17), maxVal(COMPTEUR_16), maxVal(COMPTEUR_15), maxVal(COMPTEUR_14), maxVal(COMPTEUR_13), maxVal(COMPTEUR_12), maxVal(COMPTEUR_11), maxVal(COMPTEUR_10), maxVal(COMPTEUR_9), maxVal(COMPTEUR_8), maxVal(COMPTEUR_7), maxVal(COMPTEUR_6), maxVal(COMPTEUR_5), maxVal(COMPTEUR_4), maxVal(COMPTEUR_3), maxVal(COMPTEUR_2), maxVal(COMPTEUR_1), maxVal(COMPTEUR_0))<=3
normalized: sum(maxVal(COMPTEUR_20), maxVal(COMPTEUR_19), maxVal(COMPTEUR_18), maxVal(COMPTEUR_17), maxVal(COMPTEUR_16), maxVal(COMPTEUR_15), maxVal(COMPTEUR_14), maxVal(COMPTEUR_13), maxVal(COMPTEUR_12), maxVal(COMPTEUR_11), maxVal(COMPTEUR_10), maxVal(COMPTEUR_9), maxVal(COMPTEUR_8), maxVal(COMPTEUR_7), maxVal(COMPTEUR_6), maxVal(COMPTEUR_5), maxVal(COMPTEUR_4), maxVal(COMPTEUR_3), maxVal(COMPTEUR_2), maxVal(COMPTEUR_1), maxVal(COMPTEUR_0))<=3
abstracting: (21<=3) states: 0
-> the formula is FALSE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[[[maxVal(ATTENTE_A)<=2 & maxVal(ROUTE_A)<=3] & sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=3] & [[maxVal(SUR_PONT_B)<=2 & maxVal(SORTI_B)<=2] & [sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=3 & [maxVal(CAPACITE)<=1 & sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=2]]]] & maxVal(ATTENTE_B)<=1] & maxVal(SORTI_A)<=1]
normalized: [[[[[sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=3 & [maxVal(CAPACITE)<=1 & sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=2]] & [maxVal(SUR_PONT_B)<=2 & maxVal(SORTI_B)<=2]] & [sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=3 & [maxVal(ATTENTE_A)<=2 & maxVal(ROUTE_A)<=3]]] & maxVal(ATTENTE_B)<=1] & maxVal(SORTI_A)<=1]
abstracting: (20<=1) states: 0
abstracting: (20<=1) states: 0
abstracting: (20<=3) states: 0
abstracting: (20<=2) states: 0
abstracting: (2<=3) states: 9,783,606 (6)
abstracting: (20<=2) states: 0
abstracting: (20<=2) states: 0
abstracting: (21<=2) states: 0
abstracting: (20<=1) states: 0
abstracting: (2<=3) states: 9,783,606 (6)
-> the formula is FALSE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(COMPTEUR_20), maxVal(COMPTEUR_19), maxVal(COMPTEUR_18), maxVal(COMPTEUR_17), maxVal(COMPTEUR_16), maxVal(COMPTEUR_15), maxVal(COMPTEUR_14), maxVal(COMPTEUR_13), maxVal(COMPTEUR_12), maxVal(COMPTEUR_11), maxVal(COMPTEUR_10), maxVal(COMPTEUR_9), maxVal(COMPTEUR_8), maxVal(COMPTEUR_7), maxVal(COMPTEUR_6), maxVal(COMPTEUR_5), maxVal(COMPTEUR_4), maxVal(COMPTEUR_3), maxVal(COMPTEUR_2), maxVal(COMPTEUR_1), maxVal(COMPTEUR_0))<=2
normalized: sum(maxVal(COMPTEUR_20), maxVal(COMPTEUR_19), maxVal(COMPTEUR_18), maxVal(COMPTEUR_17), maxVal(COMPTEUR_16), maxVal(COMPTEUR_15), maxVal(COMPTEUR_14), maxVal(COMPTEUR_13), maxVal(COMPTEUR_12), maxVal(COMPTEUR_11), maxVal(COMPTEUR_10), maxVal(COMPTEUR_9), maxVal(COMPTEUR_8), maxVal(COMPTEUR_7), maxVal(COMPTEUR_6), maxVal(COMPTEUR_5), maxVal(COMPTEUR_4), maxVal(COMPTEUR_3), maxVal(COMPTEUR_2), maxVal(COMPTEUR_1), maxVal(COMPTEUR_0))<=2
abstracting: (21<=2) states: 0
-> the formula is FALSE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=2 & [[maxVal(SORTI_B)<=2 & [sum(maxVal(COMPTEUR_20), maxVal(COMPTEUR_19), maxVal(COMPTEUR_18), maxVal(COMPTEUR_17), maxVal(COMPTEUR_16), maxVal(COMPTEUR_15), maxVal(COMPTEUR_14), maxVal(COMPTEUR_13), maxVal(COMPTEUR_12), maxVal(COMPTEUR_11), maxVal(COMPTEUR_10), maxVal(COMPTEUR_9), maxVal(COMPTEUR_8), maxVal(COMPTEUR_7), maxVal(COMPTEUR_6), maxVal(COMPTEUR_5), maxVal(COMPTEUR_4), maxVal(COMPTEUR_3), maxVal(COMPTEUR_2), maxVal(COMPTEUR_1), maxVal(COMPTEUR_0))<=2 & sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=3]] & maxVal(SUR_PONT_A)<=3]]
normalized: [[maxVal(SUR_PONT_A)<=3 & [[sum(maxVal(COMPTEUR_20), maxVal(COMPTEUR_19), maxVal(COMPTEUR_18), maxVal(COMPTEUR_17), maxVal(COMPTEUR_16), maxVal(COMPTEUR_15), maxVal(COMPTEUR_14), maxVal(COMPTEUR_13), maxVal(COMPTEUR_12), maxVal(COMPTEUR_11), maxVal(COMPTEUR_10), maxVal(COMPTEUR_9), maxVal(COMPTEUR_8), maxVal(COMPTEUR_7), maxVal(COMPTEUR_6), maxVal(COMPTEUR_5), maxVal(COMPTEUR_4), maxVal(COMPTEUR_3), maxVal(COMPTEUR_2), maxVal(COMPTEUR_1), maxVal(COMPTEUR_0))<=2 & sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=3] & maxVal(SORTI_B)<=2]] & sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=2]
abstracting: (21<=2) states: 0
abstracting: (20<=2) states: 0
abstracting: (2<=3) states: 9,783,606 (6)
abstracting: (21<=2) states: 0
abstracting: (20<=3) states: 0
-> the formula is FALSE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[maxVal(ATTENTE_A)<=3 & maxVal(SORTI_A)<=3] & maxVal(ROUTE_B)<=2]
normalized: [maxVal(ROUTE_B)<=2 & [maxVal(ATTENTE_A)<=3 & maxVal(SORTI_A)<=3]]
abstracting: (20<=3) states: 0
abstracting: (20<=3) states: 0
abstracting: (20<=2) states: 0
-> the formula is FALSE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[[sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=3 & [sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=3 & [maxVal(ROUTE_A)<=2 & maxVal(ROUTE_A)<=2]]] & [maxVal(SUR_PONT_A)<=3 & [sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=1 & maxVal(ROUTE_A)<=2]]] & [[maxVal(CAPACITE)<=2 & [[maxVal(CAPACITE)<=3 & maxVal(ATTENTE_A)<=3] & [maxVal(ROUTE_A)<=1 & maxVal(SUR_PONT_A)<=1]]] & maxVal(ROUTE_B)<=3]] & sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=1]
normalized: [sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=1 & [[[[sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=1 & maxVal(ROUTE_A)<=2] & maxVal(SUR_PONT_A)<=3] & [sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=3 & [sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=3 & [maxVal(ROUTE_A)<=2 & maxVal(ROUTE_A)<=2]]]] & [maxVal(ROUTE_B)<=3 & [maxVal(CAPACITE)<=2 & [[maxVal(ROUTE_A)<=1 & maxVal(SUR_PONT_A)<=1] & [maxVal(CAPACITE)<=3 & maxVal(ATTENTE_A)<=3]]]]]]
abstracting: (20<=3) states: 0
abstracting: (20<=3) states: 0
abstracting: (20<=1) states: 0
abstracting: (20<=1) states: 0
abstracting: (20<=2) states: 0
abstracting: (20<=3) states: 0
abstracting: (20<=2) states: 0
abstracting: (20<=2) states: 0
abstracting: (2<=3) states: 9,783,606 (6)
abstracting: (21<=3) states: 0
abstracting: (20<=3) states: 0
abstracting: (20<=2) states: 0
abstracting: (2<=1) states: 0
abstracting: (2<=1) states: 0
-> the formula is FALSE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(ROUTE_A)<=1
normalized: maxVal(ROUTE_A)<=1
abstracting: (20<=1) states: 0
-> the formula is FALSE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=2
normalized: sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=2
abstracting: (2<=2) states: 9,783,606 (6)
-> the formula is TRUE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[maxVal(ATTENTE_B)<=1 & maxVal(CAPACITE)<=3] & [sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=1 & [sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=2 & [[[sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=1 & sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=1] & maxVal(ATTENTE_A)<=2] & sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=3]]]]
normalized: [[sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=1 & [[sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=3 & [[sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=1 & sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=1] & maxVal(ATTENTE_A)<=2]] & sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=2]] & [maxVal(ATTENTE_B)<=1 & maxVal(CAPACITE)<=3]]
abstracting: (20<=3) states: 0
abstracting: (20<=1) states: 0
abstracting: (21<=2) states: 0
abstracting: (20<=2) states: 0
abstracting: (2<=1) states: 0
abstracting: (2<=1) states: 0
abstracting: (2<=3) states: 9,783,606 (6)
abstracting: (21<=1) states: 0
-> the formula is FALSE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=1 & sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=2]
normalized: [sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=1 & sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=2]
abstracting: (2<=2) states: 9,783,606 (6)
abstracting: (21<=1) states: 0
-> the formula is FALSE
FORMULA BridgeAndVehicles-COL-V20P20N20-ReachabilityBounds-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 15m8sec
BK_STOP 1433591023642
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
231 2935 5441 7988 9535 12140 14735 17302 19823 22280 24655 26930 29087 31108 32975 34670 36175 37472 38549 39394 39989 44650 44842 45175 45427 45703 46003 46327 46675 47047 47443 47665 47685 47710 47724 47755 47790 47829 47871 47895 47944 47997 48025 48084 48146 48180 48249 48285 48359 48399 48480 48522 48608 48654 48700 48794 48802 49289 49293 49298 49303 49308 49313 49315 49320 49325 49353 49333 49338 49340 49345 49381 49353 49358 49360 49402 49368 49373 49375 49423 49383 49388 92188 92402 92543 92702 92831 92945 93023 93143 93254 93323 93494 97845 102129 108635 116063 124253 133045 142279 151795 161433 171033 180435 189479 198005 205853 212863 218875 223729 227265 229323 357691 520938 521451 522192 523161 524358 525783 528348 530343 532566 535017 535096 535111 535146 535179 535210 535239 535253 535279 535303 535336 535335 535354 535363 535379 535408 535399 535410 535415 535441 535426 535431 535433 535456 535648 535738 535769 535796 535836 535828 535845 535858 535867 535871 535874 535908 535870 535863 535859 535846 535876 535818 535795 535783 535810 535737 535721 535684 535729 535684 559957 558946 558328 557781 557438 557191 557044 556963 556906 556942 556543 557527 557787 558007 558187 558327 558427 558307 558107 558267 558427 558327 558187 558007 557787 557527 557227 556887 553505 562630 562231 561604 560749 559666 558355 556816 555049 553054 550831 550885 550971 550996 551017 551034 551047 551052 551059 551062 551084 551059 551052 551047 551034 551048 551007 550984 550971 550979 550926 550891 550872 550874 546817 549103 549846 550273 550703 550957 551103 551209 551263 551871 552422 551909 551909 551909 551909 551909 551909 551909 551909 551909 551909 551909 551909 551909 551909 552251 557489 572704 572326 571732 570922 569896 568654 567196 565522 563632 562642 562732 562766 562798 562834 562842 562869 562894 562917 562928 562948 562978 562974 562989 562996 563008 563034 563022 563029 563032 563055 563037 563038 571079 571079 571079 571079 571079 571079 571079 570773 571349 571349 571349 571349 572645 572735 572789 572807 571349 571349 571349 571349 571349 571349 571349 571349 583781 583526 583067 582404 581537 580466 579191 577712 576029 575145 575230 575262 575292 575320 575346 575378 575381 575402 575421 575430 575446 575473 575466 575477 575482 575490 575513 575498 575500 575502 582246 582246 582246 582246 582246 582246 582246 582484 583198 583368 583504 583606 583674 583708 583708 583674 583606 583504 583368 583198 582994 582756 584196 593001 592665 592137 591417 590505 588777 587385 585801 585849 585913 585943 585971 585997 586021 586051 586072 586072 586089 586097 586111 586136 586147 586137 586141 586147 586168 586152 586153 591748 591748 591748 591748 591748 591748 591956 592580 592724 592836 592916 592964 592980 592964 592916 592836 591956 591956 591956 591956 600931 600706 600301 599716 598951 598006 596881 595576 594886 594961 594989 595015 595039 595068 595071 595090 595107 595115 595129 595141 595164 595155 595162 595165 595185 595170 599126 599756 599756 599756 599756 599756 599936 600476 600596 600686 600746 600776 600776 600746 600686 600596 599936 599936 599936 607445 607235 606857 606311 605597 604715 603665 602447 602489 602558 602583 602606 602627 602637 602655 602671 602695 602691 602702 602711 602715 602735 602740 602726 602727 606432 606432 606432 606432 606250 606586 606586 606586 606586 606586 606586 606586 606586 607048 606922 606768 607704 612714 612441 612012 611427 610686 609789 608736 608775 608839 608862 608883 608902 608911 608927 608941 608963 608958 608967 608971 608977 608995 608997 611812 611929 611929 611929 611773 612059 612059 612059 612059 612059 612059 612059 612059 612059 612215 613007 617044 616792 616396 615856 615172 614344 613900 613960 613982 614002 614026 614028 614043 614056 614067 614072 614080 614098 614088 614091 614092 616391 616391 616391 616259 616535 616739 616919 616931 616919 616883 616823 616739 616631 617291 620486 620255 619892 619397 618770 618011 618044 618098 618117 618134 618149 618162 618168 618178 618186 618203 618194 618197 618198 619953 619953 619953 620041 620305 620041 620041 620041 620041 620041 620041 620041 623226 623076 622806 622416 621906 621276 621306 621355 621372 621387 621400 621411 621416 621424 621430 621445 621435 622681 622741 622741 622811 623021 623051 623061 623051 623021 622971 622901 623333 625201 624877 624526 624067 623815 623860 623880 623895 623896 623907 623916 623923 623926 623930 623932 624872 624872 624800 624926 624926 625106 625088 625052 624998 625334 626699 626531 626267 625907 625707 625747 625761 625773 625783 625798 625794 625799 625802 625803 626454 626398 626494 626494 626494 626494 626494 626494 627801 627696 627381 627066 627087 627115 627127 627137 627145 627151 627163 627166 627586 627586 627614 627698 627698 627614 627614 628507 628417 628255 628021 628039 628068 628077 628084 628087 628091 628093 628358 628328 628376 628424 628406 628526 628916 628811 628646 628661 628685 628692 628697 628699 628701 628851 628861 628891 628881 628953 629166 629082 629030 629050 629056 629060 629062 629137 629141 629153 629189 629284 629221 629230 629244 629247 629279 629279 629297 629324 629310 629320 629326 629331 629331 629323 629339 629336 629328 629323 629323 629323 629323 629323 629476 629478 629323 629323 629323 629323 629466 629323 629323 629323 629436 629323 629323 629323 629388 629323 629326 625679 625759 625666 625611 625565 625529 625503 625483 625471 625585 625853 625553 625553 625553 625553 625553 625553 625553 625553 625553 625553 625553 625553 625553 625553 625571 625052 628401 628054 627577 627016 626419 625834 625309 624892 624631 624606 624574 624567 624558 624665 624547 624547 624547 624547 624547 624547 624689 624547 624547 624547 624547 624665 624547 624547 624547 624626 624547 624547 624590 620126 619990 619912 619852 619822 619800 619786 619780 619846 620104 619852 619852 619852 619852 619852 619852 619852 619852 619996 619982 619936 619897 619868 619518 621964 621659 621248 620777 620294 619847 619484 619253 619230 619202 619195 619186 619175 619281 619162 619162 619162 619162 619162 619162 619287 619162 619162 619162 619263 619162 619162 619162 619221 619162 617842 615314 615214 615166 615134 615116 615106 614971 615153 615153 615153 615153 615153 615153 615153 615153 615153 615153 615153 615167 614861 616496 616233 615888 615507 615138 614829 614628 614607 614583 614576 614567 614646 614550 614536 614528 614528 614528 614528 614644 614528 614528 614528 614528 614612 614528 614528 614528 614567 611516 611264 611204 611162 611144 611132 611160 611327 611342 611342 611330 611309 611282 611252 611222 611195 611174 610912 611928 611707 611428 611137 610783 610672 610704 610672 610665 610656 610645 610632 610715 610609 610600 610600 610600 610600 610697 610600 610600 610600 610600 610653 610600 610600 607955 607881 607845 607831 607750 607840 607840 607840 607840 607840 607840 607840 607840 607840 608262 608114 607913 607604 607463 607446 607465 607427 607419 607409 607397 607383 607367 607358 607339 607434 607339 607339 607339 607339 607402 607339 607339 607339 605254 605192 605162 605150 605154 605217 605214 605204 605190 605175 605162 604988 605181 605034 604899 604824 604824 604821 604817 604808 604797 604784 604769 604821 604743 604723 604712 604712 604712 604771 604712 604712 604712 603158 603110 603084 603047 603077 603077 603077 603077 603077 603065 602977 602848 602835 602846 602824 602816 602806 602794 602780 602772 602755 602736 602774 602704 602692 602692 602692 602723 601656 601614 601596 601576 601588 601592 601506 601486 601433 601422 601418 601425 601419 601397 601385 601371 601355 601346 601327 601306 601321 601271 601258 601258 600699 600683 600670 600672 600610 600582 600580 600577 600569 600559 600553 600540 600525 600508 600598 600479 600457 600445 600420 600542 600393 600393 600393 600393 600506 600393 600393 600476 600393 600393 600396 600083 599099 598887 598732 598552 598424 598304 598220 598139 598040 598200 598232 598253 598260 598260 598248 598233 598208 598184 598152 598125 598092 598068 598040 598025 596853 597517 597347 597116 596846 596429 596168 595952 595805 595765 595782 595790 595751 595751 595751 595751 595751 595751 595751 595846 595751 595751 595751 595751 595878 595751 595751 595751 595845 595830 595751 595751 595794 592433 592375 592325 592293 592255 592235 592225 592055 592153 592279 592297 592303 592303 592293 592153 592153 592153 592153 592153 592153 592153 592981 592874 592712 592517 592313 592124 591974 591887 591887 591884 591876 591866 591854 591840 591832 591815 591796 591858 591764 591740 591727 591700 591782 591671 591671 591671 591746 591671 591671 591671 588916 588862 588820 588796 588772 588766 588718 588793 588798 588798 588790 588781 588766 588754 588738 588729 588586 589009 588842 588707 588581 588488 588460 588452 588476 588452 588452 588452 588452 588452 588452 588452 588511 588516 588452 588452 588452 588531 588536 588452 588452 588452 588491 586712 586664 586640 586616 586598 586536 586568 586568 586568 586568 586568 586568 586568 586648 586550 586469 586403 586382 586376 586388 586365 586355 586343 586329 586313 586304 586285 586311 586292 586229 586203 586189 586223 586196 586129 586129 586129 584800 584770 584752 584736 584707 584719 584719 584724 584641 584632 584588 584555 584555 584555 584555 584555 584555 584555 584555 584574 584555 584555 584555 584555 584555 584584 584555 584555 584555 584590 584152 584140 584134 584128 584124 584096 584077 584070 584058 584051 584042 584031 584073 584011 583995 583977 583967 583946 584013 583995 583885 583857 583842 583929 583795 583778 583778 583877 583778 583778 583778 583823 583778 583266 583034 582863 582744 582628 582512 582402 582300 582237 582327 582347 582357 582363 582361 582351 582342 582327 582306 582291 582272 582249 582237 582223 581133 581185 581080 580931 580751 580481 580331 580202 580103 580103 580103 580103 580103 580103 580103 580147 580152 580103 580103 580103 580103 580172 580177 580103 580103 580103 580192 580103 580103 580103 580165 580103 580103 577877 577845 577821 577805 577781 577771 577679 577731 577731 577731 577731 577731 577731 577731 577731 577731 577731 577731 578073 578013 577918 577801 577639 577570 577537 577546 577531 577531 577531 577531 577531 577531 577531 577531 577578 577531 577531 577531 577531 577594 577531 577531 577531 577606 577531 577531 577531 575971 575941 575923 575905 575895 575848 575872 575872 575872 575872 575872 575880 575786 575893 575840 575774 575729 575706 575702 575695 575703 575695 575669 575655 575639 575630 575611 575590 575605 575555 575529 575515 575486 575505 575439 575422 575387 575426 574293 574269 574253 574245 574235 574226 574232 574230 574166 574134 574113 574092 574084 574084 574084 574084 574084 574128 574084 574084 574084 574084 574084 574153 574084 574084 574084 574084 574173 574084 574084 574183 574167 574084 574084 574129 574084 574288 574093 573954 573829 573727 573625 573525 573370 573406 573406 573406 573406 573406 573406 573406 573406 573406 573406 573406 573406 573406 573406 572261 572201 572106 571989 571803 571665 571584 571491 571491 571491 571491 571491 571491 571491 571491 571530 571491 571491 571491 571491 571491 571550 571491 571491 571491 571562 571491 571491 571491 571553 571491 571491 569747 569723 569703 569691 569677 569667 569643 569679 569683 569683 569679 569671 569667 569661 569653 569553 569740 569687 569621 569555 569465 569473 569465 569458 569449 569438 569425 569436 569402 569384 569364 569353 569330 569346 569292 569264 569249 569218 569238 569168 569150 569113 569154 567892 567868 567852 567840 567828 567808 567816 567816 567816 567816 567751 567725 567698 567670 567664 567664 567664 567664 567695 567699 567664 567664 567664 567664 567664 567719 567664 567664 567664 567664 567735 567664 567664 567743 567664 567664 567664 567709 567664 568190 568006 567868 567776 567644 567546 567476 567375 567397 567397 567397 567397 567397 567397 567397 567447 567441 567433 567423 567411 566495 566180 566117 566034 565944 565830 565761 565680 565639 565635 565635 565635 565635 565658 565661 565635 565635 565635 565635 565635 565676 565635 565635 565635 565685 565688 565635 565635 565694 565635 565635 565635 564420 564402 564388 564380 564368 564362 564347 564368 564367 564367 564365 564361 564347 564376 564346 564305 564266 564215 564215 564215 564215 564215 564215 564215 564215 564234 564215 564215 564215 564215 564215 564244 564215 564215 564215 564250 564215 564215 564215 564256 563650 563640 563632 563626 563622 563616 563582 563557 563538 563547 563544 563521 563511 563499 563485 563469 563460 563441 563467 563409 563385 563359 563345 563379 563301 563269 563252 563292 563199 563161 563141 563206 563141 563144 563376 563195 563066 562937 562851 562765 562679 562575 562587 562587 562587 562587 562587 562587 562587 562627 562620 562611 562600 561738 561325 561283 561217 561125 561068 560999 560918 560918 560918 560918 560918 560918 560918 560918 560918 560939 560918 560918 560918 560918 560918 560949 560918 560918 560918 560955 560918 560918 560959 560961 560279 560273 560265 560259 560255 560251 560239 560253 560253 560251 560247 560205 560244 560223 560190 560155 560151 560151 560151 560151 560174 560151 560151 560151 560151 560151 560151 560192 560151 560151 560151 560201 560151 560151 560151 560210 560151 560151 560151 560196 560151 560886 560734 560620 560506 560430 560354 560278 560257 560274 560279 560280 560277 560277 560235 560235 560235 560235 560235 559081 559051 558997 558938 558887 558824 558749 558749 558749 558749 558749 558749 558749 558749 558749 558770 558772 558749 558749 558749 558749 558780 558749 558749 558749 558786 558749 558749 558749 558792 558122 558110 558102 558096 558090 558086 558080 558086 558084 558044 558044 558023 557994 557990 557990 557990 557990 557990 558016 557990 557990 557990 557990 557990 558031 557990 557990 557990 557990 558043 557990 557990 557990 558052 557990 557990 558035 557990 558518 558378 558273 558168 558098 558028 557951 557955 557955 557955 557955 557955 557955 557982 557975 557966 557252 556828 556784 556751 556706 556649 556580 556580 556580 556580 556580 556580 556580 556580 556580 556601 556580 556580 556580 556580 556609 556580 556580 556580 556580 556617 556580 556580 556621 556580 555953 555947 555939 555933 555927 555923 555919 555883 555856 555833 555829 555822 555813 555802 555812 555782 555766 555748 555738 555717 555732 555710 555656 555628 555613 555632 555566 555532 555514 555536 555458 555438 555397 555442 555397 555569 555441 555345 555249 555185 555121 555056 555056 555056 555056 555056 555084 555080 555074 555066 554412 553977 553956 553923 553878 553821 553770 553768 553768 553768 553768 553783 553768 553768 553768 553768 553768 553768 553795 553768 553768 553768 553801 553768 553768 553768 553807 553768 553768 553768 553813 553768 554578 554470 554368 554308 554230 554173 554162 554167 554170 554171 554170 554167 554162 554155 553597 553229 553208 553154 553103 553055 553060 553053 553053 553053 553053 553053 553053 553053 553053 553076 553053 553053 553053 553053 553084 553053 553053 553053 553090 553053 553053 553053 553096 553053 553056 553729 553609 553528 553456 553408 553360 553312 553330 553332 553332 553330 553326 553320 552824 552484 552463 552430 552385 552340 552338 552338 552338 552338 552353 552338 552338 552338 552338 552338 552338 552365 552338 552338 552338 552371 552371 552338 552338 552377 552338 552338 552338 552383 552338 552793 552709 552646 552583 552541 552499 552478 552478 552478 552478 552478 552478 551748 551733 551706 551667 551625 551623 551623 551623 551623 551638 551623 551623 551623 551623 551623 551623 551650 551623 551623 551623 551656 551623 551623 551623 551662 551623 551623 551623 551668 551623 551914 551842 551776 551734 551680 551644 551644 551644 551644 551644 551644 551009 550994 550967 550926 550908 550908 550908 550908 550908 550908 550908 550908 550908 550931 550908 550908 550908 550908 550939 550908 550908 550908 550945 550908 550908 550908 550951 550908 550911 551080 550990 550945 550900 550855 550825 550818 550819 550818 550815 550505 550258 550231 550195 550200 550193 550193 550193 550193 550193 550193 550193 550193 550216 550193 550193 550193 550193 550224 550193 550193 550193 550230 550193 550193 550193 550236 550193 550196 550180 550120 550072 550036 550012 549988 549976 549976 549976 549540 549525 549496 549478 549478 549478 549478 549478 549478 549478 549497 549499 549478 549478 549478 549478 549507 549478 549478 549478 549513 549478 549478 549478 549519 549478 549478 549481 549316 549259 549223 549196 549169 549151 549146 549145 548959 548804 548781 548763 548763 548763 548763 548763 548763 548763 548763 548784 548763 548763 548763 548763 548763 548794 548763 548763 548763 548800 548763 548763 548804 548806 548763 548766 548416 548380 548356 548338 548326 548314 548310 548186 548077 548050 548048 548048 548048 548048 548048 548065 548048 548048 548048 548048 548048 548075 548048 548048 548048 548048 548083 548048 548048 548087 548089 548048 548048 548093 548048 547516 547504 547495 547486 547480 547415 547351 1268983 1768398 1965201 2054838 2128337
iterations count:2474346 (2556), effective:19502 (20)
initing FirstDep: 0m0sec
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="BridgeAndVehicles-PT-V20P20N20"
export BK_EXAMINATION="ReachabilityBounds"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/root/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/BridgeAndVehicles-PT-V20P20N20.tgz
mv BridgeAndVehicles-PT-V20P20N20 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2270"
echo " Executing tool marcie"
echo " Input is BridgeAndVehicles-PT-V20P20N20, examination is ReachabilityBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r190su-smll-143330904700346"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityBounds" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;