fond
Model Checking Contest @ Petri Nets 2015
Bruxelles, Belgium, June 23, 2015
Execution of r190su-smll-143330904700307
Last Updated
August 19, 2015

About the Execution of Marcie for BridgeAndVehicles-PT-V20P10N20

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
4884.190 755066.00 754980.00 40.20 FFFFTFFFTFFFFFFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
.............
=====================================================================
Generated by BenchKit 2-2270
Executing tool marcie
Input is BridgeAndVehicles-PT-V20P10N20, examination is ReachabilityBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r190su-smll-143330904700307
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-0
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-1
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-10
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-11
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-12
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-13
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-14
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-15
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-2
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-3
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-4
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-5
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-6
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-7
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-8
FORMULA_NAME BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-9

=== Now, execution of the tool begins

BK_START 1433562424061

Model: BridgeAndVehicles-PT-V20P10N20
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5

Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=ReachabilityBounds.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5

parse successfull
net created successfully

(NrP: 78 NrTr: 968 NrArc: 7350)

net check time: 0m0sec

parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec

init dd package: 0m3sec


RS generation: 11m41sec


-> reachability set: #nodes 1911707 (1.9e+06) #states 9,076,326 (6)



starting MCC model checker
--------------------------

checking: [[[[maxVal(SUR_PONT_A)<=2 & maxVal(ROUTE_A)<=2] & sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=3] & [maxVal(ROUTE_A)<=3 & [[sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=1 & maxVal(SORTI_A)<=1] & maxVal(ROUTE_B)<=2]]] & sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=3]
normalized: [sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=3 & [[[[sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=1 & maxVal(SORTI_A)<=1] & maxVal(ROUTE_B)<=2] & maxVal(ROUTE_A)<=3] & [sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=3 & [maxVal(SUR_PONT_A)<=2 & maxVal(ROUTE_A)<=2]]]]

abstracting: (20<=2) states: 0
abstracting: (10<=2) states: 0
abstracting: (21<=3) states: 0
abstracting: (20<=3) states: 0
abstracting: (20<=2) states: 0
abstracting: (20<=1) states: 0
abstracting: (21<=1) states: 0
abstracting: (21<=3) states: 0
-> the formula is FALSE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: [[[[[[sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=2 & maxVal(CAPACITE)<=3] & [sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=2 & maxVal(CAPACITE)<=1]] & [maxVal(SORTI_B)<=2 & sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=2]] & sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=2] & maxVal(ATTENTE_B)<=1] & maxVal(ATTENTE_B)<=2]
normalized: [maxVal(ATTENTE_B)<=2 & [maxVal(ATTENTE_B)<=1 & [sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=2 & [[maxVal(SORTI_B)<=2 & sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=2] & [[sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=2 & maxVal(CAPACITE)<=1] & [sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=2 & maxVal(CAPACITE)<=3]]]]]]

abstracting: (10<=3) states: 0
abstracting: (21<=2) states: 0
abstracting: (10<=1) states: 0
abstracting: (21<=2) states: 0
abstracting: (2<=2) states: 9,076,326 (6)
abstracting: (20<=2) states: 0
abstracting: (21<=2) states: 0
abstracting: (20<=1) states: 0
abstracting: (20<=2) states: 0
-> the formula is FALSE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=2
normalized: sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=2

abstracting: (2<=2) states: 9,076,326 (6)
-> the formula is TRUE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: [[maxVal(CAPACITE)<=2 & [[sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=3 & maxVal(SUR_PONT_B)<=1] & [[maxVal(SORTI_B)<=3 & [maxVal(ROUTE_B)<=2 & maxVal(ROUTE_B)<=3]] & sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=1]]] & [[[[sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=1 & [sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=1 & maxVal(CAPACITE)<=1]] & maxVal(ATTENTE_B)<=2] & [[sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=2 & maxVal(ROUTE_A)<=3] & sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=1]] & [maxVal(ROUTE_B)<=2 & maxVal(SORTI_B)<=3]]]
normalized: [[[[sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=1 & [[maxVal(ROUTE_B)<=2 & maxVal(ROUTE_B)<=3] & maxVal(SORTI_B)<=3]] & [sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=3 & maxVal(SUR_PONT_B)<=1]] & maxVal(CAPACITE)<=2] & [[maxVal(ROUTE_B)<=2 & maxVal(SORTI_B)<=3] & [[[sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=2 & maxVal(ROUTE_A)<=3] & sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=1] & [[[sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=1 & maxVal(CAPACITE)<=1] & sum(maxVal(CONTROLEUR_2), maxVal(CONTROLEUR_1))<=1] & maxVal(ATTENTE_B)<=2]]]]

abstracting: (20<=2) states: 0
abstracting: (2<=1) states: 0
abstracting: (10<=1) states: 0
abstracting: (2<=1) states: 0
abstracting: (2<=1) states: 0
abstracting: (20<=3) states: 0
abstracting: (2<=2) states: 9,076,326 (6)
abstracting: (20<=3) states: 0
abstracting: (20<=2) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=1) states: 0
abstracting: (2<=3) states: 9,076,326 (6)
abstracting: (20<=3) states: 0
abstracting: (20<=3) states: 0
abstracting: (20<=2) states: 0
abstracting: (2<=1) states: 0
-> the formula is FALSE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: maxVal(ROUTE_B)<=1
normalized: maxVal(ROUTE_B)<=1

abstracting: (20<=1) states: 0
-> the formula is FALSE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: [maxVal(ATTENTE_B)<=3 & [[maxVal(SORTI_B)<=3 & maxVal(SORTI_B)<=3] & maxVal(CAPACITE)<=2]]
normalized: [maxVal(ATTENTE_B)<=3 & [maxVal(CAPACITE)<=2 & [maxVal(SORTI_B)<=3 & maxVal(SORTI_B)<=3]]]

abstracting: (20<=3) states: 0
abstracting: (20<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (20<=3) states: 0
-> the formula is FALSE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: maxVal(ATTENTE_A)<=3
normalized: maxVal(ATTENTE_A)<=3

abstracting: (20<=3) states: 0
-> the formula is FALSE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: [sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=2 & maxVal(ROUTE_B)<=3]
normalized: [sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=2 & maxVal(ROUTE_B)<=3]

abstracting: (20<=3) states: 0
abstracting: (2<=2) states: 9,076,326 (6)
-> the formula is FALSE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: maxVal(SUR_PONT_B)<=2
normalized: maxVal(SUR_PONT_B)<=2

abstracting: (10<=2) states: 0
-> the formula is FALSE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: maxVal(SORTI_A)<=1
normalized: maxVal(SORTI_A)<=1

abstracting: (20<=1) states: 0
-> the formula is FALSE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: [[[[maxVal(SUR_PONT_A)<=2 & [maxVal(ROUTE_B)<=1 & maxVal(ATTENTE_A)<=2]] & sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=1] & [[sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=2 & [maxVal(ATTENTE_B)<=3 & [maxVal(ROUTE_B)<=1 & maxVal(ROUTE_B)<=2]]] & [[sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=2 & maxVal(CAPACITE)<=1] & [maxVal(SORTI_A)<=3 & [sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=1 & sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=1]]]]] & sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=3]
normalized: [[[[maxVal(SUR_PONT_A)<=2 & [maxVal(ROUTE_B)<=1 & maxVal(ATTENTE_A)<=2]] & sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=1] & [[[sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=2 & maxVal(CAPACITE)<=1] & [maxVal(SORTI_A)<=3 & [sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=1 & sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=1]]] & [[maxVal(ATTENTE_B)<=3 & [maxVal(ROUTE_B)<=1 & maxVal(ROUTE_B)<=2]] & sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=2]]] & sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=3]

abstracting: (21<=3) states: 0
abstracting: (2<=2) states: 9,076,326 (6)
abstracting: (20<=2) states: 0
abstracting: (20<=1) states: 0
abstracting: (20<=3) states: 0
abstracting: (21<=1) states: 0
abstracting: (2<=1) states: 0
abstracting: (20<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (2<=2) states: 9,076,326 (6)
abstracting: (21<=1) states: 0
abstracting: (20<=2) states: 0
abstracting: (20<=1) states: 0
abstracting: (10<=2) states: 0
-> the formula is FALSE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: maxVal(ATTENTE_B)<=2
normalized: maxVal(ATTENTE_B)<=2

abstracting: (20<=2) states: 0
-> the formula is FALSE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=2
normalized: sum(maxVal(CHOIX_2), maxVal(CHOIX_1))<=2

abstracting: (2<=2) states: 9,076,326 (6)
-> the formula is TRUE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: [[sum(maxVal(COMPTEUR_20), maxVal(COMPTEUR_19), maxVal(COMPTEUR_18), maxVal(COMPTEUR_17), maxVal(COMPTEUR_16), maxVal(COMPTEUR_15), maxVal(COMPTEUR_14), maxVal(COMPTEUR_13), maxVal(COMPTEUR_12), maxVal(COMPTEUR_11), maxVal(COMPTEUR_10), maxVal(COMPTEUR_9), maxVal(COMPTEUR_8), maxVal(COMPTEUR_7), maxVal(COMPTEUR_6), maxVal(COMPTEUR_5), maxVal(COMPTEUR_4), maxVal(COMPTEUR_3), maxVal(COMPTEUR_2), maxVal(COMPTEUR_1), maxVal(COMPTEUR_0))<=2 & [[[maxVal(ATTENTE_B)<=3 & [maxVal(SORTI_A)<=1 & maxVal(SORTI_B)<=1]] & [[maxVal(ATTENTE_B)<=1 & sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=2] & [sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=1 & maxVal(SORTI_A)<=2]]] & [maxVal(CAPACITE)<=1 & [[maxVal(SORTI_A)<=1 & maxVal(ATTENTE_A)<=2] & maxVal(ATTENTE_A)<=2]]]] & [[maxVal(ATTENTE_B)<=2 & [[[sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=1 & maxVal(ROUTE_A)<=3] & [maxVal(SUR_PONT_B)<=3 & maxVal(SUR_PONT_B)<=3]] & sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=2]] & maxVal(SORTI_B)<=2]]
normalized: [[sum(maxVal(COMPTEUR_20), maxVal(COMPTEUR_19), maxVal(COMPTEUR_18), maxVal(COMPTEUR_17), maxVal(COMPTEUR_16), maxVal(COMPTEUR_15), maxVal(COMPTEUR_14), maxVal(COMPTEUR_13), maxVal(COMPTEUR_12), maxVal(COMPTEUR_11), maxVal(COMPTEUR_10), maxVal(COMPTEUR_9), maxVal(COMPTEUR_8), maxVal(COMPTEUR_7), maxVal(COMPTEUR_6), maxVal(COMPTEUR_5), maxVal(COMPTEUR_4), maxVal(COMPTEUR_3), maxVal(COMPTEUR_2), maxVal(COMPTEUR_1), maxVal(COMPTEUR_0))<=2 & [[[maxVal(ATTENTE_B)<=3 & [maxVal(SORTI_A)<=1 & maxVal(SORTI_B)<=1]] & [[sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=1 & maxVal(SORTI_A)<=2] & [maxVal(ATTENTE_B)<=1 & sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=2]]] & [maxVal(CAPACITE)<=1 & [[maxVal(SORTI_A)<=1 & maxVal(ATTENTE_A)<=2] & maxVal(ATTENTE_A)<=2]]]] & [[maxVal(ATTENTE_B)<=2 & [sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=2 & [[sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=1 & maxVal(ROUTE_A)<=3] & [maxVal(SUR_PONT_B)<=3 & maxVal(SUR_PONT_B)<=3]]]] & maxVal(SORTI_B)<=2]]

abstracting: (20<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (20<=3) states: 0
abstracting: (21<=1) states: 0
abstracting: (21<=2) states: 0
abstracting: (20<=2) states: 0
abstracting: (20<=2) states: 0
abstracting: (20<=2) states: 0
abstracting: (20<=1) states: 0
abstracting: (10<=1) states: 0
abstracting: (21<=2) states: 0
abstracting: (20<=1) states: 0
abstracting: (20<=2) states: 0
abstracting: (21<=1) states: 0
abstracting: (20<=1) states: 0
abstracting: (20<=1) states: 0
abstracting: (20<=3) states: 0
abstracting: (21<=2) states: 0
-> the formula is FALSE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: maxVal(SUR_PONT_B)<=1
normalized: maxVal(SUR_PONT_B)<=1

abstracting: (10<=1) states: 0
-> the formula is FALSE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: [[[maxVal(ATTENTE_A)<=2 & [maxVal(SORTI_A)<=1 & [[sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=1 & sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=3] & [sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=3 & maxVal(SORTI_A)<=2]]]] & sum(maxVal(COMPTEUR_20), maxVal(COMPTEUR_19), maxVal(COMPTEUR_18), maxVal(COMPTEUR_17), maxVal(COMPTEUR_16), maxVal(COMPTEUR_15), maxVal(COMPTEUR_14), maxVal(COMPTEUR_13), maxVal(COMPTEUR_12), maxVal(COMPTEUR_11), maxVal(COMPTEUR_10), maxVal(COMPTEUR_9), maxVal(COMPTEUR_8), maxVal(COMPTEUR_7), maxVal(COMPTEUR_6), maxVal(COMPTEUR_5), maxVal(COMPTEUR_4), maxVal(COMPTEUR_3), maxVal(COMPTEUR_2), maxVal(COMPTEUR_1), maxVal(COMPTEUR_0))<=3] & [[maxVal(ATTENTE_B)<=2 & [[maxVal(ATTENTE_B)<=1 & maxVal(SUR_PONT_A)<=2] & sum(maxVal(COMPTEUR_20), maxVal(COMPTEUR_19), maxVal(COMPTEUR_18), maxVal(COMPTEUR_17), maxVal(COMPTEUR_16), maxVal(COMPTEUR_15), maxVal(COMPTEUR_14), maxVal(COMPTEUR_13), maxVal(COMPTEUR_12), maxVal(COMPTEUR_11), maxVal(COMPTEUR_10), maxVal(COMPTEUR_9), maxVal(COMPTEUR_8), maxVal(COMPTEUR_7), maxVal(COMPTEUR_6), maxVal(COMPTEUR_5), maxVal(COMPTEUR_4), maxVal(COMPTEUR_3), maxVal(COMPTEUR_2), maxVal(COMPTEUR_1), maxVal(COMPTEUR_0))<=3]] & [[maxVal(SUR_PONT_B)<=1 & maxVal(ROUTE_B)<=2] & [[maxVal(SORTI_A)<=1 & [maxVal(SORTI_A)<=1 & maxVal(SORTI_B)<=1]] & [maxVal(ROUTE_B)<=3 & sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=1]]]]]
normalized: [[sum(maxVal(COMPTEUR_20), maxVal(COMPTEUR_19), maxVal(COMPTEUR_18), maxVal(COMPTEUR_17), maxVal(COMPTEUR_16), maxVal(COMPTEUR_15), maxVal(COMPTEUR_14), maxVal(COMPTEUR_13), maxVal(COMPTEUR_12), maxVal(COMPTEUR_11), maxVal(COMPTEUR_10), maxVal(COMPTEUR_9), maxVal(COMPTEUR_8), maxVal(COMPTEUR_7), maxVal(COMPTEUR_6), maxVal(COMPTEUR_5), maxVal(COMPTEUR_4), maxVal(COMPTEUR_3), maxVal(COMPTEUR_2), maxVal(COMPTEUR_1), maxVal(COMPTEUR_0))<=3 & [maxVal(ATTENTE_A)<=2 & [maxVal(SORTI_A)<=1 & [[sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=3 & maxVal(SORTI_A)<=2] & [sum(maxVal(NB_ATTENTE_A_20), maxVal(NB_ATTENTE_A_19), maxVal(NB_ATTENTE_A_18), maxVal(NB_ATTENTE_A_17), maxVal(NB_ATTENTE_A_16), maxVal(NB_ATTENTE_A_15), maxVal(NB_ATTENTE_A_14), maxVal(NB_ATTENTE_A_13), maxVal(NB_ATTENTE_A_12), maxVal(NB_ATTENTE_A_11), maxVal(NB_ATTENTE_A_10), maxVal(NB_ATTENTE_A_9), maxVal(NB_ATTENTE_A_8), maxVal(NB_ATTENTE_A_7), maxVal(NB_ATTENTE_A_6), maxVal(NB_ATTENTE_A_5), maxVal(NB_ATTENTE_A_4), maxVal(NB_ATTENTE_A_3), maxVal(NB_ATTENTE_A_2), maxVal(NB_ATTENTE_A_1), maxVal(NB_ATTENTE_A_0))<=1 & sum(maxVal(NB_ATTENTE_B_20), maxVal(NB_ATTENTE_B_19), maxVal(NB_ATTENTE_B_18), maxVal(NB_ATTENTE_B_17), maxVal(NB_ATTENTE_B_16), maxVal(NB_ATTENTE_B_15), maxVal(NB_ATTENTE_B_14), maxVal(NB_ATTENTE_B_13), maxVal(NB_ATTENTE_B_12), maxVal(NB_ATTENTE_B_11), maxVal(NB_ATTENTE_B_10), maxVal(NB_ATTENTE_B_9), maxVal(NB_ATTENTE_B_8), maxVal(NB_ATTENTE_B_7), maxVal(NB_ATTENTE_B_6), maxVal(NB_ATTENTE_B_5), maxVal(NB_ATTENTE_B_4), maxVal(NB_ATTENTE_B_3), maxVal(NB_ATTENTE_B_2), maxVal(NB_ATTENTE_B_1), maxVal(NB_ATTENTE_B_0))<=3]]]]] & [[[maxVal(SUR_PONT_B)<=1 & maxVal(ROUTE_B)<=2] & [[maxVal(ROUTE_B)<=3 & sum(maxVal(VIDANGE_2), maxVal(VIDANGE_1))<=1] & [[maxVal(SORTI_A)<=1 & maxVal(SORTI_B)<=1] & maxVal(SORTI_A)<=1]]] & [maxVal(ATTENTE_B)<=2 & [sum(maxVal(COMPTEUR_20), maxVal(COMPTEUR_19), maxVal(COMPTEUR_18), maxVal(COMPTEUR_17), maxVal(COMPTEUR_16), maxVal(COMPTEUR_15), maxVal(COMPTEUR_14), maxVal(COMPTEUR_13), maxVal(COMPTEUR_12), maxVal(COMPTEUR_11), maxVal(COMPTEUR_10), maxVal(COMPTEUR_9), maxVal(COMPTEUR_8), maxVal(COMPTEUR_7), maxVal(COMPTEUR_6), maxVal(COMPTEUR_5), maxVal(COMPTEUR_4), maxVal(COMPTEUR_3), maxVal(COMPTEUR_2), maxVal(COMPTEUR_1), maxVal(COMPTEUR_0))<=3 & [maxVal(ATTENTE_B)<=1 & maxVal(SUR_PONT_A)<=2]]]]]

abstracting: (10<=2) states: 0
abstracting: (20<=1) states: 0
abstracting: (21<=3) states: 0
abstracting: (20<=2) states: 0
abstracting: (20<=1) states: 0
abstracting: (20<=1) states: 0
abstracting: (20<=1) states: 0
abstracting: (2<=1) states: 0
abstracting: (20<=3) states: 0
abstracting: (20<=2) states: 0
abstracting: (10<=1) states: 0
abstracting: (21<=3) states: 0
abstracting: (21<=1) states: 0
abstracting: (20<=2) states: 0
abstracting: (21<=3) states: 0
abstracting: (20<=1) states: 0
abstracting: (20<=2) states: 0
abstracting: (21<=3) states: 0
-> the formula is FALSE

FORMULA BridgeAndVehicles-COL-V20P10N20-ReachabilityBounds-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec


Total processing time: 12m34sec


BK_STOP 1433563179127

--------------------
content from stderr:

check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m0sec

231 2935 5441 7988 9535 12140 14735 17302 19823 22280 24655 26930 29006 30856 32486 33902 35110 36116 36932 37570 38036 42175 42367 42700 42952 43228 43525 43834 44155 44488 44833 45025 45045 45070 45084 45115 45150 45189 45231 45255 45304 45357 45385 45442 45498 45528 45585 45613 45669 45699 45756 45784 45840 45870 45898 45954 45962 46377 46381 46386 46391 46396 46401 46403 46408 46413 46441 46421 46426 46428 46433 46463 46441 46446 46448 46478 46456 46461 46463 46493 46471 46476 83836 84050 84191 84350 84463 84539 84591 84671 84745 84791 84962 89313 93597 100103 107531 115721 124513 133747 143263 152901 162501 171363 179267 186213 192201 197231 201303 204417 206573 207771 323259 465081 465594 466335 467304 468501 469869 471921 473289 474657 476025 476104 476119 476154 476187 476218 476247 476261 476287 476311 476344 476343 476362 476362 476362 476374 476362 476362 476362 476374 476362 476362 476362 476374 476547 476637 476668 476695 476735 476727 476744 476757 476766 476770 476773 476807 476769 476747 476737 476715 476728 476681 476659 476649 476662 476615 476605 476583 476608 476583 496353 495342 494724 494177 494193 493794 494778 495038 495158 494838 493898 493758 493758 493758 493758 493758 493758 493758 493758 494638 494418 494198 493978 491630 498893 498494 497867 497012 495929 494675 493421 492167 490913 489659 489713 489799 489824 489845 489862 489869 489880 489887 489911 489890 489887 489880 489867 489841 489840 489802 489789 489763 489762 489724 489711 489685 489684 486537 487803 488583 489101 489281 489927 489927 491067 491257 491409 491523 491599 491637 491637 491599 491390 491181 490972 489927 489927 489927 489927 507734 507464 506978 506276 505358 504224 503036 501848 500660 499472 499526 499615 499648 499679 499708 499722 499748 499772 499804 499804 499823 499840 499840 499840 499852 499840 499840 499840 499852 499840 499840 499852 506415 506415 506415 506415 506379 507189 507387 507549 507675 507765 507819 507837 507819 507765 507567 507369 507171 506973 506775 506577 508045 516771 516414 515853 515088 514119 512436 511314 510192 509665 509753 509766 509797 509826 509853 509878 509890 509912 509932 509961 509958 509973 509973 509973 509985 509973 509973 509973 509985 509973 513678 515678 515678 515678 515626 516119 515728 515660 515660 515660 515660 515660 515660 515660 516595 516408 516221 516034 515847 517148 524753 524417 523889 523169 522257 521201 520145 519089 518593 518673 518703 518731 518757 518788 518810 518813 518832 518849 518857 518871 518889 518877 518877 518877 518889 518889 518877 518877 523772 523772 523772 523418 523770 523770 523770 523770 523770 523770 523770 523770 523770 524474 524298 524122 523946 525090 531650 531335 530840 530165 529310 528320 527330 526340 526385 526459 526486 526511 526534 526545 526565 526583 526609 526606 526619 526630 526630 526630 526642 526630 526630 526630 530775 530775 530775 530397 530787 530787 530787 530787 530787 530787 530787 531537 531447 531282 531117 530952 531949 537540 537246 536784 536154 535356 534432 533508 533074 533144 533170 533194 533216 533243 533261 533262 533277 533290 533296 533306 533322 533310 533310 533310 533322 536765 536765 536765 536481 536789 536789 536789 536789 537181 537461 537419 537349 537251 537097 536943 537803 542501 542228 541799 541214 540473 539615 538757 538796 538860 538883 538904 538923 538940 538948 538962 538974 538995 538988 538995 538995 538995 539007 541820 541820 541820 541568 541854 541854 542114 542400 542400 542374 542322 542244 542140 541997 542730 546611 546359 545963 545423 544739 543947 543575 543635 543657 543677 543695 543711 543733 543731 543742 543751 543755 543761 543775 543763 545766 546018 546018 545820 546060 546060 546060 546132 546480 546444 546384 546300 546192 546808 549948 549717 549354 548859 548232 547506 547539 547593 547612 547629 547644 547651 547663 547673 547691 547698 547689 547692 547692 549437 549437 549287 549485 549485 549485 549485 549485 549485 549485 549595 550115 552590 552380 552050 551600 551030 550720 550770 550788 550804 550824 550824 550835 550844 550851 550854 550858 550872 552165 552165 552165 552217 552427 552457 552217 552217 552217 552217 552217 554661 554526 554283 553932 553473 553221 553266 553282 553296 553308 553325 553322 553329 553334 553336 553338 554278 554278 554332 554494 554512 554512 554494 554458 554404 554740 556105 555817 555505 555097 555121 555160 555167 555179 555189 555197 555203 555216 555208 555860 555860 555804 555900 556028 556020 555996 555956 556208 557165 557018 556787 556472 556493 556527 556538 556547 556554 556557 556561 556563 556992 556950 557020 557020 557020 557020 557020 557913 557823 557661 557427 557445 557474 557483 557490 557495 557498 557499 557764 557782 557836 557830 557812 557932 558322 558217 558052 558067 558091 558098 558103 558106 558197 558257 558267 558267 558267 558596 558536 558428 558440 558459 558464 558467 558468 558531 558547 558547 558708 558663 558633 558648 558652 558654 558685 558685 558703 558730 558716 558726 558728 558735 558739 558781 558745 558738 558842 558729 558729 558729 558729 558729 558729 558729 558884 558729 558729 558729 558729 558832 558729 558729 558729 558793 558729 558729 558767 558729 558732 555696 555291 555216 555147 555251 555439 555229 555229 555229 555229 555229 555229 555229 555229 555229 555229 555229 555229 555229 555229 555229 555229 558034 557687 557210 556649 556052 555491 555062 554765 554600 554599 554567 554560 554652 554658 554540 554540 554540 554540 554540 554540 554682 554540 554540 554540 554540 554630 554540 554540 554540 554591 554540 554540 554565 550427 550243 550165 550123 550195 550510 550559 550585 550591 550580 550555 550519 550475 550426 550360 550305 550261 550195 550195 552368 552130 551767 551320 550837 550366 550003 549772 549673 549673 549670 549662 549652 549646 549633 549633 549633 549764 549633 549633 549633 549633 549736 549633 549633 549633 549633 549684 549633 549633 549658 546036 545906 545840 545689 545871 545871 545871 545871 545871 545871 545871 545871 545871 545871 545871 545871 545871 547252 546989 546644 546263 545894 545597 545432 545423 545399 545392 545460 545462 545366 545352 545344 545344 545344 545344 545460 545344 545344 545344 545344 545408 545344 545344 545344 545369 542443 542191 542131 542013 542145 542145 542145 542145 542145 542145 542235 542205 542178 542156 541937 542971 542750 542471 542180 541925 541760 541747 541727 541720 541711 541700 541774 541680 541664 541655 541655 541655 541655 541745 541655 541655 541655 541706 541655 541655 541655 539095 539017 538912 539002 539002 539002 539002 539002 539002 539002 539002 539002 539474 539230 539017 538816 538675 538658 538642 538679 538679 538621 538609 538595 538579 538570 538551 538551 538641 538551 538551 538551 538551 538589 538551 538551 536494 536438 536428 536493 536490 536480 536466 536451 536438 536284 536554 536417 536270 536159 536144 536132 536125 536116 536105 536092 536139 536069 536051 536031 536020 536020 536084 536020 536020 536020 536020 534493 534433 534390 534420 534420 534420 534426 534308 534385 534290 534209 534196 534188 534205 534201 534167 534155 534141 534125 534116 534097 534076 534117 534053 534053 534053 534053 533020 532980 532954 532966 532970 532890 532872 532819 532808 532804 532811 532805 532783 532771 532757 532741 532732 532713 532692 532707 532657 532644 532644 532086 532070 532065 532027 531988 531993 531975 531968 531959 531948 532014 531928 531912 531894 531884 531863 531840 531944 531802 531789 531789 531892 531789 531789 531789 531853 531789 531789 531789 531814 531789 529627 529381 529225 529091 528992 529152 529184 529205 529212 529212 529200 529185 529160 529136 529092 529059 529026 529004 528982 528971 528353 529276 529073 528821 528542 528260 528029 527864 527765 527746 527732 527732 527779 527787 527732 527732 527732 527732 527732 527732 527835 527732 527732 527732 527732 527822 527732 527732 527732 527783 527732 527732 527757 524661 524603 524561 524379 524477 524477 524477 524477 524477 524477 524477 524477 524477 524477 524477 524488 524409 525350 525213 525033 524832 524634 524469 524370 524349 524337 524330 524362 524358 524304 524290 524274 524256 524246 524225 524292 524190 524164 524151 524125 524202 524125 524125 524125 524163 524125 524125 521526 521484 521352 521412 521412 521412 521412 521412 521412 521412 521412 521412 521412 521837 521689 521557 521422 521308 521242 521242 521242 521242 521242 521242 521242 521242 521291 521242 521242 521242 521242 521242 521306 521242 521242 521242 521293 521242 521242 521242 519584 519544 519476 519508 519508 519508 519508 519515 519516 519446 519628 519554 519473 519407 519386 519380 519373 519387 519380 519347 519333 519317 519308 519289 519268 519296 519233 519207 519194 519168 519193 519142 519142 519142 517868 517844 517811 517835 517831 517828 517769 517778 517734 517701 517701 517701 517701 517701 517701 517701 517701 517701 517722 517701 517701 517701 517701 517726 517701 517701 517701 517726 517315 517305 517297 517299 517272 517259 517247 517244 517236 517226 517214 517200 517192 517175 517156 517218 517124 517100 517087 517061 517125 517022 516996 516983 517060 516983 516983 516983 517021 516983 516986 515606 515374 515200 515084 515021 515111 515131 515141 515147 515145 515135 515126 515111 515090 515068 515046 515024 515013 515002 514425 514846 514664 514508 514331 514142 514010 513911 513845 513845 513845 513845 513845 513845 513845 513845 513894 513845 513845 513845 513845 513845 513909 513845 513845 513845 513909 513845 513845 513845 513883 513845 513845 511845 511813 511707 511759 511759 511759 511759 511759 511759 511759 511759 511759 511759 511759 512188 512128 512033 511916 511814 511688 511661 511655 511655 511655 511655 511655 511655 511655 511655 511655 511702 511655 511655 511655 511655 511706 511655 511655 511655 511706 511655 511655 511655 510236 510206 510155 510179 510179 510179 510179 510193 510187 510129 510266 510213 510147 510102 510079 510075 510068 510076 510068 510042 510028 510012 510003 509984 509963 509978 509928 509902 509889 509863 509875 509824 509811 509785 509810 508774 508750 508727 508733 508733 508733 508698 508672 508643 508631 508631 508631 508631 508631 508631 508631 508631 508685 508631 508631 508631 508631 508631 508695 508631 508631 508631 508695 508631 508631 508682 508669 508631 508634 508009 507849 507684 507582 507538 507594 507606 507615 507618 507615 507606 507600 507590 507576 507554 507543 507532 507510 507190 507130 507035 506918 506792 506666 506567 506501 506474 506468 506468 506468 506495 506468 506468 506468 506468 506468 506468 506519 506468 506468 506468 506468 506519 506468 506468 506468 506519 506468 506468 506493 504929 504905 504887 504863 504899 504903 504903 504899 504863 504863 504863 504863 505056 505009 504955 504877 504826 504763 504763 504760 504752 504742 504730 504723 504708 504691 504704 504662 504640 504616 504603 504577 504589 504538 504525 504499 504511 504460 504447 504472 503334 503314 503292 503300 503300 503305 503262 503266 503245 503210 503196 503196 503196 503196 503196 503196 503196 503235 503196 503196 503196 503196 503196 503247 503196 503196 503196 503247 503196 503196 503196 503247 503196 503196 503221 503196 502814 502650 502538 502505 502542 502551 502554 502557 502556 502551 502542 502529 502523 502512 502501 502479 502048 502003 501920 501842 501740 501647 501581 501515 501515 501515 501515 501515 501515 501515 501515 501544 501547 501515 501515 501515 501515 501553 501515 501515 501515 501553 501515 501515 501515 501553 501515 501515 500441 500425 500410 500431 500430 500430 500428 500424 500418 500374 500483 500439 500406 500361 500336 500334 500334 500334 500334 500334 500351 500334 500334 500334 500334 500334 500359 500334 500334 500334 500334 500359 500334 500334 500334 500359 499837 499823 499813 499815 499788 499771 499757 499754 499746 499741 499730 499717 499702 499724 499676 499656 499634 499622 499597 499622 499558 499532 499519 499544 499480 499454 499441 499466 499415 499415 499440 499415 498768 498616 498530 498503 498527 498535 498539 498539 498479 498479 498479 498479 498479 498479 498479 497967 497926 497872 497794 497717 497654 497588 497557 497555 497555 497555 497555 497555 497572 497555 497555 497555 497555 497555 497580 497555 497555 497555 497555 497580 497555 497555 497580 497580 497555 497555 496999 496991 496971 496993 496993 496991 496987 496961 497014 496993 496960 496925 496921 496921 496921 496941 496944 496921 496921 496921 496921 496921 496959 496921 496921 496921 496921 496959 496921 496921 496921 496959 496921 496921 496921 496946 496921 496890 496738 496624 496603 496620 496625 496626 496623 496623 496621 496617 496611 496581 496581 496084 496054 496000 495941 495890 495827 495761 495761 495761 495761 495761 495761 495761 495761 495761 495782 495761 495761 495761 495761 495786 495761 495761 495761 495786 495786 495761 495761 495786 495761 495761 495207 495201 495195 495201 495195 495195 495180 495151 495135 495135 495135 495135 495135 495135 495135 495164 495135 495135 495135 495135 495135 495173 495135 495135 495135 495173 495135 495135 495135 495173 495135 495135 495160 495135 494942 494817 494725 494729 494729 494729 494729 494729 494729 494729 494729 494729 494729 494212 494168 494135 494090 494033 493967 493967 493967 493967 493967 493967 493967 493967 493986 493967 493967 493967 493967 493967 493992 493967 493967 493967 493992 493967 493967 493967 493992 493967 493967 493419 493413 493409 493389 493376 493353 493349 493342 493333 493322 493332 493320 493286 493268 493248 493237 493214 493227 493176 493150 493137 493149 493123 493072 493059 493071 493020 492994 492981 493006 492981 492568 492440 492343 492343 492343 492343 492343 492343 492343 492343 492343 492343 491841 491803 491770 491725 491668 491635 491633 491642 491644 491633 491633 491633 491633 491633 491633 491633 491658 491633 491633 491633 491658 491658 491633 491633 491633 491658 491633 491633 491658 491633 491636 491876 491750 491687 491676 491681 491660 491660 491660 491660 491660 491660 491226 491211 491184 491145 491094 491064 491062 491062 491062 491062 491077 491079 491062 491062 491062 491062 491062 491087 491062 491062 491062 491087 491087 491062 491062 491087 491062 491062 491062 491087 491062 491135 491039 490991 490991 490991 490991 491009 491005 490999 490727 490587 490566 490533 490488 490461 490459 490459 490459 490472 490459 490459 490459 490459 490459 490459 490484 490459 490459 490459 490459 490484 490459 490459 490459 490484 490459 490459 490484 490484 490459 490473 490368 490326 490326 490326 490326 490326 490333 490095 489961 489940 489907 489860 489860 489860 489860 489860 489860 489860 489860 489879 489860 489860 489860 489860 489860 489885 489860 489860 489860 489885 489860 489860 489860 489885 489860 489860 489885 489860 489755 489683 489675 489677 489677 489675 489671 489467 489333 489306 489265 489265 489265 489265 489265 489265 489265 489265 489284 489265 489265 489265 489265 489265 489290 489265 489265 489265 489290 489265 489265 489265 489290 489265 489265 489290 489265 489083 489023 489016 489017 489016 489013 488843 488730 488694 488676 488674 488674 488674 488674 488674 488674 488674 488674 488674 488697 488674 488674 488674 488674 488699 488674 488674 488674 488699 488674 488674 488674 488699 488674 488677 488451 488391 488355 488355 488355 488355 488131 488116 488087 488087 488087 488087 488087 488087 488087 488087 488087 488087 488110 488087 488087 488087 488087 488112 488087 488087 488087 488112 488087 488087 488087 488112 488087 488090 487778 487733 487706 487706 487706 487533 487518 487506 487504 487504 487504 487504 487519 487504 487504 487504 487504 487504 487504 487529 487504 487504 487504 487529 487504 487504 487504 487529 487504 487504 487504 487529 487504 487097 487067 487063 486995 486936 486927 486925 486925 486936 486925 486925 486925 486925 486925 486925 486925 486950 486925 486925 486925 486925 486950 486925 486925 486925 486950 486925 486925 486950 486925 486925 486441 486426 486420 486360 1019363 1509233 1762086 1843704 1911707
iterations count:2318427 (2395), effective:15786 (16)

initing FirstDep: 0m0sec

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="BridgeAndVehicles-PT-V20P10N20"
export BK_EXAMINATION="ReachabilityBounds"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/root/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/BridgeAndVehicles-PT-V20P10N20.tgz
mv BridgeAndVehicles-PT-V20P10N20 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2270"
echo " Executing tool marcie"
echo " Input is BridgeAndVehicles-PT-V20P10N20, examination is ReachabilityBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r190su-smll-143330904700307"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityBounds" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityBounds.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;