About the Execution of Marcie for S_ERK-PT-001000
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
4286.620 | 466528.00 | 466546.00 | 10.10 | FFFFFFFFFFFFFFFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
......................
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is S_ERK-PT-001000, examination is ReachabilityBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r176st-qhx2-143322681900164
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-0
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-1
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-10
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-11
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-12
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-13
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-14
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-15
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-2
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-3
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-4
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-5
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-6
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-7
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-8
FORMULA_NAME ERK-PT-001000-ReachabilityBounds-9
=== Now, execution of the tool begins
BK_START 1433609017116
Model: S_ERK-PT-001000
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityBounds.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 11 NrTr: 11 NrArc: 34)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m11sec
RS generation: 0m31sec
-> reachability set: #nodes 10011 (1.0e+04) #states 14,081,614,073,878,351 (16)
starting MCC model checker
--------------------------
checking: [[[[maxVal(MEKPP_ERK)<=1 & [[maxVal(MEKPP_ERK)<=1 & maxVal(Raf1Star_RKIP_ERKPP)<=1] & [maxVal(MEKPP)<=2 & maxVal(Raf1Star_RKIP_ERKPP)<=3]]] & maxVal(Raf1Star_RKIP_ERKPP)<=3] & [[[[maxVal(Raf1Star_RKIP_ERKPP)<=1 & maxVal(Raf1Star_RKIP_ERKPP)<=1] & maxVal(RKIP)<=2] & maxVal(Raf1Star_RKIP)<=3] & [[maxVal(RKIPP)<=2 & [maxVal(ERK)<=3 & maxVal(ERKPP)<=1]] & maxVal(RP)<=3]]] & [maxVal(MEKPP)<=2 & [maxVal(RKIP)<=3 & maxVal(Raf1Star_RKIP_ERKPP)<=2]]]
normalized: [[maxVal(MEKPP)<=2 & [maxVal(RKIP)<=3 & maxVal(Raf1Star_RKIP_ERKPP)<=2]] & [[[maxVal(RP)<=3 & [maxVal(RKIPP)<=2 & [maxVal(ERK)<=3 & maxVal(ERKPP)<=1]]] & [maxVal(Raf1Star_RKIP)<=3 & [maxVal(RKIP)<=2 & [maxVal(Raf1Star_RKIP_ERKPP)<=1 & maxVal(Raf1Star_RKIP_ERKPP)<=1]]]] & [maxVal(Raf1Star_RKIP_ERKPP)<=3 & [maxVal(MEKPP_ERK)<=1 & [[maxVal(MEKPP)<=2 & maxVal(Raf1Star_RKIP_ERKPP)<=3] & [maxVal(MEKPP_ERK)<=1 & maxVal(Raf1Star_RKIP_ERKPP)<=1]]]]]]
abstracting: (1000<=1) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=2) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(Raf1Star)<=1 & maxVal(Raf1Star_RKIP_ERKPP)<=3]
normalized: [maxVal(Raf1Star)<=1 & maxVal(Raf1Star_RKIP_ERKPP)<=3]
abstracting: (1000<=3) states: 0
abstracting: (1000<=1) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(MEKPP)<=1
normalized: maxVal(MEKPP)<=1
abstracting: (1000<=1) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[maxVal(RKIPP)<=3 & maxVal(RKIPP_RP)<=3] & maxVal(MEKPP_ERK)<=1]
normalized: [maxVal(MEKPP_ERK)<=1 & [maxVal(RKIPP)<=3 & maxVal(RKIPP_RP)<=3]]
abstracting: (1000<=3) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=1) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(RKIPP_RP)<=2
normalized: maxVal(RKIPP_RP)<=2
abstracting: (1000<=2) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[[maxVal(RKIP)<=1 & [[maxVal(RKIPP_RP)<=3 & maxVal(ERK)<=1] & [maxVal(Raf1Star_RKIP_ERKPP)<=1 & maxVal(ERKPP)<=1]]] & [maxVal(MEKPP)<=3 & [maxVal(Raf1Star_RKIP)<=3 & [maxVal(Raf1Star)<=2 & maxVal(RP)<=3]]]] & [maxVal(RKIPP)<=2 & [maxVal(Raf1Star_RKIP)<=2 & maxVal(RKIPP_RP)<=3]]] & [[maxVal(MEKPP)<=3 & [[maxVal(Raf1Star_RKIP)<=1 & [maxVal(MEKPP)<=3 & maxVal(Raf1Star)<=1]] & [[maxVal(RKIPP_RP)<=2 & maxVal(ERK)<=1] & maxVal(RKIP)<=2]]] & maxVal(MEKPP_ERK)<=3]]
normalized: [[maxVal(MEKPP_ERK)<=3 & [maxVal(MEKPP)<=3 & [[maxVal(RKIP)<=2 & [maxVal(RKIPP_RP)<=2 & maxVal(ERK)<=1]] & [maxVal(Raf1Star_RKIP)<=1 & [maxVal(MEKPP)<=3 & maxVal(Raf1Star)<=1]]]]] & [[maxVal(RKIPP)<=2 & [maxVal(Raf1Star_RKIP)<=2 & maxVal(RKIPP_RP)<=3]] & [[maxVal(MEKPP)<=3 & [maxVal(Raf1Star_RKIP)<=3 & [maxVal(Raf1Star)<=2 & maxVal(RP)<=3]]] & [maxVal(RKIP)<=1 & [[maxVal(Raf1Star_RKIP_ERKPP)<=1 & maxVal(ERKPP)<=1] & [maxVal(RKIPP_RP)<=3 & maxVal(ERK)<=1]]]]]]
abstracting: (1000<=1) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=3) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(Raf1Star_RKIP_ERKPP)<=2 & maxVal(Raf1Star_RKIP)<=2]
normalized: [maxVal(Raf1Star_RKIP_ERKPP)<=2 & maxVal(Raf1Star_RKIP)<=2]
abstracting: (1000<=2) states: 0
abstracting: (1000<=2) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(ERK)<=1
normalized: maxVal(ERK)<=1
abstracting: (1000<=1) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[[[maxVal(ERK)<=2 & maxVal(ERK)<=2] & maxVal(RKIP)<=2] & [[[maxVal(Raf1Star_RKIP_ERKPP)<=2 & maxVal(MEKPP_ERK)<=3] & [maxVal(ERKPP)<=1 & maxVal(Raf1Star_RKIP_ERKPP)<=1]] & maxVal(RP)<=1]] & maxVal(Raf1Star)<=2] & maxVal(RP)<=1]
normalized: [maxVal(RP)<=1 & [maxVal(Raf1Star)<=2 & [[maxVal(RP)<=1 & [[maxVal(ERKPP)<=1 & maxVal(Raf1Star_RKIP_ERKPP)<=1] & [maxVal(Raf1Star_RKIP_ERKPP)<=2 & maxVal(MEKPP_ERK)<=3]]] & [maxVal(RKIP)<=2 & [maxVal(ERK)<=2 & maxVal(ERK)<=2]]]]]
abstracting: (1000<=2) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=1) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(MEKPP)<=2
normalized: maxVal(MEKPP)<=2
abstracting: (1000<=2) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[maxVal(MEKPP)<=3 & maxVal(RP)<=3] & [maxVal(ERK)<=2 & maxVal(RP)<=2]]
normalized: [[maxVal(ERK)<=2 & maxVal(RP)<=2] & [maxVal(MEKPP)<=3 & maxVal(RP)<=3]]
abstracting: (1000<=3) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=2) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(Raf1Star)<=1 & [[[maxVal(Raf1Star)<=3 & maxVal(RKIPP)<=3] & [maxVal(ERKPP)<=2 & [[maxVal(RKIPP)<=2 & maxVal(RKIPP_RP)<=2] & [maxVal(MEKPP)<=1 & maxVal(RKIP)<=2]]]] & maxVal(MEKPP_ERK)<=3]]
normalized: [maxVal(Raf1Star)<=1 & [maxVal(MEKPP_ERK)<=3 & [[maxVal(ERKPP)<=2 & [[maxVal(RKIPP)<=2 & maxVal(RKIPP_RP)<=2] & [maxVal(MEKPP)<=1 & maxVal(RKIP)<=2]]] & [maxVal(Raf1Star)<=3 & maxVal(RKIPP)<=3]]]]
abstracting: (1000<=3) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=1) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(Raf1Star_RKIP_ERKPP)<=3
normalized: maxVal(Raf1Star_RKIP_ERKPP)<=3
abstracting: (1000<=3) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(ERKPP)<=3 & maxVal(RKIP)<=1]
normalized: [maxVal(ERKPP)<=3 & maxVal(RKIP)<=1]
abstracting: (1000<=1) states: 0
abstracting: (1000<=3) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(RP)<=2 & [[maxVal(Raf1Star)<=3 & [[[maxVal(Raf1Star)<=3 & maxVal(RKIPP)<=2] & maxVal(RKIPP_RP)<=1] & [[maxVal(Raf1Star_RKIP_ERKPP)<=3 & maxVal(MEKPP)<=2] & maxVal(Raf1Star)<=2]]] & [[[maxVal(ERK)<=1 & [maxVal(Raf1Star_RKIP_ERKPP)<=2 & maxVal(RP)<=2]] & [maxVal(RP)<=3 & [maxVal(RKIPP)<=3 & maxVal(RKIPP_RP)<=2]]] & [[maxVal(ERK)<=3 & [maxVal(ERKPP)<=2 & maxVal(RKIP)<=3]] & maxVal(MEKPP_ERK)<=2]]]]
normalized: [maxVal(RP)<=2 & [[[maxVal(MEKPP_ERK)<=2 & [maxVal(ERK)<=3 & [maxVal(ERKPP)<=2 & maxVal(RKIP)<=3]]] & [[maxVal(RP)<=3 & [maxVal(RKIPP)<=3 & maxVal(RKIPP_RP)<=2]] & [maxVal(ERK)<=1 & [maxVal(Raf1Star_RKIP_ERKPP)<=2 & maxVal(RP)<=2]]]] & [maxVal(Raf1Star)<=3 & [[maxVal(Raf1Star)<=2 & [maxVal(Raf1Star_RKIP_ERKPP)<=3 & maxVal(MEKPP)<=2]] & [maxVal(RKIPP_RP)<=1 & [maxVal(Raf1Star)<=3 & maxVal(RKIPP)<=2]]]]]]
abstracting: (1000<=2) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=1) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=3) states: 0
abstracting: (1000<=2) states: 0
abstracting: (1000<=2) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(RKIP)<=2 & maxVal(Raf1Star_RKIP_ERKPP)<=1]
normalized: [maxVal(RKIP)<=2 & maxVal(Raf1Star_RKIP_ERKPP)<=1]
abstracting: (1000<=1) states: 0
abstracting: (1000<=2) states: 0
-> the formula is FALSE
FORMULA ERK-PT-001000-ReachabilityBounds-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 7m46sec
BK_STOP 1433609483644
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
2011 2344 2677 3011 3807 4607 5407 6207 7007 7094 11514 7261 7344 10764 7511 7594 10014 7761 7844 9264 8011 8673 9339 10005
iterations count:24011 (2182), effective:8000 (727)
initing FirstDep: 0m0sec
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_ERK-PT-001000"
export BK_EXAMINATION="ReachabilityBounds"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/home/fko/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/S_ERK-PT-001000.tgz
mv S_ERK-PT-001000 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is S_ERK-PT-001000, examination is ReachabilityBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r176st-qhx2-143322681900164"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityBounds" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;