About the Execution of Marcie for S_ERK-PT-000001
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3956.120 | 16358.00 | 16418.00 | 20.40 | TTTTTTTTTTTTTTTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.........................................................................................................
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is S_ERK-PT-000001, examination is ReachabilityBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r176st-qhx2-143322681800125
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-0
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-1
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-10
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-11
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-12
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-13
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-14
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-15
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-2
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-3
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-4
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-5
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-6
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-7
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-8
FORMULA_NAME ERK-PT-000001-ReachabilityBounds-9
=== Now, execution of the tool begins
BK_START 1433605889538
Model: S_ERK-PT-000001
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityBounds.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 11 NrTr: 11 NrArc: 34)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m12sec
RS generation: 0m0sec
-> reachability set: #nodes 21 (2.1e+01) #states 13
starting MCC model checker
--------------------------
checking: [[maxVal(Raf1Star)<=3 & maxVal(Raf1Star_RKIP_ERKPP)<=1] & [maxVal(RKIPP_RP)<=3 & [[maxVal(Raf1Star)<=1 & [maxVal(ERKPP)<=3 & [maxVal(Raf1Star_RKIP_ERKPP)<=3 & maxVal(ERKPP)<=2]]] & [maxVal(MEKPP_ERK)<=1 & [maxVal(MEKPP_ERK)<=3 & maxVal(ERK)<=3]]]]]
normalized: [[maxVal(RKIPP_RP)<=3 & [[maxVal(Raf1Star)<=1 & [maxVal(ERKPP)<=3 & [maxVal(Raf1Star_RKIP_ERKPP)<=3 & maxVal(ERKPP)<=2]]] & [maxVal(MEKPP_ERK)<=1 & [maxVal(MEKPP_ERK)<=3 & maxVal(ERK)<=3]]]] & [maxVal(Raf1Star)<=3 & maxVal(Raf1Star_RKIP_ERKPP)<=1]]
abstracting: (1<=1) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=1) states: 13
abstracting: (1<=2) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=1) states: 13
abstracting: (1<=3) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[maxVal(ERK)<=1 & [maxVal(Raf1Star_RKIP_ERKPP)<=2 & maxVal(MEKPP_ERK)<=1]] & [maxVal(Raf1Star_RKIP)<=1 & maxVal(RKIP)<=1]]
normalized: [[maxVal(ERK)<=1 & [maxVal(Raf1Star_RKIP_ERKPP)<=2 & maxVal(MEKPP_ERK)<=1]] & [maxVal(Raf1Star_RKIP)<=1 & maxVal(RKIP)<=1]]
abstracting: (1<=1) states: 13
abstracting: (1<=1) states: 13
abstracting: (1<=1) states: 13
abstracting: (1<=2) states: 13
abstracting: (1<=1) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[maxVal(RKIPP_RP)<=2 & [maxVal(ERKPP)<=3 & maxVal(ERK)<=1]] & [maxVal(RKIPP)<=3 & maxVal(MEKPP_ERK)<=3]]
normalized: [[maxVal(RKIPP)<=3 & maxVal(MEKPP_ERK)<=3] & [maxVal(RKIPP_RP)<=2 & [maxVal(ERKPP)<=3 & maxVal(ERK)<=1]]]
abstracting: (1<=1) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=2) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=3) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[maxVal(RP)<=3 & [[maxVal(RP)<=3 & [maxVal(RKIPP_RP)<=3 & [maxVal(RKIPP_RP)<=3 & maxVal(RKIPP_RP)<=2]]] & [[[maxVal(RKIPP)<=2 & maxVal(ERKPP)<=2] & [maxVal(Raf1Star_RKIP_ERKPP)<=3 & maxVal(Raf1Star_RKIP_ERKPP)<=1]] & [[maxVal(ERKPP)<=2 & maxVal(Raf1Star_RKIP_ERKPP)<=3] & maxVal(RKIPP_RP)<=2]]]] & maxVal(RKIPP)<=1]
normalized: [maxVal(RKIPP)<=1 & [maxVal(RP)<=3 & [[[maxVal(RKIPP_RP)<=2 & [maxVal(ERKPP)<=2 & maxVal(Raf1Star_RKIP_ERKPP)<=3]] & [[maxVal(Raf1Star_RKIP_ERKPP)<=3 & maxVal(Raf1Star_RKIP_ERKPP)<=1] & [maxVal(RKIPP)<=2 & maxVal(ERKPP)<=2]]] & [maxVal(RP)<=3 & [maxVal(RKIPP_RP)<=3 & [maxVal(RKIPP_RP)<=3 & maxVal(RKIPP_RP)<=2]]]]]]
abstracting: (1<=2) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=2) states: 13
abstracting: (1<=2) states: 13
abstracting: (1<=1) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=2) states: 13
abstracting: (1<=2) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=1) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(ERK)<=3 & [[[[maxVal(RKIP)<=3 & maxVal(MEKPP_ERK)<=1] & maxVal(RKIP)<=2] & maxVal(MEKPP_ERK)<=2] & maxVal(RKIP)<=1]]
normalized: [maxVal(ERK)<=3 & [maxVal(RKIP)<=1 & [maxVal(MEKPP_ERK)<=2 & [maxVal(RKIP)<=2 & [maxVal(RKIP)<=3 & maxVal(MEKPP_ERK)<=1]]]]]
abstracting: (1<=1) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=2) states: 13
abstracting: (1<=2) states: 13
abstracting: (1<=1) states: 13
abstracting: (1<=3) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(Raf1Star_RKIP)<=3
normalized: maxVal(Raf1Star_RKIP)<=3
abstracting: (1<=3) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[[[[maxVal(MEKPP_ERK)<=3 & maxVal(Raf1Star_RKIP_ERKPP)<=3] & maxVal(RKIP)<=2] & maxVal(Raf1Star)<=3] & [[[maxVal(RP)<=2 & maxVal(Raf1Star_RKIP)<=2] & [maxVal(Raf1Star_RKIP)<=3 & maxVal(MEKPP_ERK)<=3]] & maxVal(RKIP)<=1]] & maxVal(RKIPP_RP)<=1] & maxVal(RKIP)<=1]
normalized: [maxVal(RKIP)<=1 & [maxVal(RKIPP_RP)<=1 & [[maxVal(RKIP)<=1 & [[maxVal(RP)<=2 & maxVal(Raf1Star_RKIP)<=2] & [maxVal(Raf1Star_RKIP)<=3 & maxVal(MEKPP_ERK)<=3]]] & [maxVal(Raf1Star)<=3 & [maxVal(RKIP)<=2 & [maxVal(MEKPP_ERK)<=3 & maxVal(Raf1Star_RKIP_ERKPP)<=3]]]]]]
abstracting: (1<=3) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=2) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=2) states: 13
abstracting: (1<=2) states: 13
abstracting: (1<=1) states: 13
abstracting: (1<=1) states: 13
abstracting: (1<=1) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(ERK)<=2
normalized: maxVal(ERK)<=2
abstracting: (1<=2) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(Raf1Star_RKIP_ERKPP)<=2
normalized: maxVal(Raf1Star_RKIP_ERKPP)<=2
abstracting: (1<=2) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(ERK)<=3
normalized: maxVal(ERK)<=3
abstracting: (1<=3) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(MEKPP_ERK)<=1
normalized: maxVal(MEKPP_ERK)<=1
abstracting: (1<=1) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(ERKPP)<=2
normalized: maxVal(ERKPP)<=2
abstracting: (1<=2) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(RP)<=2 & maxVal(RKIP)<=3]
normalized: [maxVal(RP)<=2 & maxVal(RKIP)<=3]
abstracting: (1<=3) states: 13
abstracting: (1<=2) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(RP)<=3 & [[maxVal(MEKPP_ERK)<=2 & maxVal(MEKPP)<=1] & maxVal(MEKPP_ERK)<=3]]
normalized: [maxVal(RP)<=3 & [maxVal(MEKPP_ERK)<=3 & [maxVal(MEKPP_ERK)<=2 & maxVal(MEKPP)<=1]]]
abstracting: (1<=1) states: 13
abstracting: (1<=2) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=3) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(Raf1Star)<=1
normalized: maxVal(Raf1Star)<=1
abstracting: (1<=1) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(Raf1Star_RKIP_ERKPP)<=1 & [maxVal(ERKPP)<=3 & maxVal(Raf1Star_RKIP)<=3]]
normalized: [maxVal(Raf1Star_RKIP_ERKPP)<=1 & [maxVal(ERKPP)<=3 & maxVal(Raf1Star_RKIP)<=3]]
abstracting: (1<=3) states: 13
abstracting: (1<=3) states: 13
abstracting: (1<=1) states: 13
-> the formula is TRUE
FORMULA ERK-PT-000001-ReachabilityBounds-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 0m16sec
BK_STOP 1433605905896
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
iterations count:35 (3), effective:8 (0)
initing FirstDep: 0m0sec
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_ERK-PT-000001"
export BK_EXAMINATION="ReachabilityBounds"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/home/fko/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/S_ERK-PT-000001.tgz
mv S_ERK-PT-000001 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is S_ERK-PT-000001, examination is ReachabilityBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r176st-qhx2-143322681800125"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityBounds" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;