About the Execution of Marcie for S_DrinkVendingMachine-PT-02
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3957.210 | 16541.00 | 16168.00 | 20.20 | FFFFTFFFTTFFTTTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.......................................................................................
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is S_DrinkVendingMachine-PT-02, examination is ReachabilityBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r176st-qhx2-143322681800099
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-0
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-1
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-10
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-11
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-12
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-13
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-14
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-15
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-2
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-3
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-4
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-5
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-6
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-7
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-8
FORMULA_NAME DrinkVendingMachine-COL-02-ReachabilityBounds-9
=== Now, execution of the tool begins
BK_START 1433605060302
Model: S_DrinkVendingMachine-PT-02
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityBounds.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 24 NrTr: 72 NrArc: 440)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m12sec
RS generation: 0m0sec
-> reachability set: #nodes 34 (3.4e+01) #states 1,024 (3)
starting MCC model checker
--------------------------
checking: [sum(maxVal(productSlots_2), maxVal(productSlots_1))<=1 & sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=3]
normalized: [sum(maxVal(productSlots_2), maxVal(productSlots_1))<=1 & sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=3]
abstracting: (2<=3) states: 1,024 (3)
abstracting: (2<=1) states: 0
-> the formula is FALSE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[sum(maxVal(theOptions_2), maxVal(theOptions_1))<=1 & [[[sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=3 & sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2] & [[sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2 & sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=1] & sum(maxVal(theOptions_2), maxVal(theOptions_1))<=3]] & [sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=3 & [[sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=3 & sum(maxVal(productSlots_2), maxVal(productSlots_1))<=2] & [sum(maxVal(theProducts_2), maxVal(theProducts_1))<=1 & sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=3]]]]] & [sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2 & sum(maxVal(theOptions_2), maxVal(theOptions_1))<=3]]
normalized: [[sum(maxVal(theOptions_2), maxVal(theOptions_1))<=1 & [[[sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=3 & sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2] & [sum(maxVal(theOptions_2), maxVal(theOptions_1))<=3 & [sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2 & sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=1]]] & [sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=3 & [[sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=3 & sum(maxVal(productSlots_2), maxVal(productSlots_1))<=2] & [sum(maxVal(theProducts_2), maxVal(theProducts_1))<=1 & sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=3]]]]] & [sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2 & sum(maxVal(theOptions_2), maxVal(theOptions_1))<=3]]
abstracting: (2<=3) states: 1,024 (3)
abstracting: (2<=2) states: 1,024 (3)
abstracting: (6<=3) states: 0
abstracting: (2<=1) states: 0
abstracting: (2<=2) states: 1,024 (3)
abstracting: (6<=3) states: 0
abstracting: (8<=3) states: 0
abstracting: (2<=1) states: 0
abstracting: (2<=2) states: 1,024 (3)
abstracting: (2<=3) states: 1,024 (3)
abstracting: (2<=2) states: 1,024 (3)
abstracting: (2<=3) states: 1,024 (3)
abstracting: (2<=1) states: 0
-> the formula is FALSE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=3
normalized: sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=3
abstracting: (2<=3) states: 1,024 (3)
-> the formula is TRUE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(productSlots_2), maxVal(productSlots_1))<=2
normalized: sum(maxVal(productSlots_2), maxVal(productSlots_1))<=2
abstracting: (2<=2) states: 1,024 (3)
-> the formula is TRUE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[[[[sum(maxVal(theProducts_2), maxVal(theProducts_1))<=2 & sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=2] & [sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=3 & sum(maxVal(theProducts_2), maxVal(theProducts_1))<=1]] & [sum(maxVal(theOptions_2), maxVal(theOptions_1))<=1 & [sum(maxVal(theProducts_2), maxVal(theProducts_1))<=1 & sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=3]]] & sum(maxVal(productSlots_2), maxVal(productSlots_1))<=1] & [sum(maxVal(productSlots_2), maxVal(productSlots_1))<=2 & [sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=3 & sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=2]]] & sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=1]
normalized: [[[[sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=3 & sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=2] & sum(maxVal(productSlots_2), maxVal(productSlots_1))<=2] & [sum(maxVal(productSlots_2), maxVal(productSlots_1))<=1 & [[[sum(maxVal(theProducts_2), maxVal(theProducts_1))<=1 & sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=3] & sum(maxVal(theOptions_2), maxVal(theOptions_1))<=1] & [[sum(maxVal(theProducts_2), maxVal(theProducts_1))<=2 & sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=2] & [sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=3 & sum(maxVal(theProducts_2), maxVal(theProducts_1))<=1]]]]] & sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=1]
abstracting: (6<=1) states: 0
abstracting: (2<=1) states: 0
abstracting: (8<=3) states: 0
abstracting: (2<=2) states: 1,024 (3)
abstracting: (2<=2) states: 1,024 (3)
abstracting: (2<=1) states: 0
abstracting: (6<=3) states: 0
abstracting: (2<=1) states: 0
abstracting: (2<=1) states: 0
abstracting: (2<=2) states: 1,024 (3)
abstracting: (6<=2) states: 0
abstracting: (2<=3) states: 1,024 (3)
-> the formula is FALSE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=1
normalized: sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=1
abstracting: (8<=1) states: 0
-> the formula is FALSE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(productSlots_2), maxVal(productSlots_1))<=2
normalized: sum(maxVal(productSlots_2), maxVal(productSlots_1))<=2
abstracting: (2<=2) states: 1,024 (3)
-> the formula is TRUE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2
normalized: sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2
abstracting: (2<=2) states: 1,024 (3)
-> the formula is TRUE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2
normalized: sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2
abstracting: (2<=2) states: 1,024 (3)
-> the formula is TRUE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=1 & sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=1] & [sum(maxVal(theOptions_2), maxVal(theOptions_1))<=1 & sum(maxVal(productSlots_2), maxVal(productSlots_1))<=3]]
normalized: [[sum(maxVal(theOptions_2), maxVal(theOptions_1))<=1 & sum(maxVal(productSlots_2), maxVal(productSlots_1))<=3] & [sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=1 & sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=1]]
abstracting: (6<=1) states: 0
abstracting: (8<=1) states: 0
abstracting: (2<=3) states: 1,024 (3)
abstracting: (2<=1) states: 0
-> the formula is FALSE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=2
normalized: sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=2
abstracting: (6<=2) states: 0
-> the formula is FALSE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=1
normalized: sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=1
abstracting: (6<=1) states: 0
-> the formula is FALSE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(theProducts_2), maxVal(theProducts_1))<=2
normalized: sum(maxVal(theProducts_2), maxVal(theProducts_1))<=2
abstracting: (2<=2) states: 1,024 (3)
-> the formula is TRUE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[[sum(maxVal(theProducts_2), maxVal(theProducts_1))<=3 & sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2] & [[[sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=2 & sum(maxVal(theProducts_2), maxVal(theProducts_1))<=2] & [sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2 & sum(maxVal(theOptions_2), maxVal(theOptions_1))<=1]] & [sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=1 & [sum(maxVal(productSlots_2), maxVal(productSlots_1))<=1 & sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2]]]] & sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=2] & [[sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=2 & sum(maxVal(theProducts_2), maxVal(theProducts_1))<=2] & [sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=2 & sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=3]]]
normalized: [[[[sum(maxVal(theProducts_2), maxVal(theProducts_1))<=3 & sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2] & [[[sum(maxVal(productSlots_2), maxVal(productSlots_1))<=1 & sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2] & sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=1] & [[sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=2 & sum(maxVal(theProducts_2), maxVal(theProducts_1))<=2] & [sum(maxVal(theOptions_2), maxVal(theOptions_1))<=2 & sum(maxVal(theOptions_2), maxVal(theOptions_1))<=1]]]] & sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=2] & [[sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=2 & sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=3] & [sum(maxVal(optionSlots_2), maxVal(optionSlots_1))<=2 & sum(maxVal(theProducts_2), maxVal(theProducts_1))<=2]]]
abstracting: (2<=2) states: 1,024 (3)
abstracting: (2<=2) states: 1,024 (3)
abstracting: (8<=3) states: 0
abstracting: (2<=2) states: 1,024 (3)
abstracting: (8<=2) states: 0
abstracting: (2<=1) states: 0
abstracting: (2<=2) states: 1,024 (3)
abstracting: (2<=2) states: 1,024 (3)
abstracting: (8<=2) states: 0
abstracting: (2<=1) states: 0
abstracting: (2<=2) states: 1,024 (3)
abstracting: (2<=1) states: 0
abstracting: (2<=2) states: 1,024 (3)
abstracting: (2<=3) states: 1,024 (3)
-> the formula is FALSE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(theProducts_2), maxVal(theProducts_1))<=1
normalized: sum(maxVal(theProducts_2), maxVal(theProducts_1))<=1
abstracting: (2<=1) states: 0
-> the formula is FALSE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(theOptions_2), maxVal(theOptions_1))<=3 & [[sum(maxVal(productSlots_2), maxVal(productSlots_1))<=2 & sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=1] & [[sum(maxVal(theProducts_2), maxVal(theProducts_1))<=2 & [[sum(maxVal(productSlots_2), maxVal(productSlots_1))<=1 & sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=2] & sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=2]] & sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=1]]]
normalized: [[[sum(maxVal(productSlots_2), maxVal(productSlots_1))<=2 & sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=1] & [[[[sum(maxVal(productSlots_2), maxVal(productSlots_1))<=1 & sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=2] & sum(maxVal(ready_8), maxVal(ready_6), maxVal(ready_7), maxVal(ready_4), maxVal(ready_5), maxVal(ready_2), maxVal(ready_3), maxVal(ready_1))<=2] & sum(maxVal(theProducts_2), maxVal(theProducts_1))<=2] & sum(maxVal(wait_8), maxVal(wait_7), maxVal(wait_6), maxVal(wait_5), maxVal(wait_4), maxVal(wait_3), maxVal(wait_2), maxVal(wait_1))<=1]] & sum(maxVal(theOptions_2), maxVal(theOptions_1))<=3]
abstracting: (2<=3) states: 1,024 (3)
abstracting: (8<=1) states: 0
abstracting: (2<=2) states: 1,024 (3)
abstracting: (6<=2) states: 0
abstracting: (8<=2) states: 0
abstracting: (2<=1) states: 0
abstracting: (6<=1) states: 0
abstracting: (2<=2) states: 1,024 (3)
-> the formula is FALSE
FORMULA DrinkVendingMachine-COL-02-ReachabilityBounds-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 0m16sec
BK_STOP 1433605076843
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
iterations count:328 (4), effective:28 (0)
initing FirstDep: 0m0sec
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_DrinkVendingMachine-PT-02"
export BK_EXAMINATION="ReachabilityBounds"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/home/fko/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/S_DrinkVendingMachine-PT-02.tgz
mv S_DrinkVendingMachine-PT-02 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is S_DrinkVendingMachine-PT-02, examination is ReachabilityBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r176st-qhx2-143322681800099"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityBounds" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;