About the Execution of Marcie for S_TokenRing-PT-010
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
4023.120 | 42004.00 | 41989.00 | 40.50 | FTTTTFFFTTTTTTTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
................
=====================================================================
Generated by BenchKit 2-2270
Executing tool marcie
Input is S_TokenRing-PT-010, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r148st-smll-143305874100360
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-0
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-1
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-10
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-11
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-12
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-13
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-14
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-15
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-2
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-3
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-4
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-5
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-6
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-7
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-8
FORMULA_NAME TokenRing-COL-010-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1433372786276
Model: S_TokenRing-PT-010
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 121 NrTr: 1111 NrArc: 4444)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m3sec
RS generation: 0m2sec
-> reachability set: #nodes 6527 (6.5e+03) #states 58,905 (4)
starting MCC model checker
--------------------------
checking: EF [[[~ [3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)] | [1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | 3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]] & ~ [2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]
normalized: E [true U [[~ [3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)] | [1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | 3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]] & ~ [2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]
abstracting: (2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is FALSE
FORMULA TokenRing-COL-010-ReachabilityCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m2sec
checking: AG [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]
normalized: ~ [E [true U ~ [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is TRUE
FORMULA TokenRing-COL-010-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]
normalized: ~ [E [true U ~ [2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]
abstracting: (2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is TRUE
FORMULA TokenRing-COL-010-ReachabilityCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | [[3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) & sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)] & ~ [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]]
normalized: ~ [E [true U ~ [[sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | [[3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) & sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)] & ~ [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]]]]
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is TRUE
FORMULA TokenRing-COL-010-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m3sec
checking: AG [~ [[sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) & ~ [2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]]
normalized: ~ [E [true U [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) & ~ [2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]]
abstracting: (2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is TRUE
FORMULA TokenRing-COL-010-ReachabilityCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m1sec
checking: AG [[[~ [1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)] & [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) & 1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]] | sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]
normalized: ~ [E [true U ~ [[sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | [[sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) & 1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)] & ~ [1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]]]]
abstracting: (1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is TRUE
FORMULA TokenRing-COL-010-ReachabilityCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m2sec
checking: AG [~ [~ [[2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) & 1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]]
normalized: ~ [E [true U ~ [[2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) & 1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]]
abstracting: (1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is TRUE
FORMULA TokenRing-COL-010-ReachabilityCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m1sec
checking: AG [~ [~ [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]
normalized: ~ [E [true U ~ [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is TRUE
FORMULA TokenRing-COL-010-ReachabilityCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[[[sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | 1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)] | [3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]] & sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]
normalized: ~ [E [true U ~ [[sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) & [[3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)] | [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | 1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]]]]
abstracting: (1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is TRUE
FORMULA TokenRing-COL-010-ReachabilityCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m3sec
checking: AG [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]
normalized: ~ [E [true U ~ [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is TRUE
FORMULA TokenRing-COL-010-ReachabilityCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]
normalized: ~ [E [true U ~ [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is TRUE
FORMULA TokenRing-COL-010-ReachabilityCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[[[sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | 3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)] | 3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)] | ~ [[2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]]
normalized: ~ [E [true U ~ [[~ [[2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]] | [3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | 3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]]]]
abstracting: (3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is TRUE
FORMULA TokenRing-COL-010-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m3sec
checking: AG [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]
normalized: ~ [E [true U ~ [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is TRUE
FORMULA TokenRing-COL-010-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m1sec
checking: EF [[1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) & [[sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | 2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)] & ~ [3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]]
normalized: E [true U [1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) & [~ [3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)] & [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0) | 2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]]]
abstracting: (2<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (3<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
abstracting: (1<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is FALSE
FORMULA TokenRing-COL-010-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m3sec
checking: EF [~ [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]
normalized: E [true U ~ [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is FALSE
FORMULA TokenRing-COL-010-ReachabilityCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [~ [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]
normalized: E [true U ~ [sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)]]
abstracting: (sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)<=sum(State_2_10, State_7_7, State_2_9, State_0_10, State_3_4, State_1_5, State_7_6, State_9_10, State_0_0, State_3_8, State_1_0, State_8_0, State_8_5, State_3_3, State_7_2, State_8_6, State_2_5, State_0_1, State_3_9, State_10_9, State_7_1, State_7_5, State_2_8, State_10_1, State_10_6, State_4_9, State_8_10, State_5_9, State_7_10, State_10_4, State_2_3, State_1_1, State_0_7, State_5_7, State_4_2, State_2_6, State_7_3, State_1_8, State_9_1, State_7_0, State_6_5, State_5_4, State_5_2, State_9_6, State_2_1, State_6_0, State_1_3, State_8_3, State_0_5, State_6_7, State_4_4, State_3_1, State_10_2, State_3_6, State_2_7, State_7_9, State_9_8, State_7_4, State_5_5, State_9_3, State_0_3, State_5_0, State_5_10, State_1_2, State_8_8, State_10_7, State_6_10, State_6_9, State_6_4, State_10_8, State_4_6, State_0_9, State_1_7, State_4_0, State_7_8, State_10_3, State_1_6, State_0_8, State_3_5, State_0_2, State_3_10, State_0_4, State_5_6, State_9_4, State_6_3, State_8_7, State_4_7, State_4_1, State_9_9, State_3_2, State_2_0, State_6_8, State_8_2, State_0_6, State_5_1, State_4_5, State_9_2, State_5_3, State_10_0, State_1_4, State_3_7, State_1_9, State_10_5, State_2_2, State_10_10, State_4_10, State_3_0, State_5_8, State_6_6, State_9_7, State_8_4, State_6_1, State_8_9, State_9_5, State_4_3, State_4_8, State_6_2, State_1_10, State_8_1, State_2_4, State_9_0)) states: 58,905 (4)
-> the formula is FALSE
FORMULA TokenRing-COL-010-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m1sec
Total processing time: 0m41sec
BK_STOP 1433372828280
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
210 242 322 287 332 422 400 356 352 432 533 544 522 489 467 433 429 475 554 677 688 677 655 633 622 600 578 545 521 517 1023 1914 2728 2937 3025 3113 3190 3223 3344 3388 3443 3454 3597 3652 3696 3729 3762 3773 3808 3887 3943 4010 4088 4088 4077 4066 4055 4044 4022 4011 3989 3967 3956 3934 3901 3879 3865 3861 3960 4048 4125 4191 4246 4290 4323 4356 4356 4466 4576 4686 4796 4906 5016 5126 5236 5346 5456 5556 5566 5601 5651 5711 5781 5851 5921 6011 6111 6241 6451 6527
iterations count:100237 (90), effective:295 (0)
initing FirstDep: 0m0sec
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_TokenRing-PT-010"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/root/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/S_TokenRing-PT-010.tgz
mv S_TokenRing-PT-010 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2270"
echo " Executing tool marcie"
echo " Input is S_TokenRing-PT-010, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r148st-smll-143305874100360"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;