fond
Model Checking Contest @ Petri Nets 2015
Bruxelles, Belgium, June 23, 2015
Execution of r106kn-smll-143285115400347
Last Updated
August 19, 2015

About the Execution of Marcie for TokenRing-PT-005

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
3964.290 5193.00 4889.00 160.40 TFTTFFTTTTTTTTTT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
..............
=====================================================================
Generated by BenchKit 2-2270
Executing tool marcie
Input is TokenRing-PT-005, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r106kn-smll-143285115400347
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-0
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-1
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-10
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-11
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-12
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-13
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-14
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-15
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-2
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-3
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-4
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-5
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-6
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-7
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-8
FORMULA_NAME TokenRing-COL-005-ReachabilityCardinality-9

=== Now, execution of the tool begins

BK_START 1433152345310

Model: TokenRing-PT-005
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5

Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5

parse successfull
net created successfully

(NrP: 36 NrTr: 156 NrArc: 624)

net check time: 0m0sec

parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec

init dd package: 0m3sec


RS generation: 0m0sec


-> reachability set: #nodes 545 (5.4e+02) #states 166



starting MCC model checker
--------------------------

checking: AG [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]
normalized: ~ [E [true U ~ [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]

abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is TRUE

FORMULA TokenRing-COL-005-ReachabilityCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: AG [[~ [[sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]] & sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]
normalized: ~ [E [true U ~ [[sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & ~ [[sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]]]]

abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is FALSE

FORMULA TokenRing-COL-005-ReachabilityCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: AG [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]
normalized: ~ [E [true U ~ [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]

abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is TRUE

FORMULA TokenRing-COL-005-ReachabilityCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: EF [3<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]
normalized: E [true U 3<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]

abstracting: (3<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is TRUE

FORMULA TokenRing-COL-005-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: EF [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]
normalized: E [true U sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]

abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is TRUE

FORMULA TokenRing-COL-005-ReachabilityCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: EF [1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]
normalized: E [true U 1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]

abstracting: (1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is TRUE

FORMULA TokenRing-COL-005-ReachabilityCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: AG [[2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | ~ [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]
normalized: ~ [E [true U ~ [[2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | ~ [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]]]

abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is TRUE

FORMULA TokenRing-COL-005-ReachabilityCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: EF [[sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]
normalized: E [true U [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]

abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is TRUE

FORMULA TokenRing-COL-005-ReachabilityCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: EF [[sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | [[sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & 1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)] | [1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & 1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]]
normalized: E [true U [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | [[1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & 1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)] | [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & 1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]]

abstracting: (1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is TRUE

FORMULA TokenRing-COL-005-ReachabilityCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: AG [[[[1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | 3<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)] & [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | 2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]] | 1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]
normalized: ~ [E [true U ~ [[1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | [[sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | 2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)] & [1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | 3<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]]]]

abstracting: (3<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is TRUE

FORMULA TokenRing-COL-005-ReachabilityCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: AG [[[1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | 2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]] & [~ [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)] | [2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & 1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]]
normalized: ~ [E [true U ~ [[[1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | 2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]] & [[2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & 1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)] | ~ [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]]]]

abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is TRUE

FORMULA TokenRing-COL-005-ReachabilityCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: AG [2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]
normalized: ~ [E [true U ~ [2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]

abstracting: (2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is TRUE

FORMULA TokenRing-COL-005-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: AG [[sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & ~ [[3<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]]
normalized: ~ [E [true U ~ [[sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & ~ [[3<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]]]]

abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (3<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is FALSE

FORMULA TokenRing-COL-005-ReachabilityCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: EF [~ [2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]
normalized: E [true U ~ [2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]

abstracting: (2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is FALSE

FORMULA TokenRing-COL-005-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: EF [[[[sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)] & [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | 1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]] & 2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]
normalized: E [true U [2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & [[sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)] & [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | 1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]]

abstracting: (1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is TRUE

FORMULA TokenRing-COL-005-ReachabilityCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: EF [[[[1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)] & [1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & 2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]] | [[sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | 1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)] & 3<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]
normalized: E [true U [[3<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & [sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) | 1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]] | [[1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)] & [1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1) & 2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)]]]]

abstracting: (2<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (1<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
abstracting: (3<=sum(State_0_0, State_1_0, State_2_1, State_5_4, State_5_1, State_0_3, State_3_3, State_5_5, State_0_2, State_2_4, State_2_3, State_1_1, State_3_4, State_1_2, State_0_1, State_4_5, State_2_2, State_2_5, State_3_5, State_5_0, State_5_3, State_4_0, State_4_3, State_3_2, State_1_4, State_2_0, State_0_5, State_4_2, State_1_5, State_4_1, State_0_4, State_3_0, State_5_2, State_4_4, State_1_3, State_3_1)) states: 166
-> the formula is TRUE

FORMULA TokenRing-COL-005-ReachabilityCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec


Total processing time: 0m5sec


BK_STOP 1433152350503

--------------------
content from stderr:

check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m0sec

342 456
iterations count:2926 (18), effective:75 (0)

initing FirstDep: 0m0sec


iterations count:156 (1), effective:0 (0)

iterations count:156 (1), effective:0 (0)

iterations count:156 (1), effective:0 (0)

iterations count:156 (1), effective:0 (0)

iterations count:156 (1), effective:0 (0)

iterations count:156 (1), effective:0 (0)

iterations count:156 (1), effective:0 (0)

iterations count:156 (1), effective:0 (0)

iterations count:156 (1), effective:0 (0)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="TokenRing-PT-005"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/root/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/TokenRing-PT-005.tgz
mv TokenRing-PT-005 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2270"
echo " Executing tool marcie"
echo " Input is TokenRing-PT-005, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r106kn-smll-143285115400347"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;