fond
Model Checking Contest @ Petri Nets 2015
Bruxelles, Belgium, June 23, 2015
Execution of r106kn-smll-143285115200197
Last Updated
August 19, 2015

About the Execution of Marcie for Solitaire-PT-SqrNC5x5

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
8722.710 522806.00 521969.00 30.30 TFFFTTFFTTFTTFTT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
.............
=====================================================================
Generated by BenchKit 2-2270
Executing tool marcie
Input is Solitaire-PT-SqrNC5x5, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r106kn-smll-143285115200197
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-0
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-1
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-10
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-11
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-12
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-13
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-14
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-15
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-2
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-3
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-4
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-5
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-6
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-7
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-8
FORMULA_NAME Solitaire-PT-SqrNC5x5-CTLCardinality-9

=== Now, execution of the tool begins

BK_START 1433081315186

Model: Solitaire-PT-SqrNC5x5
reachability algorithm:
Transition chaining algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=2 --place-order=5

Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --suppress --rs-algorithm=2 --place-order=5

parse successfull
net created successfully

(NrP: 50 NrTr: 84 NrArc: 456)

net check time: 0m0sec

parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec

init dd package: 0m3sec


RS generation: 0m52sec


-> reachability set: #nodes 64614 (6.5e+04) #states 16,098,428 (7)



starting MCC model checker
--------------------------

checking: AX [AF [[T65<=F33 | 1<=T64]]]
normalized: ~ [EX [EG [~ [[T65<=F33 | 1<=T64]]]]]

abstracting: (1<=T64) states: 7,913,667 (6)
abstracting: (T65<=F33) states: 12,238,393 (7)
.......................................
EG iterations: 39
.-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m30sec

checking: AF [AG [[F36<=T52 | F46<=T42]]]
normalized: ~ [EG [E [true U ~ [[F36<=T52 | F46<=T42]]]]]

abstracting: (F46<=T42) states: 11,960,806 (7)
abstracting: (F36<=T52) states: 11,937,916 (7)

EG iterations: 0
-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 1m28sec

checking: [EF [EG [F34<=T53]] & EG [[~ [T34<=F26] | 1<=F56]]]
normalized: [EG [[1<=F56 | ~ [T34<=F26]]] & E [true U EG [F34<=T53]]]

abstracting: (F34<=T53) states: 11,967,113 (7)
...................
EG iterations: 19
abstracting: (T34<=F26) states: 12,107,661 (7)
abstracting: (1<=F56) states: 8,214,174 (6)
.
EG iterations: 1
-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m59sec

checking: [~ [AF [[3<=T63 & 2<=T34]]] | [[T43<=F44 | EG [T45<=T25]] & ~ [[[T42<=F55 | F24<=T42] & [F55<=F55 & 3<=T63]]]]]
normalized: [EG [~ [[3<=T63 & 2<=T34]]] | [[T43<=F44 | EG [T45<=T25]] & ~ [[[T42<=F55 | F24<=T42] & [F55<=F55 & 3<=T63]]]]]

abstracting: (3<=T63) states: 0
abstracting: (F55<=F55) states: 16,098,428 (7)
abstracting: (F24<=T42) states: 11,962,461 (7)
abstracting: (T42<=F55) states: 12,219,204 (7)
abstracting: (T45<=T25) states: 12,023,789 (7)
.................
EG iterations: 17
abstracting: (T43<=F44) states: 12,212,518 (7)
abstracting: (2<=T34) states: 0
abstracting: (3<=T63) states: 0

EG iterations: 0
-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m16sec

checking: AF [AF [~ [F25<=F65]]]
normalized: ~ [EG [EG [F25<=F65]]]

abstracting: (F25<=F65) states: 12,041,264 (7)
.
EG iterations: 1
.
EG iterations: 1
-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m5sec

checking: AG [~ [AX [3<=T26]]]
normalized: ~ [E [true U ~ [EX [~ [3<=T26]]]]]

abstracting: (3<=T26) states: 0
.-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: [2<=F54 | [[[~ [T25<=T46] | 3<=T55] | ~ [~ [1<=F22]]] | EG [T63<=T55]]]
normalized: [2<=F54 | [EG [T63<=T55] | [1<=F22 | [3<=T55 | ~ [T25<=T46]]]]]

abstracting: (T25<=T46) states: 12,059,150 (7)
abstracting: (3<=T55) states: 0
abstracting: (1<=F22) states: 8,010,218 (6)
abstracting: (T63<=T55) states: 12,068,618 (7)
.
EG iterations: 1
abstracting: (2<=F54) states: 0
-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m4sec

checking: AF [[3<=F54 & EF [T25<=T32]]]
normalized: ~ [EG [~ [[3<=F54 & E [true U T25<=T32]]]]]

abstracting: (T25<=T32) states: 12,039,542 (7)
abstracting: (3<=F54) states: 0

EG iterations: 0
-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m7sec

checking: [AF [T36<=F53] | 2<=T62]
normalized: [2<=T62 | ~ [EG [~ [T36<=F53]]]]

abstracting: (T36<=F53) states: 12,238,393 (7)
...................
before gc: list nodes free: 8377236

after gc: idd nodes used:235854, unused:63764146; list nodes free:317641390
........................
EG iterations: 43
abstracting: (2<=T62) states: 0
-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 1m19sec

checking: [~ [~ [EG [F26<=F36]]] & EF [EX [T35<=F63]]]
normalized: [E [true U EX [T35<=F63]] & EG [F26<=F36]]

abstracting: (F26<=F36) states: 12,213,324 (7)
.
EG iterations: 1
abstracting: (T35<=F63) states: 12,238,393 (7)
.-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m17sec

checking: [AF [[[F52<=T33 & 3<=F63] & [F54<=T32 | 1<=T64]]] | [~ [EF [T65<=F63]] | EG [[3<=F46 & F35<=F35]]]]
normalized: [[EG [[3<=F46 & F35<=F35]] | ~ [E [true U T65<=F63]]] | ~ [EG [~ [[[F54<=T32 | 1<=T64] & [F52<=T33 & 3<=F63]]]]]]

abstracting: (3<=F63) states: 0
abstracting: (F52<=T33) states: 11,955,545 (7)
abstracting: (1<=T64) states: 7,913,667 (6)
abstracting: (F54<=T32) states: 11,954,320 (7)

EG iterations: 0
abstracting: (T65<=F63) states: 12,276,606 (7)
abstracting: (F35<=F35) states: 16,098,428 (7)
abstracting: (3<=F46) states: 0
.
EG iterations: 1
-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m19sec

checking: [EF [[[F24<=F36 & T25<=T26] & 2<=F62]] & EF [[[3<=F45 & 2<=T26] & [3<=F32 & 3<=T34]]]]
normalized: [E [true U [[3<=F32 & 3<=T34] & [3<=F45 & 2<=T26]]] & E [true U [2<=F62 & [F24<=F36 & T25<=T26]]]]

abstracting: (T25<=T26) states: 12,213,324 (7)
abstracting: (F24<=F36) states: 12,059,150 (7)
abstracting: (2<=F62) states: 0
abstracting: (2<=T26) states: 0
abstracting: (3<=F45) states: 0
abstracting: (3<=T34) states: 0
abstracting: (3<=F32) states: 0
-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m10sec

checking: EX [[EG [F33<=F26] | EX [3<=F55]]]
normalized: EX [[EX [3<=F55] | EG [F33<=F26]]]

abstracting: (F33<=F26) states: 11,998,698 (7)
..................
EG iterations: 18
abstracting: (3<=F55) states: 0
..-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m8sec

checking: EX [AF [[T36<=F44 & 1<=F64]]]
normalized: EX [~ [EG [~ [[T36<=F44 & 1<=F64]]]]]

abstracting: (1<=F64) states: 8,184,761 (6)
abstracting: (T36<=F44) states: 12,240,774 (7)
.............................................
EG iterations: 45
.-> the formula is TRUE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 1m41sec

checking: E [[~ [F43<=T26] | [T26<=T53 | 2<=F62]] U AF [2<=F64]]
normalized: E [[[T26<=T53 | 2<=F62] | ~ [F43<=T26]] U ~ [EG [~ [2<=F64]]]]

abstracting: (2<=F64) states: 0

EG iterations: 0
abstracting: (F43<=T26) states: 12,035,646 (7)
abstracting: (2<=F62) states: 0
abstracting: (T26<=T53) states: 11,994,473 (7)
-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m3sec

checking: ~ [~ [E [T65<=T55 U 2<=T56]]]
normalized: E [T65<=T55 U 2<=T56]

abstracting: (2<=T56) states: 0
abstracting: (T65<=T55) states: 12,058,907 (7)
-> the formula is FALSE

FORMULA Solitaire-PT-SqrNC5x5-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec


Total processing time: 8m42sec


BK_STOP 1433081837992

--------------------
content from stderr:

check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok

.........10 64614.
initing FirstDep: 0m0sec

40826 84781 85508 85492 80746 80207 79499 80067 74060 74160 73869 73356 71886 70696 70515 68706 68043
iterations count:17317 (206), effective:1236 (14)
85028 91083 87050 79536 78983 78868 78432 78140 75723 72975 71780 69980 67968
iterations count:13462 (160), effective:810 (9)

iterations count:113 (1), effective:7 (0)

iterations count:84 (1), effective:0 (0)
80609
iterations count:1270 (15), effective:93 (1)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Solitaire-PT-SqrNC5x5"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/root/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/Solitaire-PT-SqrNC5x5.tgz
mv Solitaire-PT-SqrNC5x5 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2270"
echo " Executing tool marcie"
echo " Input is Solitaire-PT-SqrNC5x5, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r106kn-smll-143285115200197"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;