About the Execution of Marcie for QuasiCertifProtocol-PT-02
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3963.310 | 9238.00 | 9019.00 | 20.40 | TFTFTTTTFTTFTTFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
................
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is QuasiCertifProtocol-PT-02, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r078kn-ebro-143262779400854
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-0
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-1
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-15
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-2
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-3
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-4
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-5
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-6
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-7
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-8
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1432913508356
Model: QuasiCertifProtocol-PT-02
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 86 NrTr: 56 NrArc: 223)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m5sec
RS generation: 0m0sec
-> reachability set: #nodes 1881 (1.9e+03) #states 1,029 (3)
starting MCC model checker
--------------------------
checking: AG [[~ [[3<=sum(CstopOK_2, CstopOK_1, CstopOK_0) | 2<=a2]] | SstopAbort<=a1]]
normalized: ~ [E [true U ~ [[SstopAbort<=a1 | ~ [[3<=sum(CstopOK_2, CstopOK_1, CstopOK_0) | 2<=a2]]]]]]
abstracting: (2<=a2) states: 0
abstracting: (3<=sum(CstopOK_2, CstopOK_1, CstopOK_0)) states: 3
abstracting: (SstopAbort<=a1) states: 540
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[[3<=a4 & [2<=sum(c1_2, c1_1, c1_0) | sum(c1_2, c1_1, c1_0)<=malicious_reservoir]] & [3<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0) | ~ [a5<=sum(n2_2, n2_1, n2_0)]]]]
normalized: E [true U [[3<=a4 & [2<=sum(c1_2, c1_1, c1_0) | sum(c1_2, c1_1, c1_0)<=malicious_reservoir]] & [3<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0) | ~ [a5<=sum(n2_2, n2_1, n2_0)]]]]
abstracting: (a5<=sum(n2_2, n2_1, n2_0)) states: 710
abstracting: (3<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)) states: 279
abstracting: (sum(c1_2, c1_1, c1_0)<=malicious_reservoir) states: 435
abstracting: (2<=sum(c1_2, c1_1, c1_0)) states: 531
abstracting: (3<=a4) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[[~ [sum(c1_2, c1_1, c1_0)<=a5] | [malicious_reservoir<=CstopAbort | 2<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)]] & 3<=AstopOK]]
normalized: E [true U [3<=AstopOK & [[malicious_reservoir<=CstopAbort | 2<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)] | ~ [sum(c1_2, c1_1, c1_0)<=a5]]]]
abstracting: (sum(c1_2, c1_1, c1_0)<=a5) states: 444
abstracting: (2<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)) states: 453
abstracting: (malicious_reservoir<=CstopAbort) states: 810
abstracting: (3<=AstopOK) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [3<=sum(CstopOK_2, CstopOK_1, CstopOK_0)]
normalized: E [true U 3<=sum(CstopOK_2, CstopOK_1, CstopOK_0)]
abstracting: (3<=sum(CstopOK_2, CstopOK_1, CstopOK_0)) states: 3
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [~ [2<=malicious_reservoir]]
normalized: ~ [E [true U 2<=malicious_reservoir]]
abstracting: (2<=malicious_reservoir) states: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[~ [1<=sum(c1_2, c1_1, c1_0)] & [~ [1<=a5] & 2<=a2]]]
normalized: E [true U [[2<=a2 & ~ [1<=a5]] & ~ [1<=sum(c1_2, c1_1, c1_0)]]]
abstracting: (1<=sum(c1_2, c1_1, c1_0)) states: 612
abstracting: (1<=a5) states: 319
abstracting: (2<=a2) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [~ [[[2<=a5 & sum(n2_2, n2_1, n2_0)<=sum(n2_2, n2_1, n2_0)] & ~ [1<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)]]]]
normalized: ~ [E [true U [[2<=a5 & sum(n2_2, n2_1, n2_0)<=sum(n2_2, n2_1, n2_0)] & ~ [1<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)]]]]
abstracting: (1<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)) states: 279
abstracting: (sum(n2_2, n2_1, n2_0)<=sum(n2_2, n2_1, n2_0)) states: 1,029 (3)
abstracting: (2<=a5) states: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[[[2<=sum(s3_2, s3_0, s3_1) | sum(s4_1, s4_2, s4_0)<=sum(s4_1, s4_2, s4_0)] & ~ [3<=sum(n1_1, n1_0, n1_2)]] | [2<=sum(CstopOK_2, CstopOK_1, CstopOK_0) | [sum(s3_2, s3_0, s3_1)<=malicious_reservoir & AstopOK<=Astart]]]]
normalized: ~ [E [true U ~ [[[2<=sum(CstopOK_2, CstopOK_1, CstopOK_0) | [sum(s3_2, s3_0, s3_1)<=malicious_reservoir & AstopOK<=Astart]] | [[2<=sum(s3_2, s3_0, s3_1) | sum(s4_1, s4_2, s4_0)<=sum(s4_1, s4_2, s4_0)] & ~ [3<=sum(n1_1, n1_0, n1_2)]]]]]]
abstracting: (3<=sum(n1_1, n1_0, n1_2)) states: 8
abstracting: (sum(s4_1, s4_2, s4_0)<=sum(s4_1, s4_2, s4_0)) states: 1,029 (3)
abstracting: (2<=sum(s3_2, s3_0, s3_1)) states: 60
abstracting: (AstopOK<=Astart) states: 786
abstracting: (sum(s3_2, s3_0, s3_1)<=malicious_reservoir) states: 873
abstracting: (2<=sum(CstopOK_2, CstopOK_1, CstopOK_0)) states: 21
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [3<=malicious_reservoir]
normalized: E [true U 3<=malicious_reservoir]
abstracting: (3<=malicious_reservoir) states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[[[sum(s2_1, s2_2, s2_0)<=sum(n4_0, n4_2, n4_1) & 3<=a2] & [sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=malicious_reservoir & sum(n2_2, n2_1, n2_0)<=Astart]] & [~ [a1<=malicious_reservoir] & [1<=CstopAbort | sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1)]]]]
normalized: E [true U [[[1<=CstopAbort | sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1)] & ~ [a1<=malicious_reservoir]] & [[sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=malicious_reservoir & sum(n2_2, n2_1, n2_0)<=Astart] & [sum(s2_1, s2_2, s2_0)<=sum(n4_0, n4_2, n4_1) & 3<=a2]]]]
abstracting: (3<=a2) states: 0
abstracting: (sum(s2_1, s2_2, s2_0)<=sum(n4_0, n4_2, n4_1)) states: 951
abstracting: (sum(n2_2, n2_1, n2_0)<=Astart) states: 973
abstracting: (sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=malicious_reservoir) states: 750
abstracting: (a1<=malicious_reservoir) states: 1,005 (3)
abstracting: (sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1)) states: 684
abstracting: (1<=CstopAbort) states: 297
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [~ [[[2<=SstopAbort & sum(s4_1, s4_2, s4_0)<=sum(c1_2, c1_1, c1_0)] & [sum(c1_2, c1_1, c1_0)<=sum(s4_1, s4_2, s4_0) & AstopAbort<=sum(SstopOK_2, SstopOK_0, SstopOK_1)]]]]
normalized: ~ [E [true U [[sum(c1_2, c1_1, c1_0)<=sum(s4_1, s4_2, s4_0) & AstopAbort<=sum(SstopOK_2, SstopOK_0, SstopOK_1)] & [2<=SstopAbort & sum(s4_1, s4_2, s4_0)<=sum(c1_2, c1_1, c1_0)]]]]
abstracting: (sum(s4_1, s4_2, s4_0)<=sum(c1_2, c1_1, c1_0)) states: 876
abstracting: (2<=SstopAbort) states: 0
abstracting: (AstopAbort<=sum(SstopOK_2, SstopOK_0, SstopOK_1)) states: 760
abstracting: (sum(c1_2, c1_1, c1_0)<=sum(s4_1, s4_2, s4_0)) states: 417
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[[SstopAbort<=a5 & ~ [a1<=malicious_reservoir]] & [[2<=sum(n5_2, n5_1, n5_0) | malicious_reservoir<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)] & [sum(s6_2, s6_1, s6_0)<=sum(Cstart_2, Cstart_0, Cstart_1) & 2<=Astart]]]]
normalized: E [true U [[[sum(s6_2, s6_1, s6_0)<=sum(Cstart_2, Cstart_0, Cstart_1) & 2<=Astart] & [2<=sum(n5_2, n5_1, n5_0) | malicious_reservoir<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)]] & [SstopAbort<=a5 & ~ [a1<=malicious_reservoir]]]]
abstracting: (a1<=malicious_reservoir) states: 1,005 (3)
abstracting: (SstopAbort<=a5) states: 669
abstracting: (malicious_reservoir<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)) states: 885
abstracting: (2<=sum(n5_2, n5_1, n5_0)) states: 56
abstracting: (2<=Astart) states: 0
abstracting: (sum(s6_2, s6_1, s6_0)<=sum(Cstart_2, Cstart_0, Cstart_1)) states: 711
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[[malicious_reservoir<=sum(n5_2, n5_1, n5_0) | ~ [3<=a5]] | ~ [~ [1<=sum(n4_0, n4_2, n4_1)]]]]
normalized: ~ [E [true U ~ [[1<=sum(n4_0, n4_2, n4_1) | [malicious_reservoir<=sum(n5_2, n5_1, n5_0) | ~ [3<=a5]]]]]]
abstracting: (3<=a5) states: 0
abstracting: (malicious_reservoir<=sum(n5_2, n5_1, n5_0)) states: 848
abstracting: (1<=sum(n4_0, n4_2, n4_1)) states: 56
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[2<=sum(n3_2, n3_1, n3_0) | [sum(n5_2, n5_1, n5_0)<=a5 | [sum(n3_2, n3_1, n3_0)<=sum(CstopOK_2, CstopOK_1, CstopOK_0) & a1<=sum(s2_1, s2_2, s2_0)]]]]
normalized: ~ [E [true U ~ [[2<=sum(n3_2, n3_1, n3_0) | [sum(n5_2, n5_1, n5_0)<=a5 | [sum(n3_2, n3_1, n3_0)<=sum(CstopOK_2, CstopOK_1, CstopOK_0) & a1<=sum(s2_1, s2_2, s2_0)]]]]]]
abstracting: (a1<=sum(s2_1, s2_2, s2_0)) states: 1,022 (3)
abstracting: (sum(n3_2, n3_1, n3_0)<=sum(CstopOK_2, CstopOK_1, CstopOK_0)) states: 973
abstracting: (sum(n5_2, n5_1, n5_0)<=a5) states: 925
abstracting: (2<=sum(n3_2, n3_1, n3_0)) states: 32
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [~ [[2<=a5 & a5<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)]]]
normalized: ~ [E [true U [2<=a5 & a5<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)]]]
abstracting: (a5<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)) states: 819
abstracting: (2<=a5) states: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[[~ [3<=a5] & ~ [1<=AstopOK]] | [sum(n1_1, n1_0, n1_2)<=sum(s6_2, s6_1, s6_0) & a4<=SstopAbort]]]
normalized: ~ [E [true U ~ [[[sum(n1_1, n1_0, n1_2)<=sum(s6_2, s6_1, s6_0) & a4<=SstopAbort] | [~ [3<=a5] & ~ [1<=AstopOK]]]]]]
abstracting: (1<=AstopOK) states: 243
abstracting: (3<=a5) states: 0
abstracting: (a4<=SstopAbort) states: 1,028 (3)
abstracting: (sum(n1_1, n1_0, n1_2)<=sum(s6_2, s6_1, s6_0)) states: 973
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 0m9sec
BK_STOP 1432913517594
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
iterations count:914 (16), effective:56 (1)
initing FirstDep: 0m0sec
iterations count:232 (4), effective:29 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-PT-02"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/users/gast00/fkordon/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-PT-02.tgz
mv QuasiCertifProtocol-PT-02 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is QuasiCertifProtocol-PT-02, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r078kn-ebro-143262779400854"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;