About the Execution of Marcie for QuasiCertifProtocol-PT-02
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3973.410 | 9833.00 | 9049.00 | 10.10 | TFTFFFFTTTFFTFTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.................................................
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is QuasiCertifProtocol-PT-02, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r078kn-ebro-143262779400847
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-0
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-1
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-15
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-2
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-3
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-4
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-5
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-6
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-7
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-8
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-9
=== Now, execution of the tool begins
BK_START 1432913459017
Model: QuasiCertifProtocol-PT-02
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 86 NrTr: 56 NrArc: 223)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m5sec
RS generation: 0m0sec
-> reachability set: #nodes 1881 (1.9e+03) #states 1,029 (3)
starting MCC model checker
--------------------------
checking: [[AX [a2<=sum(Cstart_2, Cstart_0, Cstart_1)] & AF [[1<=sum(s5_2, s5_1, s5_0) | sum(s5_2, s5_1, s5_0)<=sum(s4_1, s4_2, s4_0)]]] & AG [[SstopAbort<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0) | ~ [3<=sum(s6_2, s6_1, s6_0)]]]]
normalized: [~ [E [true U ~ [[SstopAbort<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0) | ~ [3<=sum(s6_2, s6_1, s6_0)]]]]] & [~ [EG [~ [[1<=sum(s5_2, s5_1, s5_0) | sum(s5_2, s5_1, s5_0)<=sum(s4_1, s4_2, s4_0)]]]] & ~ [EX [~ [a2<=sum(Cstart_2, Cstart_0, Cstart_1)]]]]]
abstracting: (a2<=sum(Cstart_2, Cstart_0, Cstart_1)) states: 1,029 (3)
.abstracting: (sum(s5_2, s5_1, s5_0)<=sum(s4_1, s4_2, s4_0)) states: 528
abstracting: (1<=sum(s5_2, s5_1, s5_0)) states: 570
.
EG iterations: 1
abstracting: (3<=sum(s6_2, s6_1, s6_0)) states: 12
abstracting: (SstopAbort<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)) states: 606
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AF [~ [EF [sum(n6_1, n6_2, n6_0)<=sum(n3_2, n3_1, n3_0)]]]
normalized: ~ [EG [E [true U sum(n6_1, n6_2, n6_0)<=sum(n3_2, n3_1, n3_0)]]]
abstracting: (sum(n6_1, n6_2, n6_0)<=sum(n3_2, n3_1, n3_0)) states: 399
...
EG iterations: 3
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[EG [~ [2<=sum(SstopOK_2, SstopOK_0, SstopOK_1)]] & sum(n5_2, n5_1, n5_0)<=sum(n1_1, n1_0, n1_2)] | [[[[2<=a1 & sum(c1_2, c1_1, c1_0)<=sum(n1_1, n1_0, n1_2)] & 1<=a1] & [2<=sum(SstopOK_2, SstopOK_0, SstopOK_1) | [1<=sum(c1_2, c1_1, c1_0) | 3<=sum(CstopOK_2, CstopOK_1, CstopOK_0)]]] & ~ [[~ [3<=sum(s3_2, s3_0, s3_1)] & [sum(Cstart_2, Cstart_0, Cstart_1)<=sum(n2_2, n2_1, n2_0) & sum(CstopOK_2, CstopOK_1, CstopOK_0)<=sum(c1_2, c1_1, c1_0)]]]]]
normalized: [[~ [[~ [3<=sum(s3_2, s3_0, s3_1)] & [sum(Cstart_2, Cstart_0, Cstart_1)<=sum(n2_2, n2_1, n2_0) & sum(CstopOK_2, CstopOK_1, CstopOK_0)<=sum(c1_2, c1_1, c1_0)]]] & [[2<=sum(SstopOK_2, SstopOK_0, SstopOK_1) | [1<=sum(c1_2, c1_1, c1_0) | 3<=sum(CstopOK_2, CstopOK_1, CstopOK_0)]] & [1<=a1 & [2<=a1 & sum(c1_2, c1_1, c1_0)<=sum(n1_1, n1_0, n1_2)]]]] | [sum(n5_2, n5_1, n5_0)<=sum(n1_1, n1_0, n1_2) & EG [~ [2<=sum(SstopOK_2, SstopOK_0, SstopOK_1)]]]]
abstracting: (2<=sum(SstopOK_2, SstopOK_0, SstopOK_1)) states: 150
.............
EG iterations: 13
abstracting: (sum(n5_2, n5_1, n5_0)<=sum(n1_1, n1_0, n1_2)) states: 877
abstracting: (sum(c1_2, c1_1, c1_0)<=sum(n1_1, n1_0, n1_2)) states: 417
abstracting: (2<=a1) states: 0
abstracting: (1<=a1) states: 32
abstracting: (3<=sum(CstopOK_2, CstopOK_1, CstopOK_0)) states: 3
abstracting: (1<=sum(c1_2, c1_1, c1_0)) states: 612
abstracting: (2<=sum(SstopOK_2, SstopOK_0, SstopOK_1)) states: 150
abstracting: (sum(CstopOK_2, CstopOK_1, CstopOK_0)<=sum(c1_2, c1_1, c1_0)) states: 1,008 (3)
abstracting: (sum(Cstart_2, Cstart_0, Cstart_1)<=sum(n2_2, n2_1, n2_0)) states: 542
abstracting: (3<=sum(s3_2, s3_0, s3_1)) states: 6
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [EG [[a3<=CstopAbort | sum(CstopOK_2, CstopOK_1, CstopOK_0)<=a2]]]
normalized: E [true U EG [[a3<=CstopAbort | sum(CstopOK_2, CstopOK_1, CstopOK_0)<=a2]]]
abstracting: (sum(CstopOK_2, CstopOK_1, CstopOK_0)<=a2) states: 981
abstracting: (a3<=CstopAbort) states: 997
EG iterations: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [AF [AG [3<=sum(n3_2, n3_1, n3_0)]] | ~ [2<=sum(Sstart_2, Sstart_0, Sstart_1)]]
normalized: [~ [EG [E [true U ~ [3<=sum(n3_2, n3_1, n3_0)]]]] | ~ [2<=sum(Sstart_2, Sstart_0, Sstart_1)]]
abstracting: (2<=sum(Sstart_2, Sstart_0, Sstart_1)) states: 24
abstracting: (3<=sum(n3_2, n3_1, n3_0)) states: 8
EG iterations: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: ~ [EG [EF [a5<=malicious_reservoir]]]
normalized: ~ [EG [E [true U a5<=malicious_reservoir]]]
abstracting: (a5<=malicious_reservoir) states: 777
EG iterations: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [EF [[~ [CstopAbort<=sum(n2_2, n2_1, n2_0)] & 3<=sum(c1_2, c1_1, c1_0)]] | EG [sum(c1_2, c1_1, c1_0)<=sum(CstopOK_2, CstopOK_1, CstopOK_0)]]
normalized: [EG [sum(c1_2, c1_1, c1_0)<=sum(CstopOK_2, CstopOK_1, CstopOK_0)] | E [true U [3<=sum(c1_2, c1_1, c1_0) & ~ [CstopAbort<=sum(n2_2, n2_1, n2_0)]]]]
abstracting: (CstopAbort<=sum(n2_2, n2_1, n2_0)) states: 732
abstracting: (3<=sum(c1_2, c1_1, c1_0)) states: 243
abstracting: (sum(c1_2, c1_1, c1_0)<=sum(CstopOK_2, CstopOK_1, CstopOK_0)) states: 444
.......
EG iterations: 7
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [E [sum(s4_1, s4_2, s4_0)<=sum(Sstart_2, Sstart_0, Sstart_1) U ~ [sum(Cstart_2, Cstart_0, Cstart_1)<=sum(Cstart_2, Cstart_0, Cstart_1)]] & AX [~ [[3<=a1 & sum(c1_2, c1_1, c1_0)<=Astart]]]]
normalized: [~ [EX [[3<=a1 & sum(c1_2, c1_1, c1_0)<=Astart]]] & E [sum(s4_1, s4_2, s4_0)<=sum(Sstart_2, Sstart_0, Sstart_1) U ~ [sum(Cstart_2, Cstart_0, Cstart_1)<=sum(Cstart_2, Cstart_0, Cstart_1)]]]
abstracting: (sum(Cstart_2, Cstart_0, Cstart_1)<=sum(Cstart_2, Cstart_0, Cstart_1)) states: 1,029 (3)
abstracting: (sum(s4_1, s4_2, s4_0)<=sum(Sstart_2, Sstart_0, Sstart_1)) states: 876
abstracting: (sum(c1_2, c1_1, c1_0)<=Astart) states: 417
abstracting: (3<=a1) states: 0
.-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[[[3<=a1 & sum(s4_1, s4_2, s4_0)<=a5] & [3<=sum(CstopOK_2, CstopOK_1, CstopOK_0) | sum(n2_2, n2_1, n2_0)<=a3]] & EX [1<=malicious_reservoir]] | A [2<=sum(s3_2, s3_0, s3_1) U 2<=sum(n5_2, n5_1, n5_0)]] | ~ [A [sum(SstopOK_2, SstopOK_0, SstopOK_1)<=sum(s4_1, s4_2, s4_0) U 1<=sum(s3_2, s3_0, s3_1)]]]
normalized: [~ [[~ [EG [~ [1<=sum(s3_2, s3_0, s3_1)]]] & ~ [E [~ [sum(SstopOK_2, SstopOK_0, SstopOK_1)<=sum(s4_1, s4_2, s4_0)] U [~ [sum(SstopOK_2, SstopOK_0, SstopOK_1)<=sum(s4_1, s4_2, s4_0)] & ~ [1<=sum(s3_2, s3_0, s3_1)]]]]]] | [[~ [EG [~ [2<=sum(n5_2, n5_1, n5_0)]]] & ~ [E [~ [2<=sum(s3_2, s3_0, s3_1)] U [~ [2<=sum(s3_2, s3_0, s3_1)] & ~ [2<=sum(n5_2, n5_1, n5_0)]]]]] | [EX [1<=malicious_reservoir] & [[3<=sum(CstopOK_2, CstopOK_1, CstopOK_0) | sum(n2_2, n2_1, n2_0)<=a3] & [3<=a1 & sum(s4_1, s4_2, s4_0)<=a5]]]]]
abstracting: (sum(s4_1, s4_2, s4_0)<=a5) states: 924
abstracting: (3<=a1) states: 0
abstracting: (sum(n2_2, n2_1, n2_0)<=a3) states: 973
abstracting: (3<=sum(CstopOK_2, CstopOK_1, CstopOK_0)) states: 3
abstracting: (1<=malicious_reservoir) states: 219
.abstracting: (2<=sum(n5_2, n5_1, n5_0)) states: 56
abstracting: (2<=sum(s3_2, s3_0, s3_1)) states: 60
abstracting: (2<=sum(s3_2, s3_0, s3_1)) states: 60
abstracting: (2<=sum(n5_2, n5_1, n5_0)) states: 56
.
EG iterations: 1
abstracting: (1<=sum(s3_2, s3_0, s3_1)) states: 186
abstracting: (sum(SstopOK_2, SstopOK_0, SstopOK_1)<=sum(s4_1, s4_2, s4_0)) states: 663
abstracting: (sum(SstopOK_2, SstopOK_0, SstopOK_1)<=sum(s4_1, s4_2, s4_0)) states: 663
abstracting: (1<=sum(s3_2, s3_0, s3_1)) states: 186
....
EG iterations: 4
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[AX [1<=sum(n6_1, n6_2, n6_0)] | AF [[2<=sum(s6_2, s6_1, s6_0) & 1<=sum(Cstart_2, Cstart_0, Cstart_1)]]] | 3<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)]
normalized: [3<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0) | [~ [EX [~ [1<=sum(n6_1, n6_2, n6_0)]]] | ~ [EG [~ [[2<=sum(s6_2, s6_1, s6_0) & 1<=sum(Cstart_2, Cstart_0, Cstart_1)]]]]]]
abstracting: (1<=sum(Cstart_2, Cstart_0, Cstart_1)) states: 495
abstracting: (2<=sum(s6_2, s6_1, s6_0)) states: 102
EG iterations: 0
abstracting: (1<=sum(n6_1, n6_2, n6_0)) states: 630
.abstracting: (3<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)) states: 279
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AX [EG [sum(c1_2, c1_1, c1_0)<=a3]]
normalized: ~ [EX [~ [EG [sum(c1_2, c1_1, c1_0)<=a3]]]]
abstracting: (sum(c1_2, c1_1, c1_0)<=a3) states: 417
.......
EG iterations: 7
.-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: A [AF [3<=a1] U 2<=sum(c1_2, c1_1, c1_0)]
normalized: [~ [EG [~ [2<=sum(c1_2, c1_1, c1_0)]]] & ~ [E [EG [~ [3<=a1]] U [EG [~ [3<=a1]] & ~ [2<=sum(c1_2, c1_1, c1_0)]]]]]
abstracting: (2<=sum(c1_2, c1_1, c1_0)) states: 531
abstracting: (3<=a1) states: 0
EG iterations: 0
abstracting: (3<=a1) states: 0
EG iterations: 0
abstracting: (2<=sum(c1_2, c1_1, c1_0)) states: 531
........
EG iterations: 8
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [~ [[AX [sum(Cstart_2, Cstart_0, Cstart_1)<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)] & AX [1<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)]]] & AF [EG [2<=malicious_reservoir]]]
normalized: [~ [EG [~ [EG [2<=malicious_reservoir]]]] & ~ [[~ [EX [~ [sum(Cstart_2, Cstart_0, Cstart_1)<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)]]] & ~ [EX [~ [1<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)]]]]]]
abstracting: (1<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)) states: 453
.abstracting: (sum(Cstart_2, Cstart_0, Cstart_1)<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)) states: 534
.abstracting: (2<=malicious_reservoir) states: 0
.
EG iterations: 1
EG iterations: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: E [EG [sum(n6_1, n6_2, n6_0)<=malicious_reservoir] U EX [2<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)]]
normalized: E [EG [sum(n6_1, n6_2, n6_0)<=malicious_reservoir] U EX [2<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)]]
abstracting: (2<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)) states: 279
.abstracting: (sum(n6_1, n6_2, n6_0)<=malicious_reservoir) states: 411
.....
EG iterations: 5
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [AF [[~ [sum(n6_1, n6_2, n6_0)<=AstopAbort] | [sum(SstopOK_2, SstopOK_0, SstopOK_1)<=sum(n2_2, n2_1, n2_0) | 1<=sum(s5_2, s5_1, s5_0)]]] & [~ [EG [sum(n3_2, n3_1, n3_0)<=sum(s6_2, s6_1, s6_0)]] | [EX [3<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)] & AF [sum(CstopOK_2, CstopOK_1, CstopOK_0)<=CstopAbort]]]]
normalized: [[~ [EG [sum(n3_2, n3_1, n3_0)<=sum(s6_2, s6_1, s6_0)]] | [EX [3<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)] & ~ [EG [~ [sum(CstopOK_2, CstopOK_1, CstopOK_0)<=CstopAbort]]]]] & ~ [EG [~ [[~ [sum(n6_1, n6_2, n6_0)<=AstopAbort] | [sum(SstopOK_2, SstopOK_0, SstopOK_1)<=sum(n2_2, n2_1, n2_0) | 1<=sum(s5_2, s5_1, s5_0)]]]]]]
abstracting: (1<=sum(s5_2, s5_1, s5_0)) states: 570
abstracting: (sum(SstopOK_2, SstopOK_0, SstopOK_1)<=sum(n2_2, n2_1, n2_0)) states: 663
abstracting: (sum(n6_1, n6_2, n6_0)<=AstopAbort) states: 423
.
EG iterations: 1
abstracting: (sum(CstopOK_2, CstopOK_1, CstopOK_0)<=CstopAbort) states: 999
.
EG iterations: 1
abstracting: (3<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)) states: 279
.abstracting: (sum(n3_2, n3_1, n3_0)<=sum(s6_2, s6_1, s6_0)) states: 973
.
EG iterations: 1
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: ~ [E [[AstopOK<=malicious_reservoir & a2<=sum(Cstart_2, Cstart_0, Cstart_1)] U [1<=sum(SstopOK_2, SstopOK_0, SstopOK_1) & 1<=sum(n5_2, n5_1, n5_0)]]]
normalized: ~ [E [[AstopOK<=malicious_reservoir & a2<=sum(Cstart_2, Cstart_0, Cstart_1)] U [1<=sum(SstopOK_2, SstopOK_0, SstopOK_1) & 1<=sum(n5_2, n5_1, n5_0)]]]
abstracting: (1<=sum(n5_2, n5_1, n5_0)) states: 152
abstracting: (1<=sum(SstopOK_2, SstopOK_0, SstopOK_1)) states: 366
abstracting: (a2<=sum(Cstart_2, Cstart_0, Cstart_1)) states: 1,029 (3)
abstracting: (AstopOK<=malicious_reservoir) states: 834
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 0m9sec
BK_STOP 1432913468850
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
iterations count:914 (16), effective:56 (1)
initing FirstDep: 0m0sec
iterations count:93 (1), effective:4 (0)
iterations count:56 (1), effective:0 (0)
iterations count:63 (1), effective:2 (0)
iterations count:61 (1), effective:1 (0)
iterations count:88 (1), effective:3 (0)
iterations count:56 (1), effective:0 (0)
iterations count:140 (2), effective:15 (0)
iterations count:56 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-PT-02"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/users/gast00/fkordon/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-PT-02.tgz
mv QuasiCertifProtocol-PT-02 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is QuasiCertifProtocol-PT-02, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r078kn-ebro-143262779400847"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;