About the Execution of Marcie for PhilosophersDyn-PT-03
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3959.850 | 4496.00 | 4029.00 | 10.10 | FFTFFFFFFFFTFFFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.........
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is PhilosophersDyn-PT-03, examination is ReachabilityBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r064kn-blw3-143254880900775
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-0
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-1
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-10
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-11
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-12
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-13
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-14
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-15
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-2
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-3
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-4
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-5
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-6
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-7
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-8
FORMULA_NAME PhilosophersDyn-COL-03-ReachabilityBounds-9
=== Now, execution of the tool begins
BK_START 1432765381534
Model: PhilosophersDyn-PT-03
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityBounds.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 30 NrTr: 84 NrArc: 564)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m3sec
RS generation: 0m0sec
-> reachability set: #nodes 442 (4.4e+02) #states 325
starting MCC model checker
--------------------------
checking: sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=1
normalized: sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=1
abstracting: (3<=1) states: 0
-> the formula is FALSE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=3 & [sum(maxVal(Outside_1), maxVal(Outside_2), maxVal(Outside_3))<=1 & [[[sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=1 & sum(maxVal(WaitRight_3), maxVal(WaitRight_2), maxVal(WaitRight_1))<=2] & sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=3] & sum(maxVal(Outside_1), maxVal(Outside_2), maxVal(Outside_3))<=2]]] & sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=2]
normalized: [sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=2 & [sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=3 & [sum(maxVal(Outside_1), maxVal(Outside_2), maxVal(Outside_3))<=1 & [[sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=3 & [sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=1 & sum(maxVal(WaitRight_3), maxVal(WaitRight_2), maxVal(WaitRight_1))<=2]] & sum(maxVal(Outside_1), maxVal(Outside_2), maxVal(Outside_3))<=2]]]]
abstracting: (3<=2) states: 0
abstracting: (3<=2) states: 0
abstracting: (3<=1) states: 0
abstracting: (3<=3) states: 325
abstracting: (3<=1) states: 0
abstracting: (9<=3) states: 0
abstracting: (3<=2) states: 0
-> the formula is FALSE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=2 & [sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2 & [[sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=2 & [sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=3 & sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=3]] & [[sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=1 & sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=1] & [sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=1 & sum(maxVal(Outside_1), maxVal(Outside_2), maxVal(Outside_3))<=3]]]]] & [sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=1 & sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=3]]
normalized: [[sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=2 & [sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2 & [[[sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=1 & sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=1] & [sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=1 & sum(maxVal(Outside_1), maxVal(Outside_2), maxVal(Outside_3))<=3]] & [[sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=3 & sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=3] & sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=2]]]] & [sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=1 & sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=3]]
abstracting: (3<=3) states: 325
abstracting: (3<=1) states: 0
abstracting: (3<=2) states: 0
abstracting: (9<=3) states: 0
abstracting: (3<=3) states: 325
abstracting: (3<=3) states: 325
abstracting: (3<=1) states: 0
abstracting: (3<=1) states: 0
abstracting: (3<=1) states: 0
abstracting: (3<=2) states: 0
abstracting: (3<=2) states: 0
-> the formula is FALSE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=1 & sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=3]
normalized: [sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=1 & sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=3]
abstracting: (3<=3) states: 325
abstracting: (3<=1) states: 0
-> the formula is FALSE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=2 & [[[[sum(maxVal(Outside_1), maxVal(Outside_2), maxVal(Outside_3))<=3 & sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=2] & [sum(maxVal(Outside_1), maxVal(Outside_2), maxVal(Outside_3))<=1 & [sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=3 & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=3]]] & [[[sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2 & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2] & sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=3] & sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=1]] & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2]]
normalized: [[sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2 & [[[sum(maxVal(Outside_1), maxVal(Outside_2), maxVal(Outside_3))<=3 & sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=2] & [[sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=3 & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=3] & sum(maxVal(Outside_1), maxVal(Outside_2), maxVal(Outside_3))<=1]] & [sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=1 & [sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=3 & [sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2 & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2]]]]] & sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=2]
abstracting: (3<=2) states: 0
abstracting: (3<=2) states: 0
abstracting: (3<=2) states: 0
abstracting: (9<=3) states: 0
abstracting: (3<=1) states: 0
abstracting: (3<=1) states: 0
abstracting: (3<=3) states: 325
abstracting: (9<=3) states: 0
abstracting: (3<=2) states: 0
abstracting: (3<=3) states: 325
abstracting: (3<=2) states: 0
-> the formula is FALSE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=3
normalized: sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=3
abstracting: (3<=3) states: 325
-> the formula is TRUE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=2
normalized: sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=2
abstracting: (3<=2) states: 0
-> the formula is FALSE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=3 & [[[[sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=1 & sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=2] & [sum(maxVal(WaitRight_3), maxVal(WaitRight_2), maxVal(WaitRight_1))<=1 & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=3]] & [[sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=3 & sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=3] & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2]] & sum(maxVal(WaitRight_3), maxVal(WaitRight_2), maxVal(WaitRight_1))<=1]] & [[sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=3 & [[sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=3 & [sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=1 & sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=3]] & [[sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=3 & sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=1] & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2]]] & sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=3]]
normalized: [[sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=3 & [[[[sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=1 & sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=3] & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=3] & [sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2 & [sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=3 & sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=1]]] & sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=3]] & [[[[[sum(maxVal(WaitRight_3), maxVal(WaitRight_2), maxVal(WaitRight_1))<=1 & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=3] & [sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=1 & sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=2]] & [sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2 & [sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=3 & sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=3]]] & sum(maxVal(WaitRight_3), maxVal(WaitRight_2), maxVal(WaitRight_1))<=1] & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=3]]
abstracting: (3<=3) states: 325
abstracting: (3<=1) states: 0
abstracting: (3<=3) states: 325
abstracting: (3<=3) states: 325
abstracting: (3<=2) states: 0
abstracting: (3<=2) states: 0
abstracting: (3<=1) states: 0
abstracting: (3<=3) states: 325
abstracting: (3<=1) states: 0
abstracting: (3<=3) states: 325
abstracting: (3<=1) states: 0
abstracting: (3<=3) states: 325
abstracting: (3<=2) states: 0
abstracting: (3<=3) states: 325
abstracting: (9<=3) states: 0
abstracting: (3<=1) states: 0
abstracting: (3<=3) states: 325
-> the formula is FALSE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=2 & sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=3]
normalized: [sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=2 & sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=3]
abstracting: (3<=3) states: 325
abstracting: (9<=2) states: 0
-> the formula is FALSE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=3
normalized: sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=3
abstracting: (3<=3) states: 325
-> the formula is TRUE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=3
normalized: sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=3
abstracting: (3<=3) states: 325
-> the formula is TRUE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=2
normalized: sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=2
abstracting: (9<=2) states: 0
-> the formula is FALSE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2
normalized: sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2
abstracting: (3<=2) states: 0
-> the formula is FALSE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[[[[sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=1 & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2] & [sum(maxVal(Outside_1), maxVal(Outside_2), maxVal(Outside_3))<=3 & sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=1]] & [sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=3 & sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=3]] & sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=1] & [[sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=2 & sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=1] & sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=3]] & [sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=1 & [[sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=2 & sum(maxVal(Outside_1), maxVal(Outside_2), maxVal(Outside_3))<=3] & [sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=3 & [[sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=2 & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=1] & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=3]]]]]
normalized: [[[[[[sum(maxVal(Outside_1), maxVal(Outside_2), maxVal(Outside_3))<=3 & sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=1] & [sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=1 & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=2]] & [sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=3 & sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=3]] & sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=1] & [sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=3 & [sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=2 & sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=1]]] & [[[sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=3 & [sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=3 & [sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=2 & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=1]]] & [sum(maxVal(Forks_3), maxVal(Forks_2), maxVal(Forks_1))<=2 & sum(maxVal(Outside_1), maxVal(Outside_2), maxVal(Outside_3))<=3]] & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=1]]
abstracting: (3<=1) states: 0
abstracting: (3<=3) states: 325
abstracting: (3<=2) states: 0
abstracting: (3<=1) states: 0
abstracting: (3<=2) states: 0
abstracting: (3<=3) states: 325
abstracting: (3<=3) states: 325
abstracting: (3<=1) states: 0
abstracting: (9<=2) states: 0
abstracting: (3<=3) states: 325
abstracting: (3<=1) states: 0
abstracting: (3<=3) states: 325
abstracting: (3<=3) states: 325
abstracting: (3<=2) states: 0
abstracting: (3<=1) states: 0
abstracting: (3<=1) states: 0
abstracting: (3<=3) states: 325
-> the formula is FALSE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=2 & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=1] & sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=3] & sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=2]
normalized: [[sum(maxVal(Neighbourhood_3_1), maxVal(Neighbourhood_3_2), maxVal(Neighbourhood_1_3), maxVal(Neighbourhood_2_1), maxVal(Neighbourhood_2_3), maxVal(Neighbourhood_1_1), maxVal(Neighbourhood_3_3), maxVal(Neighbourhood_2_2), maxVal(Neighbourhood_1_2))<=3 & [sum(maxVal(HasRight_3), maxVal(HasRight_1), maxVal(HasRight_2))<=2 & sum(maxVal(Think_1), maxVal(Think_2), maxVal(Think_3))<=1]] & sum(maxVal(WaitLeft_1), maxVal(WaitLeft_3), maxVal(WaitLeft_2))<=2]
abstracting: (3<=2) states: 0
abstracting: (3<=1) states: 0
abstracting: (3<=2) states: 0
abstracting: (9<=3) states: 0
-> the formula is FALSE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=1
normalized: sum(maxVal(HasLeft_1), maxVal(HasLeft_3), maxVal(HasLeft_2))<=1
abstracting: (3<=1) states: 0
-> the formula is FALSE
FORMULA PhilosophersDyn-COL-03-ReachabilityBounds-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 0m4sec
BK_STOP 1432765386030
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
293
iterations count:1652 (19), effective:60 (0)
initing FirstDep: 0m0sec
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="PhilosophersDyn-PT-03"
export BK_EXAMINATION="ReachabilityBounds"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/user/u8/hulinhub/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/PhilosophersDyn-PT-03.tgz
mv PhilosophersDyn-PT-03 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is PhilosophersDyn-PT-03, examination is ReachabilityBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r064kn-blw3-143254880900775"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityBounds" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;