About the Execution of Marcie for Philosophers-PT-000010
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3971.950 | 11193.00 | 11056.00 | 20.20 | TTTTFFFFTFFFFFTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.........
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is Philosophers-PT-000010, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r064kn-blw3-143254880700581
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-0
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-1
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-10
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-11
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-12
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-13
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-14
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-15
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-2
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-3
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-4
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-5
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-6
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-7
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-8
FORMULA_NAME Philosophers-COL-000010-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1432752389580
Model: Philosophers-PT-000010
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 50 NrTr: 50 NrArc: 160)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m3sec
RS generation: 0m0sec
-> reachability set: #nodes 240 (2.4e+02) #states 59,049 (4)
starting MCC model checker
--------------------------
checking: AG [[sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) | [[3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) & 1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] | [sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) & 3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]]]
normalized: ~ [E [true U ~ [[sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) | [[sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) & 3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)] | [3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) & 1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]]]]
abstracting: (1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,047 (4)
abstracting: (3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 3,387 (3)
abstracting: (3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 3,387 (3)
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 22,606 (4)
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 59,049 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [~ [[[sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) & sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] | [2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & 1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]]]
normalized: E [true U ~ [[[2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & 1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)] | [sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) & sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]]
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 52,083 (4)
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 23,441 (4)
abstracting: (1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 52,323 (4)
abstracting: (2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 52,905 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [~ [~ [[sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) | 2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]]]
normalized: ~ [E [true U ~ [[sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) | 2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]]]
abstracting: (2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 38,393 (4)
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 59,049 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]
normalized: ~ [E [true U ~ [2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]
abstracting: (2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 52,905 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [~ [[[1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) & sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)] & ~ [2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]]
normalized: ~ [E [true U [[1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) & sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)] & ~ [2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]]
abstracting: (2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 52,905 (4)
abstracting: (sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 46,892 (4)
abstracting: (1<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 52,323 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[~ [[sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & 1<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]] | ~ [~ [2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]]
normalized: ~ [E [true U ~ [[2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) | ~ [[sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & 1<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]]]]]]
abstracting: (1<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 52,323 (4)
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 59,049 (4)
abstracting: (2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 52,905 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[~ [[2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) | sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]] | [[2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)] | 1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]
normalized: ~ [E [true U ~ [[~ [[2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) | sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]] | [1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) | [2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]]]]]
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 23,441 (4)
abstracting: (2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 52,905 (4)
abstracting: (1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,047 (4)
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 59,049 (4)
abstracting: (2<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 38,393 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]
normalized: ~ [E [true U ~ [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]
abstracting: (sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 53,082 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[[2<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) & [2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]] & 3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]
normalized: E [true U [3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & [2<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) & [2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]]]]
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 59,049 (4)
abstracting: (2<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 52,905 (4)
abstracting: (2<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 18,082 (4)
abstracting: (3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 41,385 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [~ [sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]]
normalized: ~ [E [true U sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]]
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 22,606 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[~ [~ [sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]] & 1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]
normalized: E [true U [sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1) & 1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]
abstracting: (1<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 43,922 (4)
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 22,606 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]
normalized: E [true U 3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]
abstracting: (3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 3,387 (3)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[[[3<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) & 1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] | [3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]] & [~ [sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)] | [3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) | sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]]
normalized: ~ [E [true U ~ [[[[3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) | sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)] | ~ [sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)]] & [[3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)] | [3<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1) & 1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]]]]
abstracting: (1<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 59,047 (4)
abstracting: (3<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 56,412 (4)
abstracting: (sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 59,049 (4)
abstracting: (3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 41,385 (4)
abstracting: (sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)) states: 12,599 (4)
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 59,049 (4)
abstracting: (3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 3,387 (3)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [~ [~ [3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]
normalized: ~ [E [true U ~ [3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)]]]
abstracting: (3<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 41,385 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[[~ [sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)] & [sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) | 3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]] & [[sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2) & sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)] & [sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & 2<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]]]]
normalized: E [true U [[[sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1) & 2<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)] & [sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2) & sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]] & [[sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) | 3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)] & ~ [sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)]]]]
abstracting: (sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 59,049 (4)
abstracting: (3<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 3,387 (3)
abstracting: (sum(Catch1_10, Catch1_8, Catch1_9, Catch1_6, Catch1_7, Catch1_4, Catch1_5, Catch1_2, Catch1_3, Catch1_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 23,441 (4)
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 22,606 (4)
abstracting: (sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 12,599 (4)
abstracting: (2<=sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)) states: 38,393 (4)
abstracting: (sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)<=sum(Fork_10, Fork_8, Fork_9, Fork_6, Fork_7, Fork_4, Fork_5, Fork_3, Fork_2, Fork_1)) states: 59,049 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [~ [[~ [sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)] & sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)]]]
normalized: ~ [E [true U [sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1) & ~ [sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)]]]]
abstracting: (sum(Catch2_9, Catch2_8, Catch2_10, Catch2_5, Catch2_4, Catch2_7, Catch2_6, Catch2_1, Catch2_3, Catch2_2)<=sum(Think_10, Think_9, Think_8, Think_7, Think_6, Think_5, Think_4, Think_3, Think_2, Think_1)) states: 52,083 (4)
abstracting: (sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)<=sum(Eat_10, Eat_6, Eat_7, Eat_8, Eat_9, Eat_3, Eat_2, Eat_5, Eat_4, Eat_1)) states: 59,049 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 0m11sec
BK_STOP 1432752400773
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
iterations count:263 (5), effective:30 (0)
initing FirstDep: 0m0sec
407
iterations count:1293 (25), effective:229 (4)
iterations count:460 (9), effective:82 (1)
361
iterations count:1085 (21), effective:194 (3)
iterations count:714 (14), effective:117 (2)
iterations count:754 (15), effective:126 (2)
iterations count:883 (17), effective:155 (3)
359
iterations count:1082 (21), effective:178 (3)
iterations count:201 (4), effective:32 (0)
iterations count:845 (16), effective:147 (2)
366
iterations count:1124 (22), effective:184 (3)
iterations count:482 (9), effective:83 (1)
iterations count:370 (7), effective:65 (1)
iterations count:314 (6), effective:39 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Philosophers-PT-000010"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/user/u8/hulinhub/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/Philosophers-PT-000010.tgz
mv Philosophers-PT-000010 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is Philosophers-PT-000010, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r064kn-blw3-143254880700581"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;