About the Execution of Marcie for Peterson-PT-2
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3993.380 | 9228.00 | 9010.00 | 19.80 | FTTTFFTFTTFFTFFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.........
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is Peterson-PT-2, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r064kn-blw3-143254880500321
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-0
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-1
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-10
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-11
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-12
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-13
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-14
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-15
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-2
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-3
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-4
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-5
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-6
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-7
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-8
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1432740079653
Model: Peterson-PT-2
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 102 NrTr: 126 NrArc: 384)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m3sec
RS generation: 0m0sec
-> reachability set: #nodes 2693 (2.7e+03) #states 20,754 (4)
starting MCC model checker
--------------------------
checking: EF [~ [[[2<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0) & 1<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)] | [3<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T) | sum(Idle_1, Idle_2, Idle_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]]]]
normalized: E [true U ~ [[[3<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T) | sum(Idle_1, Idle_2, Idle_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)] | [2<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0) & 1<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]]]]
abstracting: (1<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)) states: 4,824 (3)
abstracting: (2<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)) states: 645
abstracting: (sum(Idle_1, Idle_2, Idle_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)) states: 20,751 (4)
abstracting: (3<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)) states: 20,754 (4)
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [1<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]
normalized: ~ [E [true U ~ [1<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]]]
abstracting: (1<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)) states: 20,754 (4)
-> the formula is TRUE
FORMULA Peterson-COL-2-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [1<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]
normalized: ~ [E [true U ~ [1<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]]]
abstracting: (1<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)) states: 20,754 (4)
-> the formula is TRUE
FORMULA Peterson-COL-2-ReachabilityCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[[[sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0) & sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)] | ~ [3<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)]] | ~ [sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]]]
normalized: ~ [E [true U ~ [[[[sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0) & sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)] | ~ [3<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)]] | ~ [sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]]]]]
abstracting: (sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)) states: 14,593 (4)
abstracting: (3<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)) states: 21
abstracting: (sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)) states: 17,280 (4)
abstracting: (sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)) states: 16,092 (4)
-> the formula is TRUE
FORMULA Peterson-COL-2-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [~ [[sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0) | ~ [2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)]]]]
normalized: E [true U ~ [[sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0) | ~ [2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)]]]]
abstracting: (2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)) states: 75
abstracting: (sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)) states: 20,754 (4)
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[[[sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) & 2<=sum(Idle_1, Idle_2, Idle_0)] | [3<=sum(CS_2, CS_1, CS_0) & 1<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)]] & ~ [[sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0) & 3<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)]]]]
normalized: E [true U [~ [[sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0) & 3<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)]] & [[3<=sum(CS_2, CS_1, CS_0) & 1<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)] | [sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) & 2<=sum(Idle_1, Idle_2, Idle_0)]]]]
abstracting: (2<=sum(Idle_1, Idle_2, Idle_0)) states: 180
abstracting: (sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)) states: 0
abstracting: (1<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)) states: 10,596 (4)
abstracting: (3<=sum(CS_2, CS_1, CS_0)) states: 0
abstracting: (3<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)) states: 30
abstracting: (sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)) states: 20,754 (4)
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[[[sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0) | sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)] | sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)] | ~ [1<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)]]]
normalized: ~ [E [true U ~ [[[sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0) | [sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0) | sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)]] | ~ [1<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)]]]]]
abstracting: (1<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)) states: 6,060 (3)
abstracting: (sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)) states: 12,257 (4)
abstracting: (sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)) states: 20,754 (4)
abstracting: (sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)) states: 16,092 (4)
-> the formula is TRUE
FORMULA Peterson-COL-2-ReachabilityCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [3<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)]
normalized: E [true U 3<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)]
abstracting: (3<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [~ [[2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) | sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]]]
normalized: E [true U ~ [[2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) | sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]]]
abstracting: (sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)) states: 20,754 (4)
abstracting: (2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)) states: 75
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[2<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0) & [[2<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0) & 3<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)] & [sum(Idle_1, Idle_2, Idle_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) & 1<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)]]]]
normalized: E [true U [2<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0) & [[sum(Idle_1, Idle_2, Idle_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) & 1<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)] & [2<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0) & 3<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)]]]]
abstracting: (3<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)) states: 21
abstracting: (2<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)) states: 2,389 (3)
abstracting: (1<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)) states: 10,596 (4)
abstracting: (sum(Idle_1, Idle_2, Idle_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)) states: 18,189 (4)
abstracting: (2<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)) states: 20,754 (4)
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[~ [~ [sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]] & [~ [3<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)] & [sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(CS_2, CS_1, CS_0) & 3<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)]]]]
normalized: E [true U [sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T) & [~ [3<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)] & [sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(CS_2, CS_1, CS_0) & 3<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)]]]]
abstracting: (3<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)) states: 194
abstracting: (sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(CS_2, CS_1, CS_0)) states: 10,347 (4)
abstracting: (3<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)) states: 66
abstracting: (sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)) states: 20,754 (4)
-> the formula is TRUE
FORMULA Peterson-COL-2-ReachabilityCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m1sec
checking: AG [[[[sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0) | 3<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)] | 3<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)] | [[sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T) | sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)] | [2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) | sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)]]]]
normalized: ~ [E [true U ~ [[[[sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T) | sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)] | [2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) | sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)]] | [3<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0) | [sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0) | 3<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)]]]]]]
abstracting: (3<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)) states: 30
abstracting: (sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)) states: 12,757 (4)
abstracting: (3<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)) states: 30
abstracting: (sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)) states: 15,671 (4)
abstracting: (2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)) states: 75
abstracting: (sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)) states: 20,754 (4)
abstracting: (sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)) states: 20,754 (4)
-> the formula is TRUE
FORMULA Peterson-COL-2-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [~ [~ [sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(CS_2, CS_1, CS_0)]]]
normalized: E [true U sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(CS_2, CS_1, CS_0)]
abstracting: (sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(CS_2, CS_1, CS_0)) states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [~ [~ [~ [sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]]]]
normalized: E [true U ~ [sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]]
abstracting: (sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)) states: 20,754 (4)
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[[~ [2<=sum(CS_2, CS_1, CS_0)] | [sum(Idle_1, Idle_2, Idle_0)<=sum(Idle_1, Idle_2, Idle_0) | 3<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]] | sum(Idle_1, Idle_2, Idle_0)<=sum(CS_2, CS_1, CS_0)]]
normalized: ~ [E [true U ~ [[sum(Idle_1, Idle_2, Idle_0)<=sum(CS_2, CS_1, CS_0) | [[sum(Idle_1, Idle_2, Idle_0)<=sum(Idle_1, Idle_2, Idle_0) | 3<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)] | ~ [2<=sum(CS_2, CS_1, CS_0)]]]]]]
abstracting: (2<=sum(CS_2, CS_1, CS_0)) states: 0
abstracting: (3<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)) states: 12
abstracting: (sum(Idle_1, Idle_2, Idle_0)<=sum(Idle_1, Idle_2, Idle_0)) states: 20,754 (4)
abstracting: (sum(Idle_1, Idle_2, Idle_0)<=sum(CS_2, CS_1, CS_0)) states: 17,760 (4)
-> the formula is TRUE
FORMULA Peterson-COL-2-ReachabilityCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T) & ~ [~ [sum(CS_2, CS_1, CS_0)<=sum(Idle_1, Idle_2, Idle_0)]]]]
normalized: ~ [E [true U ~ [[sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T) & sum(CS_2, CS_1, CS_0)<=sum(Idle_1, Idle_2, Idle_0)]]]]
abstracting: (sum(CS_2, CS_1, CS_0)<=sum(Idle_1, Idle_2, Idle_0)) states: 20,265 (4)
abstracting: (sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)) states: 20,754 (4)
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 0m9sec
BK_STOP 1432740088881
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
604 1142 1317 1628 2242 2679 2577
iterations count:7649 (60), effective:730 (5)
initing FirstDep: 0m0sec
2297 2883 3194 2602 2796 2718
iterations count:6147 (48), effective:262 (2)
1681 1925 2315 2778 2702 2984 2693
iterations count:7049 (55), effective:393 (3)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Peterson-PT-2"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/user/u8/hulinhub/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/Peterson-PT-2.tgz
mv Peterson-PT-2 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is Peterson-PT-2, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r064kn-blw3-143254880500321"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;