About the Execution of Marcie for NeoElection-PT-3
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
4163.000 | 576112.00 | 576000.00 | 30.00 | TFTFFTTTTFFTTFFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.......................
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is NeoElection-PT-3, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r050kn-ebro-143236504200919
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-0
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-1
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-10
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-11
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-12
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-13
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-14
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-15
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-2
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-3
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-4
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-5
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-6
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-7
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-8
FORMULA_NAME NeoElection-COL-3-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1432552986283
Model: NeoElection-PT-3
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 972 NrTr: 1016 NrArc: 5840)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m5sec
RS generation: 0m13sec
-> reachability set: #nodes 19347 (1.9e+04) #states 974,325 (5)
starting MCC model checker
--------------------------
checking: AG [2<=sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)]
normalized: ~ [E [true U ~ [2<=sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)]]]
abstracting: (2<=sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)) states: 974,325 (5)
-> the formula is TRUE
FORMULA NeoElection-COL-3-ReachabilityCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m1sec
checking: EF [[[sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electedSecondary_3, P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) & [2<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0) & 3<=sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]] | [~ [sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)] & ~ [3<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)]]]]
normalized: E [true U [[~ [3<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)] & ~ [sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)]] | [sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electedSecondary_3, P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) & [2<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0) & 3<=sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]]
abstracting: (3<=sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)) states: 0
abstracting: (2<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)) states: 250,244 (5)
abstracting: (sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electedSecondary_3, P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)) states: 974,325 (5)
abstracting: (sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)) states: 974,325 (5)
abstracting: (3<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)) states: 0
-> the formula is FALSE
FORMULA NeoElection-COL-3-ReachabilityCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m23sec
checking: AG [[[2<=sum(P_sendAnnPs__broadcasting_3_3, P_sendAnnPs__broadcasting_3_2, P_sendAnnPs__broadcasting_3_1, P_sendAnnPs__broadcasting_2_3, P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_3, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_3, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1) & [sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0) & 2<=sum(P_startNeg__broadcasting_3_3, P_startNeg__broadcasting_3_2, P_startNeg__broadcasting_3_1, P_startNeg__broadcasting_2_3, P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_3, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_3, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)]] | sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)<=sum(P_poll__handlingMessage_3, P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)]]
normalized: ~ [E [true U ~ [[sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)<=sum(P_poll__handlingMessage_3, P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) | [2<=sum(P_sendAnnPs__broadcasting_3_3, P_sendAnnPs__broadcasting_3_2, P_sendAnnPs__broadcasting_3_1, P_sendAnnPs__broadcasting_2_3, P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_3, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_3, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1) & [sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0) & 2<=sum(P_startNeg__broadcasting_3_3, P_startNeg__broadcasting_3_2, P_startNeg__broadcasting_3_1, P_startNeg__broadcasting_2_3, P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_3, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_3, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)]]]]]]
abstracting: (2<=sum(P_startNeg__broadcasting_3_3, P_startNeg__broadcasting_3_2, P_startNeg__broadcasting_3_1, P_startNeg__broadcasting_2_3, P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_3, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_3, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)) states: 210
abstracting: (sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)) states: 974,325 (5)
abstracting: (2<=sum(P_sendAnnPs__broadcasting_3_3, P_sendAnnPs__broadcasting_3_2, P_sendAnnPs__broadcasting_3_1, P_sendAnnPs__broadcasting_2_3, P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_3, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_3, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)) states: 0
abstracting: (sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)<=sum(P_poll__handlingMessage_3, P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)) states: 974,325 (5)
-> the formula is TRUE
FORMULA NeoElection-COL-3-ReachabilityCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m34sec
checking: EF [[~ [1<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)] & [sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0) & 1<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)]]]
normalized: E [true U [[sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0) & 1<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)] & ~ [1<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]]]
abstracting: (1<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 0
abstracting: (1<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)) states: 0
abstracting: (sum(P_masterList_3_3_3, P_masterList_3_3_2, P_masterList_3_3_1, P_masterList_3_3_0, P_masterList_3_2_3, P_masterList_3_2_2, P_masterList_3_2_1, P_masterList_3_2_0, P_masterList_3_1_3, P_masterList_3_1_2, P_masterList_3_1_1, P_masterList_3_1_0, P_masterList_2_3_3, P_masterList_2_3_2, P_masterList_2_3_1, P_masterList_2_3_0, P_masterList_2_2_3, P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_3, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_3_3, P_masterList_1_3_2, P_masterList_1_3_1, P_masterList_1_3_0, P_masterList_1_2_3, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_3, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_3_3, P_masterList_0_3_2, P_masterList_0_3_1, P_masterList_0_3_0, P_masterList_0_2_3, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_3, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 0
-> the formula is FALSE
FORMULA NeoElection-COL-3-ReachabilityCardinality-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m32sec
checking: EF [[[[1<=sum(P_poll__handlingMessage_3, P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) | sum(P_startNeg__broadcasting_3_3, P_startNeg__broadcasting_3_2, P_startNeg__broadcasting_3_1, P_startNeg__broadcasting_2_3, P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_3, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_3, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_negotiation_3_3_DONE, P_negotiation_3_3_CO, P_negotiation_3_3_NONE, P_negotiation_3_2_DONE, P_negotiation_3_2_CO, P_negotiation_3_2_NONE, P_negotiation_3_1_DONE, P_negotiation_3_1_CO, P_negotiation_3_1_NONE, P_negotiation_3_0_DONE, P_negotiation_3_0_CO, P_negotiation_3_0_NONE, P_negotiation_2_3_DONE, P_negotiation_2_3_CO, P_negotiation_2_3_NONE, P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_3_DONE, P_negotiation_1_3_CO, P_negotiation_1_3_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_3_DONE, P_negotiation_0_3_CO, P_negotiation_0_3_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)] & [3<=sum(P_electedSecondary_3, P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) | 3<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]] & 2<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)]]
normalized: E [true U [2<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0) & [[3<=sum(P_electedSecondary_3, P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) | 3<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)] & [1<=sum(P_poll__handlingMessage_3, P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) | sum(P_startNeg__broadcasting_3_3, P_startNeg__broadcasting_3_2, P_startNeg__broadcasting_3_1, P_startNeg__broadcasting_2_3, P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_3, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_3, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_negotiation_3_3_DONE, P_negotiation_3_3_CO, P_negotiation_3_3_NONE, P_negotiation_3_2_DONE, P_negotiation_3_2_CO, P_negotiation_3_2_NONE, P_negotiation_3_1_DONE, P_negotiation_3_1_CO, P_negotiation_3_1_NONE, P_negotiation_3_0_DONE, P_negotiation_3_0_CO, P_negotiation_3_0_NONE, P_negotiation_2_3_DONE, P_negotiation_2_3_CO, P_negotiation_2_3_NONE, P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_3_DONE, P_negotiation_1_3_CO, P_negotiation_1_3_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_3_DONE, P_negotiation_0_3_CO, P_negotiation_0_3_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)]]]]
abstracting: (sum(P_startNeg__broadcasting_3_3, P_startNeg__broadcasting_3_2, P_startNeg__broadcasting_3_1, P_startNeg__broadcasting_2_3, P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_3, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_3, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_negotiation_3_3_DONE, P_negotiation_3_3_CO, P_negotiation_3_3_NONE, P_negotiation_3_2_DONE, P_negotiation_3_2_CO, P_negotiation_3_2_NONE, P_negotiation_3_1_DONE, P_negotiation_3_1_CO, P_negotiation_3_1_NONE, P_negotiation_3_0_DONE, P_negotiation_3_0_CO, P_negotiation_3_0_NONE, P_negotiation_2_3_DONE, P_negotiation_2_3_CO, P_negotiation_2_3_NONE, P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_3_DONE, P_negotiation_1_3_CO, P_negotiation_1_3_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_3_DONE, P_negotiation_0_3_CO, P_negotiation_0_3_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)) states: 974,325 (5)
abstracting: (1<=sum(P_poll__handlingMessage_3, P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)) states: 685,000 (5)
abstracting: (3<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 0
abstracting: (3<=sum(P_electedSecondary_3, P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)) states: 0
abstracting: (2<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)) states: 0
-> the formula is FALSE
FORMULA NeoElection-COL-3-ReachabilityCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m56sec
checking: AG [sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electionInit_3, P_electionInit_2, P_electionInit_1, P_electionInit_0)]
normalized: ~ [E [true U ~ [sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electionInit_3, P_electionInit_2, P_electionInit_1, P_electionInit_0)]]]
abstracting: (sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electionInit_3, P_electionInit_2, P_electionInit_1, P_electionInit_0)) states: 974,325 (5)
-> the formula is TRUE
FORMULA NeoElection-COL-3-ReachabilityCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m38sec
checking: AG [sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electionInit_3, P_electionInit_2, P_electionInit_1, P_electionInit_0)]
normalized: ~ [E [true U ~ [sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electionInit_3, P_electionInit_2, P_electionInit_1, P_electionInit_0)]]]
abstracting: (sum(P_electedPrimary_3, P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electionInit_3, P_electionInit_2, P_electionInit_1, P_electionInit_0)) states: 974,325 (5)
-> the formula is TRUE
FORMULA NeoElection-COL-3-ReachabilityCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m38sec
checking: EF [sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)]
normalized: E [true U sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)]
abstracting: (sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)) states: 0
-> the formula is FALSE
FORMULA NeoElection-COL-3-ReachabilityCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m1sec
checking: EF [[~ [sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)] & ~ [[sum(P_startNeg__broadcasting_3_3, P_startNeg__broadcasting_3_2, P_startNeg__broadcasting_3_1, P_startNeg__broadcasting_2_3, P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_3, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_3, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0) | 3<=sum(P_network_3_3_RP_3, P_network_3_3_RP_2, P_network_3_3_RP_1, P_network_3_3_RP_0, P_network_3_3_AnnP_3, P_network_3_3_AnnP_2, P_network_3_3_AnnP_1, P_network_3_3_AnnP_0, P_network_3_3_AI_3, P_network_3_3_AI_2, P_network_3_3_AI_1, P_network_3_3_AI_0, P_network_3_3_RI_3, P_network_3_3_RI_2, P_network_3_3_RI_1, P_network_3_3_RI_0, P_network_3_3_AnsP_3, P_network_3_3_AnsP_2, P_network_3_3_AnsP_1, P_network_3_3_AnsP_0, P_network_3_3_AskP_3, P_network_3_3_AskP_2, P_network_3_3_AskP_1, P_network_3_3_AskP_0, P_network_3_2_RP_3, P_network_3_2_RP_2, P_network_3_2_RP_1, P_network_3_2_RP_0, P_network_3_2_AnnP_3, P_network_3_2_AnnP_2, P_network_3_2_AnnP_1, P_network_3_2_AnnP_0, P_network_3_2_AI_3, P_network_3_2_AI_2, P_network_3_2_AI_1, P_network_3_2_AI_0, P_network_3_2_RI_3, P_network_3_2_RI_2, P_network_3_2_RI_1, P_network_3_2_RI_0, P_network_3_2_AnsP_3, P_network_3_2_AnsP_2, P_network_3_2_AnsP_1, P_network_3_2_AnsP_0, P_network_3_2_AskP_3, P_network_3_2_AskP_2, P_network_3_2_AskP_1, P_network_3_2_AskP_0, P_network_3_1_RP_3, P_network_3_1_RP_2, P_network_3_1_RP_1, P_network_3_1_RP_0, P_network_3_1_AnnP_3, P_network_3_1_AnnP_2, P_network_3_1_AnnP_1, P_network_3_1_AnnP_0, P_network_3_1_AI_3, P_network_3_1_AI_2, P_network_3_1_AI_1, P_network_3_1_AI_0, P_network_3_1_RI_3, P_network_3_1_RI_2, P_network_3_1_RI_1, P_network_3_1_RI_0, P_network_3_1_AnsP_3, P_network_3_1_AnsP_2, P_network_3_1_AnsP_1, P_network_3_1_AnsP_0, P_network_3_1_AskP_3, P_network_3_1_AskP_2, P_network_3_1_AskP_1, P_network_3_1_AskP_0, P_network_3_0_RP_3, P_network_3_0_RP_2, P_network_3_0_RP_1, P_network_3_0_RP_0, P_network_3_0_AnnP_3, P_network_3_0_AnnP_2, P_network_3_0_AnnP_1, P_network_3_0_AnnP_0, P_network_3_0_AI_3, P_network_3_0_AI_2, P_network_3_0_AI_1, P_network_3_0_AI_0, P_network_3_0_RI_3, P_network_3_0_RI_2, P_network_3_0_RI_1, P_network_3_0_RI_0, P_network_3_0_AnsP_3, P_network_3_0_AnsP_2, P_network_3_0_AnsP_1, P_network_3_0_AnsP_0, P_network_3_0_AskP_3, P_network_3_0_AskP_2, P_network_3_0_AskP_1, P_network_3_0_AskP_0, P_network_2_3_RP_3, P_network_2_3_RP_2, P_network_2_3_RP_1, P_network_2_3_RP_0, P_network_2_3_AnnP_3, P_network_2_3_AnnP_2, P_network_2_3_AnnP_1, P_network_2_3_AnnP_0, P_network_2_3_AI_3, P_network_2_3_AI_2, P_network_2_3_AI_1, P_network_2_3_AI_0, P_network_2_3_RI_3, P_network_2_3_RI_2, P_network_2_3_RI_1, P_network_2_3_RI_0, P_network_2_3_AnsP_3, P_network_2_3_AnsP_2, P_network_2_3_AnsP_1, P_network_2_3_AnsP_0, P_network_2_3_AskP_3, P_network_2_3_AskP_2, P_network_2_3_AskP_1, P_network_2_3_AskP_0, P_network_2_2_RP_3, P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_3, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_3, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_3, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_3, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_3, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_3, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_3, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_3, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_3, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_3, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_3, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_3, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_3, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_3, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_3, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_3, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_3, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_3_RP_3, P_network_1_3_RP_2, P_network_1_3_RP_1, P_network_1_3_RP_0, P_network_1_3_AnnP_3, P_network_1_3_AnnP_2, P_network_1_3_AnnP_1, P_network_1_3_AnnP_0, P_network_1_3_AI_3, P_network_1_3_AI_2, P_network_1_3_AI_1, P_network_1_3_AI_0, P_network_1_3_RI_3, P_network_1_3_RI_2, P_network_1_3_RI_1, P_network_1_3_RI_0, P_network_1_3_AnsP_3, P_network_1_3_AnsP_2, P_network_1_3_AnsP_1, P_network_1_3_AnsP_0, P_network_1_3_AskP_3, P_network_1_3_AskP_2, P_network_1_3_AskP_1, P_network_1_3_AskP_0, P_network_1_2_RP_3, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_3, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_3, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_3, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_3, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_3, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_3, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_3, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_3, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_3, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_3, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_3, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_3, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_3, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_3, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_3, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_3, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_3, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_3_RP_3, P_network_0_3_RP_2, P_network_0_3_RP_1, P_network_0_3_RP_0, P_network_0_3_AnnP_3, P_network_0_3_AnnP_2, P_network_0_3_AnnP_1, P_network_0_3_AnnP_0, P_network_0_3_AI_3, P_network_0_3_AI_2, P_network_0_3_AI_1, P_network_0_3_AI_0, P_network_0_3_RI_3, P_network_0_3_RI_2, P_network_0_3_RI_1, P_network_0_3_RI_0, P_network_0_3_AnsP_3, P_network_0_3_AnsP_2, P_network_0_3_AnsP_1, P_network_0_3_AnsP_0, P_network_0_3_AskP_3, P_network_0_3_AskP_2, P_network_0_3_AskP_1, P_network_0_3_AskP_0, P_network_0_2_RP_3, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_3, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_3, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_3, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_3, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_3, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_3, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_3, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_3, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_3, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_3, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_3, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_3, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_3, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_3, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_3, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_3, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_3, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)]]]]
normalized: E [true U [~ [[sum(P_startNeg__broadcasting_3_3, P_startNeg__broadcasting_3_2, P_startNeg__broadcasting_3_1, P_startNeg__broadcasting_2_3, P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_3, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_3, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0) | 3<=sum(P_network_3_3_RP_3, P_network_3_3_RP_2, P_network_3_3_RP_1, P_network_3_3_RP_0, P_network_3_3_AnnP_3, P_network_3_3_AnnP_2, P_network_3_3_AnnP_1, P_network_3_3_AnnP_0, P_network_3_3_AI_3, P_network_3_3_AI_2, P_network_3_3_AI_1, P_network_3_3_AI_0, P_network_3_3_RI_3, P_network_3_3_RI_2, P_network_3_3_RI_1, P_network_3_3_RI_0, P_network_3_3_AnsP_3, P_network_3_3_AnsP_2, P_network_3_3_AnsP_1, P_network_3_3_AnsP_0, P_network_3_3_AskP_3, P_network_3_3_AskP_2, P_network_3_3_AskP_1, P_network_3_3_AskP_0, P_network_3_2_RP_3, P_network_3_2_RP_2, P_network_3_2_RP_1, P_network_3_2_RP_0, P_network_3_2_AnnP_3, P_network_3_2_AnnP_2, P_network_3_2_AnnP_1, P_network_3_2_AnnP_0, P_network_3_2_AI_3, P_network_3_2_AI_2, P_network_3_2_AI_1, P_network_3_2_AI_0, P_network_3_2_RI_3, P_network_3_2_RI_2, P_network_3_2_RI_1, P_network_3_2_RI_0, P_network_3_2_AnsP_3, P_network_3_2_AnsP_2, P_network_3_2_AnsP_1, P_network_3_2_AnsP_0, P_network_3_2_AskP_3, P_network_3_2_AskP_2, P_network_3_2_AskP_1, P_network_3_2_AskP_0, P_network_3_1_RP_3, P_network_3_1_RP_2, P_network_3_1_RP_1, P_network_3_1_RP_0, P_network_3_1_AnnP_3, P_network_3_1_AnnP_2, P_network_3_1_AnnP_1, P_network_3_1_AnnP_0, P_network_3_1_AI_3, P_network_3_1_AI_2, P_network_3_1_AI_1, P_network_3_1_AI_0, P_network_3_1_RI_3, P_network_3_1_RI_2, P_network_3_1_RI_1, P_network_3_1_RI_0, P_network_3_1_AnsP_3, P_network_3_1_AnsP_2, P_network_3_1_AnsP_1, P_network_3_1_AnsP_0, P_network_3_1_AskP_3, P_network_3_1_AskP_2, P_network_3_1_AskP_1, P_network_3_1_AskP_0, P_network_3_0_RP_3, P_network_3_0_RP_2, P_network_3_0_RP_1, P_network_3_0_RP_0, P_network_3_0_AnnP_3, P_network_3_0_AnnP_2, P_network_3_0_AnnP_1, P_network_3_0_AnnP_0, P_network_3_0_AI_3, P_network_3_0_AI_2, P_network_3_0_AI_1, P_network_3_0_AI_0, P_network_3_0_RI_3, P_network_3_0_RI_2, P_network_3_0_RI_1, P_network_3_0_RI_0, P_network_3_0_AnsP_3, P_network_3_0_AnsP_2, P_network_3_0_AnsP_1, P_network_3_0_AnsP_0, P_network_3_0_AskP_3, P_network_3_0_AskP_2, P_network_3_0_AskP_1, P_network_3_0_AskP_0, P_network_2_3_RP_3, P_network_2_3_RP_2, P_network_2_3_RP_1, P_network_2_3_RP_0, P_network_2_3_AnnP_3, P_network_2_3_AnnP_2, P_network_2_3_AnnP_1, P_network_2_3_AnnP_0, P_network_2_3_AI_3, P_network_2_3_AI_2, P_network_2_3_AI_1, P_network_2_3_AI_0, P_network_2_3_RI_3, P_network_2_3_RI_2, P_network_2_3_RI_1, P_network_2_3_RI_0, P_network_2_3_AnsP_3, P_network_2_3_AnsP_2, P_network_2_3_AnsP_1, P_network_2_3_AnsP_0, P_network_2_3_AskP_3, P_network_2_3_AskP_2, P_network_2_3_AskP_1, P_network_2_3_AskP_0, P_network_2_2_RP_3, P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_3, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_3, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_3, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_3, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_3, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_3, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_3, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_3, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_3, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_3, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_3, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_3, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_3, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_3, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_3, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_3, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_3, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_3_RP_3, P_network_1_3_RP_2, P_network_1_3_RP_1, P_network_1_3_RP_0, P_network_1_3_AnnP_3, P_network_1_3_AnnP_2, P_network_1_3_AnnP_1, P_network_1_3_AnnP_0, P_network_1_3_AI_3, P_network_1_3_AI_2, P_network_1_3_AI_1, P_network_1_3_AI_0, P_network_1_3_RI_3, P_network_1_3_RI_2, P_network_1_3_RI_1, P_network_1_3_RI_0, P_network_1_3_AnsP_3, P_network_1_3_AnsP_2, P_network_1_3_AnsP_1, P_network_1_3_AnsP_0, P_network_1_3_AskP_3, P_network_1_3_AskP_2, P_network_1_3_AskP_1, P_network_1_3_AskP_0, P_network_1_2_RP_3, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_3, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_3, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_3, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_3, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_3, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_3, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_3, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_3, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_3, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_3, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_3, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_3, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_3, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_3, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_3, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_3, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_3, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_3_RP_3, P_network_0_3_RP_2, P_network_0_3_RP_1, P_network_0_3_RP_0, P_network_0_3_AnnP_3, P_network_0_3_AnnP_2, P_network_0_3_AnnP_1, P_network_0_3_AnnP_0, P_network_0_3_AI_3, P_network_0_3_AI_2, P_network_0_3_AI_1, P_network_0_3_AI_0, P_network_0_3_RI_3, P_network_0_3_RI_2, P_network_0_3_RI_1, P_network_0_3_RI_0, P_network_0_3_AnsP_3, P_network_0_3_AnsP_2, P_network_0_3_AnsP_1, P_network_0_3_AnsP_0, P_network_0_3_AskP_3, P_network_0_3_AskP_2, P_network_0_3_AskP_1, P_network_0_3_AskP_0, P_network_0_2_RP_3, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_3, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_3, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_3, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_3, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_3, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_3, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_3, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_3, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_3, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_3, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_3, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_3, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_3, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_3, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_3, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_3, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_3, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)]] & ~ [sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]]]
abstracting: (sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 974,325 (5)
abstracting: (3<=sum(P_network_3_3_RP_3, P_network_3_3_RP_2, P_network_3_3_RP_1, P_network_3_3_RP_0, P_network_3_3_AnnP_3, P_network_3_3_AnnP_2, P_network_3_3_AnnP_1, P_network_3_3_AnnP_0, P_network_3_3_AI_3, P_network_3_3_AI_2, P_network_3_3_AI_1, P_network_3_3_AI_0, P_network_3_3_RI_3, P_network_3_3_RI_2, P_network_3_3_RI_1, P_network_3_3_RI_0, P_network_3_3_AnsP_3, P_network_3_3_AnsP_2, P_network_3_3_AnsP_1, P_network_3_3_AnsP_0, P_network_3_3_AskP_3, P_network_3_3_AskP_2, P_network_3_3_AskP_1, P_network_3_3_AskP_0, P_network_3_2_RP_3, P_network_3_2_RP_2, P_network_3_2_RP_1, P_network_3_2_RP_0, P_network_3_2_AnnP_3, P_network_3_2_AnnP_2, P_network_3_2_AnnP_1, P_network_3_2_AnnP_0, P_network_3_2_AI_3, P_network_3_2_AI_2, P_network_3_2_AI_1, P_network_3_2_AI_0, P_network_3_2_RI_3, P_network_3_2_RI_2, P_network_3_2_RI_1, P_network_3_2_RI_0, P_network_3_2_AnsP_3, P_network_3_2_AnsP_2, P_network_3_2_AnsP_1, P_network_3_2_AnsP_0, P_network_3_2_AskP_3, P_network_3_2_AskP_2, P_network_3_2_AskP_1, P_network_3_2_AskP_0, P_network_3_1_RP_3, P_network_3_1_RP_2, P_network_3_1_RP_1, P_network_3_1_RP_0, P_network_3_1_AnnP_3, P_network_3_1_AnnP_2, P_network_3_1_AnnP_1, P_network_3_1_AnnP_0, P_network_3_1_AI_3, P_network_3_1_AI_2, P_network_3_1_AI_1, P_network_3_1_AI_0, P_network_3_1_RI_3, P_network_3_1_RI_2, P_network_3_1_RI_1, P_network_3_1_RI_0, P_network_3_1_AnsP_3, P_network_3_1_AnsP_2, P_network_3_1_AnsP_1, P_network_3_1_AnsP_0, P_network_3_1_AskP_3, P_network_3_1_AskP_2, P_network_3_1_AskP_1, P_network_3_1_AskP_0, P_network_3_0_RP_3, P_network_3_0_RP_2, P_network_3_0_RP_1, P_network_3_0_RP_0, P_network_3_0_AnnP_3, P_network_3_0_AnnP_2, P_network_3_0_AnnP_1, P_network_3_0_AnnP_0, P_network_3_0_AI_3, P_network_3_0_AI_2, P_network_3_0_AI_1, P_network_3_0_AI_0, P_network_3_0_RI_3, P_network_3_0_RI_2, P_network_3_0_RI_1, P_network_3_0_RI_0, P_network_3_0_AnsP_3, P_network_3_0_AnsP_2, P_network_3_0_AnsP_1, P_network_3_0_AnsP_0, P_network_3_0_AskP_3, P_network_3_0_AskP_2, P_network_3_0_AskP_1, P_network_3_0_AskP_0, P_network_2_3_RP_3, P_network_2_3_RP_2, P_network_2_3_RP_1, P_network_2_3_RP_0, P_network_2_3_AnnP_3, P_network_2_3_AnnP_2, P_network_2_3_AnnP_1, P_network_2_3_AnnP_0, P_network_2_3_AI_3, P_network_2_3_AI_2, P_network_2_3_AI_1, P_network_2_3_AI_0, P_network_2_3_RI_3, P_network_2_3_RI_2, P_network_2_3_RI_1, P_network_2_3_RI_0, P_network_2_3_AnsP_3, P_network_2_3_AnsP_2, P_network_2_3_AnsP_1, P_network_2_3_AnsP_0, P_network_2_3_AskP_3, P_network_2_3_AskP_2, P_network_2_3_AskP_1, P_network_2_3_AskP_0, P_network_2_2_RP_3, P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_3, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_3, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_3, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_3, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_3, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_3, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_3, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_3, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_3, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_3, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_3, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_3, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_3, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_3, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_3, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_3, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_3, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_3_RP_3, P_network_1_3_RP_2, P_network_1_3_RP_1, P_network_1_3_RP_0, P_network_1_3_AnnP_3, P_network_1_3_AnnP_2, P_network_1_3_AnnP_1, P_network_1_3_AnnP_0, P_network_1_3_AI_3, P_network_1_3_AI_2, P_network_1_3_AI_1, P_network_1_3_AI_0, P_network_1_3_RI_3, P_network_1_3_RI_2, P_network_1_3_RI_1, P_network_1_3_RI_0, P_network_1_3_AnsP_3, P_network_1_3_AnsP_2, P_network_1_3_AnsP_1, P_network_1_3_AnsP_0, P_network_1_3_AskP_3, P_network_1_3_AskP_2, P_network_1_3_AskP_1, P_network_1_3_AskP_0, P_network_1_2_RP_3, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_3, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_3, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_3, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_3, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_3, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_3, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_3, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_3, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_3, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_3, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_3, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_3, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_3, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_3, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_3, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_3, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_3, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_3_RP_3, P_network_0_3_RP_2, P_network_0_3_RP_1, P_network_0_3_RP_0, P_network_0_3_AnnP_3, P_network_0_3_AnnP_2, P_network_0_3_AnnP_1, P_network_0_3_AnnP_0, P_network_0_3_AI_3, P_network_0_3_AI_2, P_network_0_3_AI_1, P_network_0_3_AI_0, P_network_0_3_RI_3, P_network_0_3_RI_2, P_network_0_3_RI_1, P_network_0_3_RI_0, P_network_0_3_AnsP_3, P_network_0_3_AnsP_2, P_network_0_3_AnsP_1, P_network_0_3_AnsP_0, P_network_0_3_AskP_3, P_network_0_3_AskP_2, P_network_0_3_AskP_1, P_network_0_3_AskP_0, P_network_0_2_RP_3, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_3, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_3, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_3, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_3, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_3, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_3, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_3, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_3, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_3, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_3, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_3, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_3, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_3, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_3, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_3, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_3, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_3, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)) states: 950,692 (5)
abstracting: (sum(P_startNeg__broadcasting_3_3, P_startNeg__broadcasting_3_2, P_startNeg__broadcasting_3_1, P_startNeg__broadcasting_2_3, P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_3, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_3, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_poll__pollEnd_3, P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)) states: 971,028 (5)
-> the formula is FALSE
FORMULA NeoElection-COL-3-ReachabilityCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m17sec
checking: EF [1<=sum(P_crashed_3, P_crashed_2, P_crashed_1, P_crashed_0)]
normalized: E [true U 1<=sum(P_crashed_3, P_crashed_2, P_crashed_1, P_crashed_0)]
abstracting: (1<=sum(P_crashed_3, P_crashed_2, P_crashed_1, P_crashed_0)) states: 0
-> the formula is FALSE
FORMULA NeoElection-COL-3-ReachabilityCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[3<=sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG) | [3<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0) | ~ [1<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)]]]]
normalized: ~ [E [true U ~ [[3<=sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG) | [3<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0) | ~ [1<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)]]]]]]
abstracting: (1<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)) states: 0
abstracting: (3<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)) states: 0
abstracting: (3<=sum(P_stage_3_SEC, P_stage_3_PRIM, P_stage_3_NEG, P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)) states: 974,325 (5)
-> the formula is TRUE
FORMULA NeoElection-COL-3-ReachabilityCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m1sec
checking: EF [~ [[[sum(P_crashed_3, P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0) | 2<=sum(P_polling_3, P_polling_2, P_polling_1, P_polling_0)] | ~ [sum(P_poll__networl_3_3_RP_3, P_poll__networl_3_3_RP_2, P_poll__networl_3_3_RP_1, P_poll__networl_3_3_RP_0, P_poll__networl_3_3_AnnP_3, P_poll__networl_3_3_AnnP_2, P_poll__networl_3_3_AnnP_1, P_poll__networl_3_3_AnnP_0, P_poll__networl_3_3_AI_3, P_poll__networl_3_3_AI_2, P_poll__networl_3_3_AI_1, P_poll__networl_3_3_AI_0, P_poll__networl_3_3_RI_3, P_poll__networl_3_3_RI_2, P_poll__networl_3_3_RI_1, P_poll__networl_3_3_RI_0, P_poll__networl_3_3_AnsP_3, P_poll__networl_3_3_AnsP_2, P_poll__networl_3_3_AnsP_1, P_poll__networl_3_3_AnsP_0, P_poll__networl_3_3_AskP_3, P_poll__networl_3_3_AskP_2, P_poll__networl_3_3_AskP_1, P_poll__networl_3_3_AskP_0, P_poll__networl_3_2_RP_3, P_poll__networl_3_2_RP_2, P_poll__networl_3_2_RP_1, P_poll__networl_3_2_RP_0, P_poll__networl_3_2_AnnP_3, P_poll__networl_3_2_AnnP_2, P_poll__networl_3_2_AnnP_1, P_poll__networl_3_2_AnnP_0, P_poll__networl_3_2_AI_3, P_poll__networl_3_2_AI_2, P_poll__networl_3_2_AI_1, P_poll__networl_3_2_AI_0, P_poll__networl_3_2_RI_3, P_poll__networl_3_2_RI_2, P_poll__networl_3_2_RI_1, P_poll__networl_3_2_RI_0, P_poll__networl_3_2_AnsP_3, P_poll__networl_3_2_AnsP_2, P_poll__networl_3_2_AnsP_1, P_poll__networl_3_2_AnsP_0, P_poll__networl_3_2_AskP_3, P_poll__networl_3_2_AskP_2, P_poll__networl_3_2_AskP_1, P_poll__networl_3_2_AskP_0, P_poll__networl_3_1_RP_3, P_poll__networl_3_1_RP_2, P_poll__networl_3_1_RP_1, P_poll__networl_3_1_RP_0, P_poll__networl_3_1_AnnP_3, P_poll__networl_3_1_AnnP_2, P_poll__networl_3_1_AnnP_1, P_poll__networl_3_1_AnnP_0, P_poll__networl_3_1_AI_3, P_poll__networl_3_1_AI_2, P_poll__networl_3_1_AI_1, P_poll__networl_3_1_AI_0, P_poll__networl_3_1_RI_3, P_poll__networl_3_1_RI_2, P_poll__networl_3_1_RI_1, P_poll__networl_3_1_RI_0, P_poll__networl_3_1_AnsP_3, P_poll__networl_3_1_AnsP_2, P_poll__networl_3_1_AnsP_1, P_poll__networl_3_1_AnsP_0, P_poll__networl_3_1_AskP_3, P_poll__networl_3_1_AskP_2, P_poll__networl_3_1_AskP_1, P_poll__networl_3_1_AskP_0, P_poll__networl_3_0_RP_3, P_poll__networl_3_0_RP_2, P_poll__networl_3_0_RP_1, P_poll__networl_3_0_RP_0, P_poll__networl_3_0_AnnP_3, P_poll__networl_3_0_AnnP_2, P_poll__networl_3_0_AnnP_1, P_poll__networl_3_0_AnnP_0, P_poll__networl_3_0_AI_3, P_poll__networl_3_0_AI_2, P_poll__networl_3_0_AI_1, P_poll__networl_3_0_AI_0, P_poll__networl_3_0_RI_3, P_poll__networl_3_0_RI_2, P_poll__networl_3_0_RI_1, P_poll__networl_3_0_RI_0, P_poll__networl_3_0_AnsP_3, P_poll__networl_3_0_AnsP_2, P_poll__networl_3_0_AnsP_1, P_poll__networl_3_0_AnsP_0, P_poll__networl_3_0_AskP_3, P_poll__networl_3_0_AskP_2, P_poll__networl_3_0_AskP_1, P_poll__networl_3_0_AskP_0, P_poll__networl_2_3_RP_3, P_poll__networl_2_3_RP_2, P_poll__networl_2_3_RP_1, P_poll__networl_2_3_RP_0, P_poll__networl_2_3_AnnP_3, P_poll__networl_2_3_AnnP_2, P_poll__networl_2_3_AnnP_1, P_poll__networl_2_3_AnnP_0, P_poll__networl_2_3_AI_3, P_poll__networl_2_3_AI_2, P_poll__networl_2_3_AI_1, P_poll__networl_2_3_AI_0, P_poll__networl_2_3_RI_3, P_poll__networl_2_3_RI_2, P_poll__networl_2_3_RI_1, P_poll__networl_2_3_RI_0, P_poll__networl_2_3_AnsP_3, P_poll__networl_2_3_AnsP_2, P_poll__networl_2_3_AnsP_1, P_poll__networl_2_3_AnsP_0, P_poll__networl_2_3_AskP_3, P_poll__networl_2_3_AskP_2, P_poll__networl_2_3_AskP_1, P_poll__networl_2_3_AskP_0, P_poll__networl_2_2_RP_3, P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_3, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_3, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_3, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_3, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_3, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_3, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_3, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_3, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_3, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_3, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_3, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_3, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_3, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_3, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_3, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_3, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_3, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_3_RP_3, P_poll__networl_1_3_RP_2, P_poll__networl_1_3_RP_1, P_poll__networl_1_3_RP_0, P_poll__networl_1_3_AnnP_3, P_poll__networl_1_3_AnnP_2, P_poll__networl_1_3_AnnP_1, P_poll__networl_1_3_AnnP_0, P_poll__networl_1_3_AI_3, P_poll__networl_1_3_AI_2, P_poll__networl_1_3_AI_1, P_poll__networl_1_3_AI_0, P_poll__networl_1_3_RI_3, P_poll__networl_1_3_RI_2, P_poll__networl_1_3_RI_1, P_poll__networl_1_3_RI_0, P_poll__networl_1_3_AnsP_3, P_poll__networl_1_3_AnsP_2, P_poll__networl_1_3_AnsP_1, P_poll__networl_1_3_AnsP_0, P_poll__networl_1_3_AskP_3, P_poll__networl_1_3_AskP_2, P_poll__networl_1_3_AskP_1, P_poll__networl_1_3_AskP_0, P_poll__networl_1_2_RP_3, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_3, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_3, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_3, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_3, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_3, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_3, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_3, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_3, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_3, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_3, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_3, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_3, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_3, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_3, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_3, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_3, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_3, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_3_RP_3, P_poll__networl_0_3_RP_2, P_poll__networl_0_3_RP_1, P_poll__networl_0_3_RP_0, P_poll__networl_0_3_AnnP_3, P_poll__networl_0_3_AnnP_2, P_poll__networl_0_3_AnnP_1, P_poll__networl_0_3_AnnP_0, P_poll__networl_0_3_AI_3, P_poll__networl_0_3_AI_2, P_poll__networl_0_3_AI_1, P_poll__networl_0_3_AI_0, P_poll__networl_0_3_RI_3, P_poll__networl_0_3_RI_2, P_poll__networl_0_3_RI_1, P_poll__networl_0_3_RI_0, P_poll__networl_0_3_AnsP_3, P_poll__networl_0_3_AnsP_2, P_poll__networl_0_3_AnsP_1, P_poll__networl_0_3_AnsP_0, P_poll__networl_0_3_AskP_3, P_poll__networl_0_3_AskP_2, P_poll__networl_0_3_AskP_1, P_poll__networl_0_3_AskP_0, P_poll__networl_0_2_RP_3, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_3, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_3, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_3, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_3, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_3, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_3, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_3, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_3, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_3, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_3, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_3, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_3, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_3, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_3, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_3, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_3, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_3, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]]]]
normalized: E [true U ~ [[~ [sum(P_poll__networl_3_3_RP_3, P_poll__networl_3_3_RP_2, P_poll__networl_3_3_RP_1, P_poll__networl_3_3_RP_0, P_poll__networl_3_3_AnnP_3, P_poll__networl_3_3_AnnP_2, P_poll__networl_3_3_AnnP_1, P_poll__networl_3_3_AnnP_0, P_poll__networl_3_3_AI_3, P_poll__networl_3_3_AI_2, P_poll__networl_3_3_AI_1, P_poll__networl_3_3_AI_0, P_poll__networl_3_3_RI_3, P_poll__networl_3_3_RI_2, P_poll__networl_3_3_RI_1, P_poll__networl_3_3_RI_0, P_poll__networl_3_3_AnsP_3, P_poll__networl_3_3_AnsP_2, P_poll__networl_3_3_AnsP_1, P_poll__networl_3_3_AnsP_0, P_poll__networl_3_3_AskP_3, P_poll__networl_3_3_AskP_2, P_poll__networl_3_3_AskP_1, P_poll__networl_3_3_AskP_0, P_poll__networl_3_2_RP_3, P_poll__networl_3_2_RP_2, P_poll__networl_3_2_RP_1, P_poll__networl_3_2_RP_0, P_poll__networl_3_2_AnnP_3, P_poll__networl_3_2_AnnP_2, P_poll__networl_3_2_AnnP_1, P_poll__networl_3_2_AnnP_0, P_poll__networl_3_2_AI_3, P_poll__networl_3_2_AI_2, P_poll__networl_3_2_AI_1, P_poll__networl_3_2_AI_0, P_poll__networl_3_2_RI_3, P_poll__networl_3_2_RI_2, P_poll__networl_3_2_RI_1, P_poll__networl_3_2_RI_0, P_poll__networl_3_2_AnsP_3, P_poll__networl_3_2_AnsP_2, P_poll__networl_3_2_AnsP_1, P_poll__networl_3_2_AnsP_0, P_poll__networl_3_2_AskP_3, P_poll__networl_3_2_AskP_2, P_poll__networl_3_2_AskP_1, P_poll__networl_3_2_AskP_0, P_poll__networl_3_1_RP_3, P_poll__networl_3_1_RP_2, P_poll__networl_3_1_RP_1, P_poll__networl_3_1_RP_0, P_poll__networl_3_1_AnnP_3, P_poll__networl_3_1_AnnP_2, P_poll__networl_3_1_AnnP_1, P_poll__networl_3_1_AnnP_0, P_poll__networl_3_1_AI_3, P_poll__networl_3_1_AI_2, P_poll__networl_3_1_AI_1, P_poll__networl_3_1_AI_0, P_poll__networl_3_1_RI_3, P_poll__networl_3_1_RI_2, P_poll__networl_3_1_RI_1, P_poll__networl_3_1_RI_0, P_poll__networl_3_1_AnsP_3, P_poll__networl_3_1_AnsP_2, P_poll__networl_3_1_AnsP_1, P_poll__networl_3_1_AnsP_0, P_poll__networl_3_1_AskP_3, P_poll__networl_3_1_AskP_2, P_poll__networl_3_1_AskP_1, P_poll__networl_3_1_AskP_0, P_poll__networl_3_0_RP_3, P_poll__networl_3_0_RP_2, P_poll__networl_3_0_RP_1, P_poll__networl_3_0_RP_0, P_poll__networl_3_0_AnnP_3, P_poll__networl_3_0_AnnP_2, P_poll__networl_3_0_AnnP_1, P_poll__networl_3_0_AnnP_0, P_poll__networl_3_0_AI_3, P_poll__networl_3_0_AI_2, P_poll__networl_3_0_AI_1, P_poll__networl_3_0_AI_0, P_poll__networl_3_0_RI_3, P_poll__networl_3_0_RI_2, P_poll__networl_3_0_RI_1, P_poll__networl_3_0_RI_0, P_poll__networl_3_0_AnsP_3, P_poll__networl_3_0_AnsP_2, P_poll__networl_3_0_AnsP_1, P_poll__networl_3_0_AnsP_0, P_poll__networl_3_0_AskP_3, P_poll__networl_3_0_AskP_2, P_poll__networl_3_0_AskP_1, P_poll__networl_3_0_AskP_0, P_poll__networl_2_3_RP_3, P_poll__networl_2_3_RP_2, P_poll__networl_2_3_RP_1, P_poll__networl_2_3_RP_0, P_poll__networl_2_3_AnnP_3, P_poll__networl_2_3_AnnP_2, P_poll__networl_2_3_AnnP_1, P_poll__networl_2_3_AnnP_0, P_poll__networl_2_3_AI_3, P_poll__networl_2_3_AI_2, P_poll__networl_2_3_AI_1, P_poll__networl_2_3_AI_0, P_poll__networl_2_3_RI_3, P_poll__networl_2_3_RI_2, P_poll__networl_2_3_RI_1, P_poll__networl_2_3_RI_0, P_poll__networl_2_3_AnsP_3, P_poll__networl_2_3_AnsP_2, P_poll__networl_2_3_AnsP_1, P_poll__networl_2_3_AnsP_0, P_poll__networl_2_3_AskP_3, P_poll__networl_2_3_AskP_2, P_poll__networl_2_3_AskP_1, P_poll__networl_2_3_AskP_0, P_poll__networl_2_2_RP_3, P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_3, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_3, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_3, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_3, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_3, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_3, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_3, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_3, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_3, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_3, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_3, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_3, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_3, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_3, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_3, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_3, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_3, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_3_RP_3, P_poll__networl_1_3_RP_2, P_poll__networl_1_3_RP_1, P_poll__networl_1_3_RP_0, P_poll__networl_1_3_AnnP_3, P_poll__networl_1_3_AnnP_2, P_poll__networl_1_3_AnnP_1, P_poll__networl_1_3_AnnP_0, P_poll__networl_1_3_AI_3, P_poll__networl_1_3_AI_2, P_poll__networl_1_3_AI_1, P_poll__networl_1_3_AI_0, P_poll__networl_1_3_RI_3, P_poll__networl_1_3_RI_2, P_poll__networl_1_3_RI_1, P_poll__networl_1_3_RI_0, P_poll__networl_1_3_AnsP_3, P_poll__networl_1_3_AnsP_2, P_poll__networl_1_3_AnsP_1, P_poll__networl_1_3_AnsP_0, P_poll__networl_1_3_AskP_3, P_poll__networl_1_3_AskP_2, P_poll__networl_1_3_AskP_1, P_poll__networl_1_3_AskP_0, P_poll__networl_1_2_RP_3, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_3, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_3, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_3, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_3, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_3, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_3, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_3, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_3, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_3, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_3, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_3, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_3, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_3, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_3, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_3, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_3, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_3, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_3_RP_3, P_poll__networl_0_3_RP_2, P_poll__networl_0_3_RP_1, P_poll__networl_0_3_RP_0, P_poll__networl_0_3_AnnP_3, P_poll__networl_0_3_AnnP_2, P_poll__networl_0_3_AnnP_1, P_poll__networl_0_3_AnnP_0, P_poll__networl_0_3_AI_3, P_poll__networl_0_3_AI_2, P_poll__networl_0_3_AI_1, P_poll__networl_0_3_AI_0, P_poll__networl_0_3_RI_3, P_poll__networl_0_3_RI_2, P_poll__networl_0_3_RI_1, P_poll__networl_0_3_RI_0, P_poll__networl_0_3_AnsP_3, P_poll__networl_0_3_AnsP_2, P_poll__networl_0_3_AnsP_1, P_poll__networl_0_3_AnsP_0, P_poll__networl_0_3_AskP_3, P_poll__networl_0_3_AskP_2, P_poll__networl_0_3_AskP_1, P_poll__networl_0_3_AskP_0, P_poll__networl_0_2_RP_3, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_3, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_3, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_3, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_3, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_3, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_3, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_3, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_3, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_3, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_3, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_3, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_3, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_3, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_3, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_3, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_3, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_3, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)] | [sum(P_crashed_3, P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0) | 2<=sum(P_polling_3, P_polling_2, P_polling_1, P_polling_0)]]]]
abstracting: (2<=sum(P_polling_3, P_polling_2, P_polling_1, P_polling_0)) states: 251,991 (5)
abstracting: (sum(P_crashed_3, P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)) states: 974,325 (5)
abstracting: (sum(P_poll__networl_3_3_RP_3, P_poll__networl_3_3_RP_2, P_poll__networl_3_3_RP_1, P_poll__networl_3_3_RP_0, P_poll__networl_3_3_AnnP_3, P_poll__networl_3_3_AnnP_2, P_poll__networl_3_3_AnnP_1, P_poll__networl_3_3_AnnP_0, P_poll__networl_3_3_AI_3, P_poll__networl_3_3_AI_2, P_poll__networl_3_3_AI_1, P_poll__networl_3_3_AI_0, P_poll__networl_3_3_RI_3, P_poll__networl_3_3_RI_2, P_poll__networl_3_3_RI_1, P_poll__networl_3_3_RI_0, P_poll__networl_3_3_AnsP_3, P_poll__networl_3_3_AnsP_2, P_poll__networl_3_3_AnsP_1, P_poll__networl_3_3_AnsP_0, P_poll__networl_3_3_AskP_3, P_poll__networl_3_3_AskP_2, P_poll__networl_3_3_AskP_1, P_poll__networl_3_3_AskP_0, P_poll__networl_3_2_RP_3, P_poll__networl_3_2_RP_2, P_poll__networl_3_2_RP_1, P_poll__networl_3_2_RP_0, P_poll__networl_3_2_AnnP_3, P_poll__networl_3_2_AnnP_2, P_poll__networl_3_2_AnnP_1, P_poll__networl_3_2_AnnP_0, P_poll__networl_3_2_AI_3, P_poll__networl_3_2_AI_2, P_poll__networl_3_2_AI_1, P_poll__networl_3_2_AI_0, P_poll__networl_3_2_RI_3, P_poll__networl_3_2_RI_2, P_poll__networl_3_2_RI_1, P_poll__networl_3_2_RI_0, P_poll__networl_3_2_AnsP_3, P_poll__networl_3_2_AnsP_2, P_poll__networl_3_2_AnsP_1, P_poll__networl_3_2_AnsP_0, P_poll__networl_3_2_AskP_3, P_poll__networl_3_2_AskP_2, P_poll__networl_3_2_AskP_1, P_poll__networl_3_2_AskP_0, P_poll__networl_3_1_RP_3, P_poll__networl_3_1_RP_2, P_poll__networl_3_1_RP_1, P_poll__networl_3_1_RP_0, P_poll__networl_3_1_AnnP_3, P_poll__networl_3_1_AnnP_2, P_poll__networl_3_1_AnnP_1, P_poll__networl_3_1_AnnP_0, P_poll__networl_3_1_AI_3, P_poll__networl_3_1_AI_2, P_poll__networl_3_1_AI_1, P_poll__networl_3_1_AI_0, P_poll__networl_3_1_RI_3, P_poll__networl_3_1_RI_2, P_poll__networl_3_1_RI_1, P_poll__networl_3_1_RI_0, P_poll__networl_3_1_AnsP_3, P_poll__networl_3_1_AnsP_2, P_poll__networl_3_1_AnsP_1, P_poll__networl_3_1_AnsP_0, P_poll__networl_3_1_AskP_3, P_poll__networl_3_1_AskP_2, P_poll__networl_3_1_AskP_1, P_poll__networl_3_1_AskP_0, P_poll__networl_3_0_RP_3, P_poll__networl_3_0_RP_2, P_poll__networl_3_0_RP_1, P_poll__networl_3_0_RP_0, P_poll__networl_3_0_AnnP_3, P_poll__networl_3_0_AnnP_2, P_poll__networl_3_0_AnnP_1, P_poll__networl_3_0_AnnP_0, P_poll__networl_3_0_AI_3, P_poll__networl_3_0_AI_2, P_poll__networl_3_0_AI_1, P_poll__networl_3_0_AI_0, P_poll__networl_3_0_RI_3, P_poll__networl_3_0_RI_2, P_poll__networl_3_0_RI_1, P_poll__networl_3_0_RI_0, P_poll__networl_3_0_AnsP_3, P_poll__networl_3_0_AnsP_2, P_poll__networl_3_0_AnsP_1, P_poll__networl_3_0_AnsP_0, P_poll__networl_3_0_AskP_3, P_poll__networl_3_0_AskP_2, P_poll__networl_3_0_AskP_1, P_poll__networl_3_0_AskP_0, P_poll__networl_2_3_RP_3, P_poll__networl_2_3_RP_2, P_poll__networl_2_3_RP_1, P_poll__networl_2_3_RP_0, P_poll__networl_2_3_AnnP_3, P_poll__networl_2_3_AnnP_2, P_poll__networl_2_3_AnnP_1, P_poll__networl_2_3_AnnP_0, P_poll__networl_2_3_AI_3, P_poll__networl_2_3_AI_2, P_poll__networl_2_3_AI_1, P_poll__networl_2_3_AI_0, P_poll__networl_2_3_RI_3, P_poll__networl_2_3_RI_2, P_poll__networl_2_3_RI_1, P_poll__networl_2_3_RI_0, P_poll__networl_2_3_AnsP_3, P_poll__networl_2_3_AnsP_2, P_poll__networl_2_3_AnsP_1, P_poll__networl_2_3_AnsP_0, P_poll__networl_2_3_AskP_3, P_poll__networl_2_3_AskP_2, P_poll__networl_2_3_AskP_1, P_poll__networl_2_3_AskP_0, P_poll__networl_2_2_RP_3, P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_3, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_3, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_3, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_3, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_3, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_3, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_3, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_3, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_3, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_3, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_3, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_3, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_3, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_3, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_3, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_3, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_3, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_3_RP_3, P_poll__networl_1_3_RP_2, P_poll__networl_1_3_RP_1, P_poll__networl_1_3_RP_0, P_poll__networl_1_3_AnnP_3, P_poll__networl_1_3_AnnP_2, P_poll__networl_1_3_AnnP_1, P_poll__networl_1_3_AnnP_0, P_poll__networl_1_3_AI_3, P_poll__networl_1_3_AI_2, P_poll__networl_1_3_AI_1, P_poll__networl_1_3_AI_0, P_poll__networl_1_3_RI_3, P_poll__networl_1_3_RI_2, P_poll__networl_1_3_RI_1, P_poll__networl_1_3_RI_0, P_poll__networl_1_3_AnsP_3, P_poll__networl_1_3_AnsP_2, P_poll__networl_1_3_AnsP_1, P_poll__networl_1_3_AnsP_0, P_poll__networl_1_3_AskP_3, P_poll__networl_1_3_AskP_2, P_poll__networl_1_3_AskP_1, P_poll__networl_1_3_AskP_0, P_poll__networl_1_2_RP_3, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_3, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_3, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_3, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_3, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_3, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_3, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_3, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_3, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_3, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_3, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_3, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_3, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_3, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_3, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_3, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_3, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_3, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_3_RP_3, P_poll__networl_0_3_RP_2, P_poll__networl_0_3_RP_1, P_poll__networl_0_3_RP_0, P_poll__networl_0_3_AnnP_3, P_poll__networl_0_3_AnnP_2, P_poll__networl_0_3_AnnP_1, P_poll__networl_0_3_AnnP_0, P_poll__networl_0_3_AI_3, P_poll__networl_0_3_AI_2, P_poll__networl_0_3_AI_1, P_poll__networl_0_3_AI_0, P_poll__networl_0_3_RI_3, P_poll__networl_0_3_RI_2, P_poll__networl_0_3_RI_1, P_poll__networl_0_3_RI_0, P_poll__networl_0_3_AnsP_3, P_poll__networl_0_3_AnsP_2, P_poll__networl_0_3_AnsP_1, P_poll__networl_0_3_AnsP_0, P_poll__networl_0_3_AskP_3, P_poll__networl_0_3_AskP_2, P_poll__networl_0_3_AskP_1, P_poll__networl_0_3_AskP_0, P_poll__networl_0_2_RP_3, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_3, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_3, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_3, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_3, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_3, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_3, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_3, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_3, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_3, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_3, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_3, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_3, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_3, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_3, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_3, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_3, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_3, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 974,325 (5)
-> the formula is FALSE
FORMULA NeoElection-COL-3-ReachabilityCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m23sec
checking: EF [1<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)]
normalized: E [true U 1<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)]
abstracting: (1<=sum(P_dead_3, P_dead_2, P_dead_1, P_dead_0)) states: 0
-> the formula is FALSE
FORMULA NeoElection-COL-3-ReachabilityCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [2<=sum(P_masterState_3_T_3, P_masterState_3_T_2, P_masterState_3_T_1, P_masterState_3_T_0, P_masterState_3_F_3, P_masterState_3_F_2, P_masterState_3_F_1, P_masterState_3_F_0, P_masterState_2_T_3, P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_3, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_3, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_3, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_3, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_3, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)]
normalized: ~ [E [true U ~ [2<=sum(P_masterState_3_T_3, P_masterState_3_T_2, P_masterState_3_T_1, P_masterState_3_T_0, P_masterState_3_F_3, P_masterState_3_F_2, P_masterState_3_F_1, P_masterState_3_F_0, P_masterState_2_T_3, P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_3, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_3, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_3, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_3, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_3, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)]]]
abstracting: (2<=sum(P_masterState_3_T_3, P_masterState_3_T_2, P_masterState_3_T_1, P_masterState_3_T_0, P_masterState_3_F_3, P_masterState_3_F_2, P_masterState_3_F_1, P_masterState_3_F_0, P_masterState_2_T_3, P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_3, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_3, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_3, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_3, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_3, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)) states: 974,325 (5)
-> the formula is TRUE
FORMULA NeoElection-COL-3-ReachabilityCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m2sec
checking: AG [sum(P_startNeg__broadcasting_3_3, P_startNeg__broadcasting_3_2, P_startNeg__broadcasting_3_1, P_startNeg__broadcasting_2_3, P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_3, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_3, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_masterState_3_T_3, P_masterState_3_T_2, P_masterState_3_T_1, P_masterState_3_T_0, P_masterState_3_F_3, P_masterState_3_F_2, P_masterState_3_F_1, P_masterState_3_F_0, P_masterState_2_T_3, P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_3, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_3, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_3, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_3, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_3, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)]
normalized: ~ [E [true U ~ [sum(P_startNeg__broadcasting_3_3, P_startNeg__broadcasting_3_2, P_startNeg__broadcasting_3_1, P_startNeg__broadcasting_2_3, P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_3, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_3, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_masterState_3_T_3, P_masterState_3_T_2, P_masterState_3_T_1, P_masterState_3_T_0, P_masterState_3_F_3, P_masterState_3_F_2, P_masterState_3_F_1, P_masterState_3_F_0, P_masterState_2_T_3, P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_3, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_3, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_3, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_3, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_3, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)]]]
abstracting: (sum(P_startNeg__broadcasting_3_3, P_startNeg__broadcasting_3_2, P_startNeg__broadcasting_3_1, P_startNeg__broadcasting_2_3, P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_3, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_3, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_masterState_3_T_3, P_masterState_3_T_2, P_masterState_3_T_1, P_masterState_3_T_0, P_masterState_3_F_3, P_masterState_3_F_2, P_masterState_3_F_1, P_masterState_3_F_0, P_masterState_2_T_3, P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_3, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_3, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_3, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_3, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_3, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)) states: 974,325 (5)
-> the formula is TRUE
FORMULA NeoElection-COL-3-ReachabilityCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m36sec
checking: AG [[[[3<=sum(P_masterState_3_T_3, P_masterState_3_T_2, P_masterState_3_T_1, P_masterState_3_T_0, P_masterState_3_F_3, P_masterState_3_F_2, P_masterState_3_F_1, P_masterState_3_F_0, P_masterState_2_T_3, P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_3, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_3, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_3, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_3, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_3, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0) & 3<=sum(P_sendAnnPs__broadcasting_3_3, P_sendAnnPs__broadcasting_3_2, P_sendAnnPs__broadcasting_3_1, P_sendAnnPs__broadcasting_2_3, P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_3, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_3, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)] | sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)] | ~ [~ [1<=sum(P_electedSecondary_3, P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)]]]]
normalized: ~ [E [true U ~ [[1<=sum(P_electedSecondary_3, P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) | [sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0) | [3<=sum(P_masterState_3_T_3, P_masterState_3_T_2, P_masterState_3_T_1, P_masterState_3_T_0, P_masterState_3_F_3, P_masterState_3_F_2, P_masterState_3_F_1, P_masterState_3_F_0, P_masterState_2_T_3, P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_3, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_3, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_3, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_3, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_3, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0) & 3<=sum(P_sendAnnPs__broadcasting_3_3, P_sendAnnPs__broadcasting_3_2, P_sendAnnPs__broadcasting_3_1, P_sendAnnPs__broadcasting_2_3, P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_3, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_3, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)]]]]]]
abstracting: (3<=sum(P_sendAnnPs__broadcasting_3_3, P_sendAnnPs__broadcasting_3_2, P_sendAnnPs__broadcasting_3_1, P_sendAnnPs__broadcasting_2_3, P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_3, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_3, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)) states: 0
abstracting: (3<=sum(P_masterState_3_T_3, P_masterState_3_T_2, P_masterState_3_T_1, P_masterState_3_T_0, P_masterState_3_F_3, P_masterState_3_F_2, P_masterState_3_F_1, P_masterState_3_F_0, P_masterState_2_T_3, P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_3, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_3, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_3, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_3, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_3, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)) states: 974,325 (5)
abstracting: (sum(P_electionFailed_3, P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__waitingMessage_3, P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 974,325 (5)
abstracting: (1<=sum(P_electedSecondary_3, P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)) states: 0
-> the formula is TRUE
FORMULA NeoElection-COL-3-ReachabilityCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m47sec
Total processing time: 9m36sec
BK_STOP 1432553562395
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
2413 2983 4406 5170 8021 8230 9312 9485 12146 12633 13261 15169 17360 19352
iterations count:14859 (14), effective:108 (0)
initing FirstDep: 0m0sec
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-3"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/users/gast00/fkordon/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-3.tgz
mv NeoElection-PT-3 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is NeoElection-PT-3, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r050kn-ebro-143236504200919"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;