About the Execution of Marcie for NeoElection-PT-2
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3998.150 | 11624.00 | 11020.00 | 10.10 | FFFTFTFTFTTFTFFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
..................................
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is NeoElection-PT-2, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r050kn-ebro-143236504200906
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-0
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-1
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-10
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-11
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-12
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-13
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-14
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-15
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-2
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-3
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-4
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-5
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-6
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-7
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-8
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1432552860711
Model: NeoElection-PT-2
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 438 NrTr: 357 NrArc: 1998)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m5sec
RS generation: 0m0sec
-> reachability set: #nodes 1806 (1.8e+03) #states 241
starting MCC model checker
--------------------------
checking: AG [[[[2<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0) & sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)] | 1<=sum(P_polling_2, P_polling_1, P_polling_0)] & [~ [sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_crashed_2, P_crashed_1, P_crashed_0)] & ~ [sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]]]]
normalized: ~ [E [true U ~ [[[~ [sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)] & ~ [sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_crashed_2, P_crashed_1, P_crashed_0)]] & [1<=sum(P_polling_2, P_polling_1, P_polling_0) | [2<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0) & sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)]]]]]]
abstracting: (sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)) states: 125
abstracting: (2<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)) states: 0
abstracting: (1<=sum(P_polling_2, P_polling_1, P_polling_0)) states: 129
abstracting: (sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_crashed_2, P_crashed_1, P_crashed_0)) states: 219
abstracting: (sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)) states: 0
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[[~ [sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)] | 2<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)] & ~ [sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)]]]
normalized: ~ [E [true U ~ [[[2<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) | ~ [sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)]] & ~ [sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)]]]]]
abstracting: (sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)) states: 241
abstracting: (sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)) states: 241
abstracting: (2<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)) states: 25
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[2<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0) & 1<=sum(P_dead_2, P_dead_1, P_dead_0)]]
normalized: ~ [E [true U ~ [[2<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0) & 1<=sum(P_dead_2, P_dead_1, P_dead_0)]]]]
abstracting: (1<=sum(P_dead_2, P_dead_1, P_dead_0)) states: 0
abstracting: (2<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)) states: 241
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[[[sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1) & sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)] | [sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0) & 1<=sum(P_dead_2, P_dead_1, P_dead_0)]] | sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)]]
normalized: E [true U [sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0) | [[sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1) & sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)] | [sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0) & 1<=sum(P_dead_2, P_dead_1, P_dead_0)]]]]
abstracting: (1<=sum(P_dead_2, P_dead_1, P_dead_0)) states: 0
abstracting: (sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)) states: 241
abstracting: (sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)) states: 241
abstracting: (sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)) states: 241
abstracting: (sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)) states: 241
-> the formula is TRUE
FORMULA NeoElection-COL-2-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[[3<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) | [2<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0) | sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]] & [[3<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1) | sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)] | 3<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)]]]
normalized: E [true U [[3<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG) | [3<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1) | sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)]] & [3<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) | [2<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0) | sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]]]]
abstracting: (sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)) states: 112
abstracting: (2<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)) states: 241
abstracting: (3<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)) states: 0
abstracting: (sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)) states: 241
abstracting: (3<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)) states: 0
abstracting: (3<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)) states: 0
-> the formula is TRUE
FORMULA NeoElection-COL-2-ReachabilityCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[[[sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0) & sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)] | sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)] | [~ [3<=sum(P_dead_2, P_dead_1, P_dead_0)] & ~ [sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)]]]]
normalized: ~ [E [true U ~ [[[~ [3<=sum(P_dead_2, P_dead_1, P_dead_0)] & ~ [sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)]] | [sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1) | [sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0) & sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)]]]]]]
abstracting: (sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)) states: 25
abstracting: (sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)) states: 241
abstracting: (sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)) states: 118
abstracting: (sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)) states: 241
abstracting: (3<=sum(P_dead_2, P_dead_1, P_dead_0)) states: 0
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [1<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)]
normalized: E [true U 1<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)]
abstracting: (1<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)) states: 116
-> the formula is TRUE
FORMULA NeoElection-COL-2-ReachabilityCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [~ [[sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0) & 2<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)]]]
normalized: E [true U ~ [[sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0) & 2<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)]]]
abstracting: (2<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)) states: 241
abstracting: (sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)) states: 241
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[~ [sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)] & [sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_dead_2, P_dead_1, P_dead_0) | [sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1) | sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]]
normalized: ~ [E [true U ~ [[[sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_dead_2, P_dead_1, P_dead_0) | [sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1) | sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]] & ~ [sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)]]]]]
abstracting: (sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)) states: 0
abstracting: (sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)) states: 13
abstracting: (sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)) states: 13
abstracting: (sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_dead_2, P_dead_1, P_dead_0)) states: 0
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[[sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG) & ~ [sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_polling_2, P_polling_1, P_polling_0)]] & [~ [3<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)] | [2<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0) | sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)]]]]
normalized: E [true U [[[2<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0) | sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)] | ~ [3<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)]] & [sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG) & ~ [sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_polling_2, P_polling_1, P_polling_0)]]]]
abstracting: (sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_polling_2, P_polling_1, P_polling_0)) states: 25
abstracting: (sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)) states: 241
abstracting: (3<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)) states: 0
abstracting: (sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)) states: 241
abstracting: (2<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)) states: 241
-> the formula is TRUE
FORMULA NeoElection-COL-2-ReachabilityCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [~ [sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)]]
normalized: ~ [E [true U sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)]]
abstracting: (sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)) states: 241
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)]
normalized: E [true U sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)]
abstracting: (sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)) states: 112
-> the formula is TRUE
FORMULA NeoElection-COL-2-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [~ [[sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG) | 3<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)]]]
normalized: E [true U ~ [[sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG) | 3<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)]]]
abstracting: (3<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)) states: 0
abstracting: (sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)) states: 241
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [~ [2<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)]]
normalized: E [true U ~ [2<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)]]
abstracting: (2<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)) states: 0
-> the formula is TRUE
FORMULA NeoElection-COL-2-ReachabilityCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [1<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)]
normalized: E [true U 1<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)]
abstracting: (1<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)) states: 0
-> the formula is FALSE
FORMULA NeoElection-COL-2-ReachabilityCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)]
normalized: ~ [E [true U ~ [sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)]]]
abstracting: (sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)) states: 241
-> the formula is TRUE
FORMULA NeoElection-COL-2-ReachabilityCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 0m11sec
BK_STOP 1432552872335
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
1493 1806
iterations count:2313 (6), effective:32 (0)
initing FirstDep: 0m0sec
iterations count:381 (1), effective:4 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
1922
iterations count:1447 (4), effective:17 (0)
2003
iterations count:1932 (5), effective:24 (0)
iterations count:367 (1), effective:2 (0)
iterations count:370 (1), effective:1 (0)
iterations count:357 (1), effective:0 (0)
iterations count:483 (1), effective:2 (0)
iterations count:357 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-2"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/users/gast00/fkordon/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-2.tgz
mv NeoElection-PT-2 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is NeoElection-PT-2, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r050kn-ebro-143236504200906"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;