fond
Model Checking Contest @ Petri Nets 2015
Bruxelles, Belgium, June 23, 2015
Execution of r050kn-ebro-143236503900646
Last Updated
August 19, 2015

About the Execution of Marcie for LamportFastMutEx-PT-3

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
4283.380 46370.00 46070.00 10.00 TTFFFTTFTTTFTTFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
................................................................
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is LamportFastMutEx-PT-3, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r050kn-ebro-143236503900646
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-0
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-1
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-10
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-11
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-12
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-13
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-14
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-15
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-2
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-3
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-4
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-5
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-6
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-7
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-8
FORMULA_NAME LamportFastMutEx-COL-3-ReachabilityCardinality-9

=== Now, execution of the tool begins

BK_START 1432545395006

Model: LamportFastMutEx-PT-3
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5

Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5

parse successfull
net created successfully

(NrP: 100 NrTr: 156 NrArc: 664)

net check time: 0m0sec

parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec

init dd package: 0m6sec


RS generation: 0m2sec


-> reachability set: #nodes 5902 (5.9e+03) #states 19,742 (4)



starting MCC model checker
--------------------------

checking: AG [[[[1<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)] & sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(y_3, y_2, y_1, y_0)] | [~ [sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)] | [sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0) | sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)]]]]
normalized: ~ [E [true U ~ [[[sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(y_3, y_2, y_1, y_0) & [1<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]] | [[sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0) | sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] | ~ [sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)]]]]]]

abstracting: (sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)) states: 18,173 (4)
abstracting: (sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)) states: 17,171 (4)
abstracting: (sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)) states: 19,742 (4)
abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)) states: 19,742 (4)
abstracting: (1<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)) states: 3,954 (3)
abstracting: (sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(y_3, y_2, y_1, y_0)) states: 19,519 (4)
-> the formula is TRUE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m1sec

checking: EF [~ [~ [2<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)]]]
normalized: E [true U 2<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)]

abstracting: (2<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)) states: 7,869 (3)
-> the formula is TRUE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m3sec

checking: EF [[[[1<=sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0) & 1<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)] | [3<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0) | sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]] & 1<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]
normalized: E [true U [1<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & [[3<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0) | sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] | [1<=sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0) & 1<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)]]]]

abstracting: (1<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)) states: 3,985 (3)
abstracting: (1<=sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)) states: 2,487 (3)
abstracting: (sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 8,627 (3)
abstracting: (3<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)) states: 4
abstracting: (1<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)) states: 1,869 (3)
-> the formula is TRUE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m5sec

checking: EF [[[2<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0) & sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)] & [[3<=sum(x_3, x_2, x_1, x_0) & sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)] | ~ [2<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]]
normalized: E [true U [[~ [2<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] | [3<=sum(x_3, x_2, x_1, x_0) & sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)]] & [2<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0) & sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)]]]

abstracting: (sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 16,787 (4)
abstracting: (2<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)) states: 7,869 (3)
abstracting: (sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)) states: 16,283 (4)
abstracting: (3<=sum(x_3, x_2, x_1, x_0)) states: 0
abstracting: (2<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 396
-> the formula is TRUE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m2sec

checking: EF [~ [[[3<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0) & sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)] | ~ [3<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]]
normalized: E [true U ~ [[[3<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0) & sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)] | ~ [3<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]]

abstracting: (3<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 12
abstracting: (sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)) states: 16,871 (4)
abstracting: (3<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 0
-> the formula is TRUE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m2sec

checking: EF [~ [[[2<=sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0) | 2<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)] | [2<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]]
normalized: E [true U ~ [[[2<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)] | [2<=sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0) | 2<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]]]

abstracting: (2<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)) states: 19,742 (4)
abstracting: (2<=sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)) states: 8,889 (3)
abstracting: (sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)) states: 8,315 (3)
abstracting: (2<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)) states: 219
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m1sec

checking: EF [[2<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & ~ [sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)]]]
normalized: E [true U [2<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & ~ [sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)]]]

abstracting: (sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)) states: 7,973 (3)
abstracting: (2<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)) states: 327
-> the formula is TRUE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m3sec

checking: AG [1<=sum(y_3, y_2, y_1, y_0)]
normalized: ~ [E [true U ~ [1<=sum(y_3, y_2, y_1, y_0)]]]

abstracting: (1<=sum(y_3, y_2, y_1, y_0)) states: 19,742 (4)
-> the formula is TRUE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: EF [[[[3<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0) & sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)] & ~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)]] & ~ [[3<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) | 2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)]]]]
normalized: E [true U [~ [[3<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) | 2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)]] & [~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)] & [3<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0) & sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]]

abstracting: (sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)) states: 16,781 (4)
abstracting: (3<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)) states: 0
abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)) states: 17,855 (4)
abstracting: (2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 129
abstracting: (3<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)) states: 9
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: AG [[[~ [2<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] | [2<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) & sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]] | sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]
normalized: ~ [E [true U ~ [[sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) | [[2<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) & sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)] | ~ [2<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]]]]

abstracting: (2<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 396
abstracting: (sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)) states: 16,721 (4)
abstracting: (2<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)) states: 75
abstracting: (sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)) states: 0
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m4sec

checking: AG [~ [2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)]]
normalized: ~ [E [true U 2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)]]

abstracting: (2<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)) states: 129
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m3sec

checking: EF [~ [[[sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0) | 2<=sum(y_3, y_2, y_1, y_0)] | [sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(y_3, y_2, y_1, y_0)]]]]
normalized: E [true U ~ [[[sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0) | 2<=sum(y_3, y_2, y_1, y_0)] | [sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(y_3, y_2, y_1, y_0)]]]]

abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(y_3, y_2, y_1, y_0)) states: 19,667 (4)
abstracting: (sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)) states: 17,039 (4)
abstracting: (2<=sum(y_3, y_2, y_1, y_0)) states: 0
abstracting: (sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)) states: 18,173 (4)
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: AG [sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)]
normalized: ~ [E [true U ~ [sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]

abstracting: (sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)) states: 18,065 (4)
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m1sec

checking: EF [2<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]
normalized: E [true U 2<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]

abstracting: (2<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)) states: 51
-> the formula is TRUE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m2sec

checking: AG [[sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0) | ~ [[sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & 3<=sum(x_3, x_2, x_1, x_0)]]]]
normalized: ~ [E [true U ~ [[sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0) | ~ [[sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & 3<=sum(x_3, x_2, x_1, x_0)]]]]]]

abstracting: (3<=sum(x_3, x_2, x_1, x_0)) states: 0
abstracting: (sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)) states: 18,113 (4)
abstracting: (sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)) states: 17,261 (4)
-> the formula is TRUE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: EF [3<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)]
normalized: E [true U 3<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)]

abstracting: (3<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)) states: 0
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-3-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec


Total processing time: 0m46sec


BK_STOP 1432545441376

--------------------
content from stderr:

check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m0sec

337 573 876 1319 1397 1503 1904 2076 2364 2554 2872 3854 4043 4175 4424 4697 4821 4835 5296 5357 5557 5783 5870 6008
iterations count:24744 (158), effective:633 (4)

initing FirstDep: 0m0sec

4298 4538 4730 5350 6041 6425 6292 6633 6851 6890 6947 6330
iterations count:12856 (82), effective:306 (1)
3027 4362 5421 5609 6043 6295 6609 7135 7474 7606 7217 7258 7024 6967 6361 6331 6938 7255
iterations count:18665 (119), effective:448 (2)
4015 4341 4499 4802 5324 6041 6337 6565 6656 6964 6834 6847 7089 6569 6395
iterations count:15352 (98), effective:360 (2)
665 988 1506 2029 2256 2294 2761 3214 3483 3569 4110 4268 4753 4553 5430 5828 5893
iterations count:17289 (110), effective:426 (2)
881 1328 1504 2431 2984 3043 3367 4642 4991 5972 5903 6473
iterations count:12850 (82), effective:302 (1)
2395 3125 3786 4302 4960 5090 5238 6149 6121 6028 6126 5661 6478
iterations count:13912 (89), effective:342 (2)
1395 3052 3769 4511 5139 5486 5782 5528 5833 5524 6292 6591 6600
iterations count:13416 (86), effective:329 (2)
3999 4823 4968 5443 5813 5790 6646 6800 6289 6283 5996 6214
iterations count:12765 (81), effective:297 (1)
1130 1576 1747 2123 2279 2679 3198 3610 3784 4842 5311 5392 5710 5368 5450 4887 5441 5778 5800
iterations count:19515 (125), effective:441 (2)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="LamportFastMutEx-PT-3"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/users/gast00/fkordon/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/LamportFastMutEx-PT-3.tgz
mv LamportFastMutEx-PT-3 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is LamportFastMutEx-PT-3, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r050kn-ebro-143236503900646"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;