About the Execution of Marcie for LamportFastMutEx-PT-2
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3967.130 | 10835.00 | 10020.00 | 19.60 | FTFFTTFTTFTTFFTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.........................................................
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is LamportFastMutEx-PT-2, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r050kn-ebro-143236503900633
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-0
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-1
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-10
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-11
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-12
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-13
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-14
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-15
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-2
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-3
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-4
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-5
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-6
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-7
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-8
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1432545326966
Model: LamportFastMutEx-PT-2
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 69 NrTr: 96 NrArc: 402)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m6sec
RS generation: 0m0sec
-> reachability set: #nodes 621 (6.2e+02) #states 380
starting MCC model checker
--------------------------
checking: AG [2<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]
normalized: ~ [E [true U ~ [2<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]
abstracting: (2<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)) states: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[~ [[sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & 1<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)]] & [[1<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) & sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)] | 2<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]
normalized: E [true U [[2<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0) | [1<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) & sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]] & ~ [[sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & 1<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)]]]]
abstracting: (1<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)) states: 80
abstracting: (sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)) states: 380
abstracting: (sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)) states: 292
abstracting: (1<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 74
abstracting: (2<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)) states: 2
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[~ [[3<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) | sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_awaity_2, P_awaity_1, P_awaity_0)]] & [~ [2<=sum(P_await_13_2, P_await_13_1, P_await_13_0)] & sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]
normalized: E [true U [[sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0) & ~ [2<=sum(P_await_13_2, P_await_13_1, P_await_13_0)]] & ~ [[3<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) | sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_awaity_2, P_awaity_1, P_awaity_0)]]]]
abstracting: (sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_awaity_2, P_awaity_1, P_awaity_0)) states: 0
abstracting: (3<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)) states: 0
abstracting: (2<=sum(P_await_13_2, P_await_13_1, P_await_13_0)) states: 0
abstracting: (sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)) states: 352
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[[2<=sum(P_awaity_2, P_awaity_1, P_awaity_0) & [1<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0) & 3<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]] | [3<=sum(y_2, y_1, y_0) | [2<=sum(P_start_1_2, P_start_1_1, P_start_1_0) | 1<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]]]
normalized: ~ [E [true U ~ [[[3<=sum(y_2, y_1, y_0) | [2<=sum(P_start_1_2, P_start_1_1, P_start_1_0) | 1<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]] | [2<=sum(P_awaity_2, P_awaity_1, P_awaity_0) & [1<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0) & 3<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]]]]]]
abstracting: (3<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)) states: 0
abstracting: (1<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)) states: 32
abstracting: (2<=sum(P_awaity_2, P_awaity_1, P_awaity_0)) states: 0
abstracting: (1<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)) states: 32
abstracting: (2<=sum(P_start_1_2, P_start_1_1, P_start_1_0)) states: 3
abstracting: (3<=sum(y_2, y_1, y_0)) states: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[~ [sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)] | 3<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]]
normalized: E [true U [3<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0) | ~ [sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]
abstracting: (sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)) states: 315
abstracting: (3<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)) states: 0
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]
normalized: E [true U sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]
abstracting: (sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)) states: 340
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [~ [~ [[3<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | 1<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)]]]]
normalized: ~ [E [true U ~ [[3<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | 1<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)]]]]
abstracting: (1<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)) states: 70
abstracting: (3<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)) states: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[3<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0) & ~ [[1<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & 3<=sum(P_awaity_2, P_awaity_1, P_awaity_0)]]]]
normalized: ~ [E [true U ~ [[3<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0) & ~ [[1<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & 3<=sum(P_awaity_2, P_awaity_1, P_awaity_0)]]]]]]
abstracting: (3<=sum(P_awaity_2, P_awaity_1, P_awaity_0)) states: 0
abstracting: (1<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)) states: 380
abstracting: (3<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)) states: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [~ [[~ [2<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)] & [sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]]
normalized: E [true U ~ [[[sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)] & ~ [2<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]]
abstracting: (2<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)) states: 2
abstracting: (sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)) states: 340
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)) states: 380
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [~ [[[sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(x_2, x_1, x_0) & 1<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)] & [sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & sum(x_2, x_1, x_0)<=sum(y_2, y_1, y_0)]]]]
normalized: ~ [E [true U [[sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & sum(x_2, x_1, x_0)<=sum(y_2, y_1, y_0)] & [sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(x_2, x_1, x_0) & 1<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]]
abstracting: (1<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)) states: 54
abstracting: (sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(x_2, x_1, x_0)) states: 0
abstracting: (sum(x_2, x_1, x_0)<=sum(y_2, y_1, y_0)) states: 380
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)) states: 380
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]
normalized: ~ [E [true U ~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)) states: 328
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [3<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]
normalized: E [true U 3<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]
abstracting: (3<=sum(P_start_1_2, P_start_1_1, P_start_1_0)) states: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[~ [[sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(y_2, y_1, y_0) | sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]] | sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]
normalized: E [true U [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0) | ~ [[sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(y_2, y_1, y_0) | sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]]
abstracting: (sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)) states: 314
abstracting: (sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(y_2, y_1, y_0)) states: 376
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)) states: 330
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[~ [sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] & 1<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]
normalized: E [true U [1<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0) & ~ [sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]
abstracting: (sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)) states: 322
abstracting: (1<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)) states: 54
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[[sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) & 3<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)] & [[3<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) | sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)] & [3<=sum(P_await_13_2, P_await_13_1, P_await_13_0) & 1<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)]]]]
normalized: E [true U [[[3<=sum(P_await_13_2, P_await_13_1, P_await_13_0) & 1<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] & [3<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) | sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]] & [sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) & 3<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)]]]
abstracting: (3<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)) states: 0
abstracting: (sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)) states: 323
abstracting: (sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)) states: 314
abstracting: (3<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)) states: 0
abstracting: (1<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)) states: 70
abstracting: (3<=sum(P_await_13_2, P_await_13_1, P_await_13_0)) states: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [[[[1<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) | sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] & [sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) & sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]] & [~ [sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)] | [2<=sum(P_awaity_2, P_awaity_1, P_awaity_0) | sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]]]]
normalized: E [true U [[[2<=sum(P_awaity_2, P_awaity_1, P_awaity_0) | sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)] | ~ [sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]] & [[sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) & sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)] & [1<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) | sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]]]
abstracting: (sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)) states: 380
abstracting: (1<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)) states: 24
abstracting: (sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)) states: 344
abstracting: (sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)) states: 340
abstracting: (sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)) states: 340
abstracting: (sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)) states: 348
abstracting: (2<=sum(P_awaity_2, P_awaity_1, P_awaity_0)) states: 0
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 0m10sec
BK_STOP 1432545337801
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
278 629
iterations count:2135 (22), effective:86 (0)
initing FirstDep: 0m0sec
iterations count:96 (1), effective:0 (0)
617
iterations count:1627 (16), effective:62 (0)
iterations count:330 (3), effective:11 (0)
iterations count:124 (1), effective:3 (0)
625
iterations count:1483 (15), effective:55 (0)
iterations count:246 (2), effective:4 (0)
iterations count:225 (2), effective:4 (0)
iterations count:96 (1), effective:0 (0)
587
iterations count:1741 (18), effective:62 (0)
612
iterations count:1648 (17), effective:58 (0)
iterations count:172 (1), effective:5 (0)
482
iterations count:1909 (19), effective:69 (0)
iterations count:984 (10), effective:34 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="LamportFastMutEx-PT-2"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/users/gast00/fkordon/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/LamportFastMutEx-PT-2.tgz
mv LamportFastMutEx-PT-2 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is LamportFastMutEx-PT-2, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r050kn-ebro-143236503900633"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;