About the Execution of Marcie for Diffusion2D-PT-D10N010
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3977.750 | 7758.00 | 6990.00 | 19.80 | FFFFFFFFFFFFFFFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.........
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is Diffusion2D-PT-D10N010, examination is ReachabilityBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r022kn-blw3-143214376400190
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-0
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-1
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-10
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-11
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-12
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-13
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-14
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-15
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-2
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-3
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-4
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-5
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-6
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-7
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-8
FORMULA_NAME Diffusion2D-PT-D10N010-ReachabilityBounds-9
=== Now, execution of the tool begins
BK_START 1432486276559
Model: Diffusion2D-PT-D10N010
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityBounds.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 100 NrTr: 684 NrArc: 1368)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m3sec
RS generation: 0m2sec
-> reachability set: #nodes 1090 (1.1e+03) #states 42,634,215,112,710 (13)
starting MCC model checker
--------------------------
checking: maxVal(cAMP__8_2_)<=1
normalized: maxVal(cAMP__8_2_)<=1
abstracting: (10<=1) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(cAMP__1_1_)<=1
normalized: maxVal(cAMP__1_1_)<=1
abstracting: (10<=1) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[maxVal(cAMP__1_2_)<=1 & [[[[maxVal(cAMP__6_2_)<=1 & maxVal(cAMP__9_1_)<=2] & maxVal(cAMP__2_8_)<=3] & maxVal(cAMP__8_9_)<=2] & [maxVal(cAMP__5_5_)<=1 & [maxVal(cAMP__4_6_)<=3 & maxVal(cAMP__10_9_)<=1]]]] & maxVal(cAMP__7_5_)<=2]
normalized: [maxVal(cAMP__7_5_)<=2 & [maxVal(cAMP__1_2_)<=1 & [[maxVal(cAMP__8_9_)<=2 & [maxVal(cAMP__2_8_)<=3 & [maxVal(cAMP__6_2_)<=1 & maxVal(cAMP__9_1_)<=2]]] & [maxVal(cAMP__5_5_)<=1 & [maxVal(cAMP__4_6_)<=3 & maxVal(cAMP__10_9_)<=1]]]]]
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=2) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(cAMP__4_3_)<=2
normalized: maxVal(cAMP__4_3_)<=2
abstracting: (10<=2) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(cAMP__3_1_)<=3 & maxVal(cAMP__9_7_)<=1]
normalized: [maxVal(cAMP__3_1_)<=3 & maxVal(cAMP__9_7_)<=1]
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(cAMP__7_9_)<=3 & [[maxVal(cAMP__8_9_)<=3 & maxVal(cAMP__2_3_)<=2] & [maxVal(cAMP__7_4_)<=2 & maxVal(cAMP__6_8_)<=1]]]
normalized: [maxVal(cAMP__7_9_)<=3 & [[maxVal(cAMP__8_9_)<=3 & maxVal(cAMP__2_3_)<=2] & [maxVal(cAMP__7_4_)<=2 & maxVal(cAMP__6_8_)<=1]]]
abstracting: (10<=1) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(cAMP__5_3_)<=2
normalized: maxVal(cAMP__5_3_)<=2
abstracting: (10<=2) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(cAMP__7_5_)<=1
normalized: maxVal(cAMP__7_5_)<=1
abstracting: (10<=1) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[maxVal(cAMP__2_2_)<=3 & maxVal(cAMP__6_4_)<=2] & [maxVal(cAMP__2_2_)<=3 & maxVal(cAMP__6_3_)<=3]]
normalized: [[maxVal(cAMP__2_2_)<=3 & maxVal(cAMP__6_4_)<=2] & [maxVal(cAMP__2_2_)<=3 & maxVal(cAMP__6_3_)<=3]]
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(cAMP__9_10_)<=3 & maxVal(cAMP__10_10_)<=1]
normalized: [maxVal(cAMP__9_10_)<=3 & maxVal(cAMP__10_10_)<=1]
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(cAMP__1_8_)<=3
normalized: maxVal(cAMP__1_8_)<=3
abstracting: (10<=3) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(cAMP__6_2_)<=2 & maxVal(cAMP__6_5_)<=3]
normalized: [maxVal(cAMP__6_2_)<=2 & maxVal(cAMP__6_5_)<=3]
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(cAMP__9_5_)<=3 & [[maxVal(cAMP__9_5_)<=3 & maxVal(cAMP__2_3_)<=2] & [[[[maxVal(cAMP__7_8_)<=3 & maxVal(cAMP__10_10_)<=1] & maxVal(cAMP__4_6_)<=3] & maxVal(cAMP__1_8_)<=2] & [[maxVal(cAMP__6_4_)<=3 & maxVal(cAMP__8_9_)<=3] & maxVal(cAMP__2_2_)<=3]]]]
normalized: [maxVal(cAMP__9_5_)<=3 & [[[maxVal(cAMP__2_2_)<=3 & [maxVal(cAMP__6_4_)<=3 & maxVal(cAMP__8_9_)<=3]] & [maxVal(cAMP__1_8_)<=2 & [maxVal(cAMP__4_6_)<=3 & [maxVal(cAMP__7_8_)<=3 & maxVal(cAMP__10_10_)<=1]]]] & [maxVal(cAMP__9_5_)<=3 & maxVal(cAMP__2_3_)<=2]]]
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[[maxVal(cAMP__6_6_)<=1 & [maxVal(cAMP__9_9_)<=3 & maxVal(cAMP__6_4_)<=3]] & maxVal(cAMP__6_1_)<=3] & maxVal(cAMP__7_8_)<=3] & maxVal(cAMP__10_8_)<=2]
normalized: [maxVal(cAMP__10_8_)<=2 & [maxVal(cAMP__7_8_)<=3 & [maxVal(cAMP__6_1_)<=3 & [maxVal(cAMP__6_6_)<=1 & [maxVal(cAMP__9_9_)<=3 & maxVal(cAMP__6_4_)<=3]]]]]
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(cAMP__7_8_)<=3 & [[[[[maxVal(cAMP__3_2_)<=3 & maxVal(cAMP__9_5_)<=3] & maxVal(cAMP__3_3_)<=1] & [[maxVal(cAMP__6_2_)<=2 & maxVal(cAMP__3_7_)<=3] & [maxVal(cAMP__3_10_)<=1 & maxVal(cAMP__7_1_)<=2]]] & [[maxVal(cAMP__5_6_)<=2 & [maxVal(cAMP__1_3_)<=2 & maxVal(cAMP__2_5_)<=3]] & [[maxVal(cAMP__1_10_)<=3 & maxVal(cAMP__2_6_)<=3] & maxVal(cAMP__5_10_)<=1]]] & maxVal(cAMP__9_8_)<=2]]
normalized: [maxVal(cAMP__7_8_)<=3 & [maxVal(cAMP__9_8_)<=2 & [[[maxVal(cAMP__5_10_)<=1 & [maxVal(cAMP__1_10_)<=3 & maxVal(cAMP__2_6_)<=3]] & [maxVal(cAMP__5_6_)<=2 & [maxVal(cAMP__1_3_)<=2 & maxVal(cAMP__2_5_)<=3]]] & [[maxVal(cAMP__3_3_)<=1 & [maxVal(cAMP__3_2_)<=3 & maxVal(cAMP__9_5_)<=3]] & [[maxVal(cAMP__6_2_)<=2 & maxVal(cAMP__3_7_)<=3] & [maxVal(cAMP__3_10_)<=1 & maxVal(cAMP__7_1_)<=2]]]]]]
abstracting: (10<=2) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(cAMP__2_3_)<=2 & [[maxVal(cAMP__2_9_)<=1 & [maxVal(cAMP__5_5_)<=1 & maxVal(cAMP__6_6_)<=1]] & maxVal(cAMP__10_2_)<=1]]
normalized: [maxVal(cAMP__2_3_)<=2 & [maxVal(cAMP__10_2_)<=1 & [maxVal(cAMP__2_9_)<=1 & [maxVal(cAMP__5_5_)<=1 & maxVal(cAMP__6_6_)<=1]]]]
abstracting: (10<=1) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=2) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D10N010-ReachabilityBounds-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 0m7sec
BK_STOP 1432486284317
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
139 139 194 181 253 225 316 271 379 319 449 369 523 421 608 468 691 531 802 589 490 499 508 517 530 545 572 580 587 595 602 609 616 624 631 639 650 662 675 687 704 716 724 741 754 759 767 781 801 805 809 815 821 839 857 863 867 870 873 877 880 884 888 892 896 900 904 908 921 932 952 961 981 989 1006 1016 1027 1036 1046 1066
iterations count:80854 (118), effective:990 (1)
initing FirstDep: 0m0sec
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Diffusion2D-PT-D10N010"
export BK_EXAMINATION="ReachabilityBounds"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/user/u8/hulinhub/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/Diffusion2D-PT-D10N010.tgz
mv Diffusion2D-PT-D10N010 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is Diffusion2D-PT-D10N010, examination is ReachabilityBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r022kn-blw3-143214376400190"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityBounds" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;