About the Execution of Marcie for Diffusion2D-PT-D05N010
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3960.330 | 4379.00 | 4010.00 | 19.80 | FFFFFFFFFFFFFFFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
..........
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is Diffusion2D-PT-D05N010, examination is ReachabilityBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r022kn-blw3-143214376300086
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-0
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-1
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-10
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-11
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-12
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-13
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-14
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-15
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-2
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-3
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-4
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-5
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-6
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-7
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-8
FORMULA_NAME Diffusion2D-PT-D05N010-ReachabilityBounds-9
=== Now, execution of the tool begins
BK_START 1432483069874
Model: Diffusion2D-PT-D05N010
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityBounds.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 25 NrTr: 144 NrArc: 288)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m3sec
RS generation: 0m0sec
-> reachability set: #nodes 265 (2.6e+02) #states 131,128,140 (8)
starting MCC model checker
--------------------------
checking: maxVal(cAMP__5_2_)<=2
normalized: maxVal(cAMP__5_2_)<=2
abstracting: (10<=2) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(cAMP__1_4_)<=3
normalized: maxVal(cAMP__1_4_)<=3
abstracting: (10<=3) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(cAMP__4_4_)<=1
normalized: maxVal(cAMP__4_4_)<=1
abstracting: (10<=1) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(cAMP__3_3_)<=3
normalized: maxVal(cAMP__3_3_)<=3
abstracting: (10<=3) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(cAMP__2_4_)<=1 & maxVal(cAMP__1_4_)<=1]
normalized: [maxVal(cAMP__2_4_)<=1 & maxVal(cAMP__1_4_)<=1]
abstracting: (10<=1) states: 0
abstracting: (10<=1) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(cAMP__2_4_)<=2
normalized: maxVal(cAMP__2_4_)<=2
abstracting: (10<=2) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[maxVal(cAMP__2_1_)<=2 & maxVal(cAMP__1_5_)<=1] & [maxVal(cAMP__2_1_)<=3 & [[maxVal(cAMP__3_1_)<=1 & [maxVal(cAMP__1_5_)<=3 & maxVal(cAMP__5_3_)<=3]] & [[maxVal(cAMP__4_4_)<=1 & maxVal(cAMP__1_5_)<=2] & [maxVal(cAMP__1_5_)<=1 & maxVal(cAMP__1_4_)<=2]]]]] & [maxVal(cAMP__2_5_)<=1 & [[maxVal(cAMP__2_5_)<=2 & [maxVal(cAMP__4_3_)<=1 & [maxVal(cAMP__3_1_)<=3 & maxVal(cAMP__1_4_)<=1]]] & maxVal(cAMP__3_2_)<=1]]]
normalized: [[[maxVal(cAMP__2_1_)<=2 & maxVal(cAMP__1_5_)<=1] & [maxVal(cAMP__2_1_)<=3 & [[[maxVal(cAMP__1_5_)<=1 & maxVal(cAMP__1_4_)<=2] & [maxVal(cAMP__4_4_)<=1 & maxVal(cAMP__1_5_)<=2]] & [maxVal(cAMP__3_1_)<=1 & [maxVal(cAMP__1_5_)<=3 & maxVal(cAMP__5_3_)<=3]]]]] & [maxVal(cAMP__2_5_)<=1 & [maxVal(cAMP__3_2_)<=1 & [maxVal(cAMP__2_5_)<=2 & [maxVal(cAMP__4_3_)<=1 & [maxVal(cAMP__3_1_)<=3 & maxVal(cAMP__1_4_)<=1]]]]]]
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=2) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(cAMP__4_2_)<=3 & maxVal(cAMP__4_2_)<=2]
normalized: [maxVal(cAMP__4_2_)<=3 & maxVal(cAMP__4_2_)<=2]
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[[maxVal(cAMP__1_5_)<=3 & [maxVal(cAMP__5_5_)<=3 & maxVal(cAMP__2_5_)<=3]] & [maxVal(cAMP__5_3_)<=3 & maxVal(cAMP__2_2_)<=3]] & [[[[maxVal(cAMP__4_4_)<=1 & maxVal(cAMP__3_4_)<=3] & maxVal(cAMP__4_4_)<=3] & maxVal(cAMP__3_1_)<=3] & maxVal(cAMP__3_1_)<=2]] & [[[maxVal(cAMP__4_5_)<=2 & [maxVal(cAMP__3_2_)<=3 & [maxVal(cAMP__5_3_)<=3 & maxVal(cAMP__2_2_)<=3]]] & [[[maxVal(cAMP__2_3_)<=2 & maxVal(cAMP__4_4_)<=3] & maxVal(cAMP__5_3_)<=2] & maxVal(cAMP__4_1_)<=1]] & [[maxVal(cAMP__4_3_)<=2 & maxVal(cAMP__5_1_)<=3] & [maxVal(cAMP__4_3_)<=3 & maxVal(cAMP__3_3_)<=1]]]]
normalized: [[[[maxVal(cAMP__1_5_)<=3 & [maxVal(cAMP__5_5_)<=3 & maxVal(cAMP__2_5_)<=3]] & [maxVal(cAMP__5_3_)<=3 & maxVal(cAMP__2_2_)<=3]] & [maxVal(cAMP__3_1_)<=2 & [maxVal(cAMP__3_1_)<=3 & [maxVal(cAMP__4_4_)<=3 & [maxVal(cAMP__4_4_)<=1 & maxVal(cAMP__3_4_)<=3]]]]] & [[[maxVal(cAMP__4_3_)<=2 & maxVal(cAMP__5_1_)<=3] & [maxVal(cAMP__4_3_)<=3 & maxVal(cAMP__3_3_)<=1]] & [[maxVal(cAMP__4_1_)<=1 & [maxVal(cAMP__5_3_)<=2 & [maxVal(cAMP__2_3_)<=2 & maxVal(cAMP__4_4_)<=3]]] & [maxVal(cAMP__4_5_)<=2 & [maxVal(cAMP__3_2_)<=3 & [maxVal(cAMP__5_3_)<=3 & maxVal(cAMP__2_2_)<=3]]]]]]
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[[maxVal(cAMP__1_2_)<=2 & [maxVal(cAMP__2_1_)<=1 & [maxVal(cAMP__4_4_)<=2 & maxVal(cAMP__2_1_)<=2]]] & maxVal(cAMP__1_2_)<=2] & [[[[maxVal(cAMP__5_3_)<=1 & maxVal(cAMP__5_1_)<=3] & [maxVal(cAMP__3_3_)<=3 & maxVal(cAMP__4_3_)<=2]] & maxVal(cAMP__1_3_)<=2] & maxVal(cAMP__3_2_)<=1]] & maxVal(cAMP__5_1_)<=3]
normalized: [maxVal(cAMP__5_1_)<=3 & [[maxVal(cAMP__3_2_)<=1 & [maxVal(cAMP__1_3_)<=2 & [[maxVal(cAMP__3_3_)<=3 & maxVal(cAMP__4_3_)<=2] & [maxVal(cAMP__5_3_)<=1 & maxVal(cAMP__5_1_)<=3]]]] & [maxVal(cAMP__1_2_)<=2 & [maxVal(cAMP__1_2_)<=2 & [maxVal(cAMP__2_1_)<=1 & [maxVal(cAMP__4_4_)<=2 & maxVal(cAMP__2_1_)<=2]]]]]]
abstracting: (10<=2) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(cAMP__2_3_)<=3
normalized: maxVal(cAMP__2_3_)<=3
abstracting: (10<=3) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[maxVal(cAMP__1_1_)<=3 & [maxVal(cAMP__1_2_)<=2 & maxVal(cAMP__3_4_)<=2]] & maxVal(cAMP__2_2_)<=2] & maxVal(cAMP__2_4_)<=3]
normalized: [maxVal(cAMP__2_4_)<=3 & [maxVal(cAMP__2_2_)<=2 & [maxVal(cAMP__1_1_)<=3 & [maxVal(cAMP__1_2_)<=2 & maxVal(cAMP__3_4_)<=2]]]]
abstracting: (10<=2) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[[maxVal(cAMP__3_4_)<=3 & [[maxVal(cAMP__1_3_)<=1 & maxVal(cAMP__1_1_)<=1] & [maxVal(cAMP__1_3_)<=3 & maxVal(cAMP__2_4_)<=1]]] & [maxVal(cAMP__5_3_)<=2 & [maxVal(cAMP__2_5_)<=3 & [maxVal(cAMP__2_2_)<=3 & maxVal(cAMP__3_5_)<=1]]]] & [[[[maxVal(cAMP__1_3_)<=2 & maxVal(cAMP__5_3_)<=3] & [maxVal(cAMP__1_5_)<=2 & maxVal(cAMP__4_3_)<=3]] & [[maxVal(cAMP__1_4_)<=3 & maxVal(cAMP__1_1_)<=1] & [maxVal(cAMP__3_4_)<=3 & maxVal(cAMP__1_1_)<=3]]] & maxVal(cAMP__3_5_)<=2]] & [[[maxVal(cAMP__3_5_)<=1 & [[maxVal(cAMP__4_4_)<=3 & maxVal(cAMP__2_5_)<=2] & [maxVal(cAMP__5_3_)<=3 & maxVal(cAMP__3_4_)<=2]]] & [maxVal(cAMP__2_3_)<=1 & [[maxVal(cAMP__2_2_)<=1 & maxVal(cAMP__3_3_)<=1] & [maxVal(cAMP__4_1_)<=3 & maxVal(cAMP__1_1_)<=1]]]] & maxVal(cAMP__3_2_)<=1]]
normalized: [[maxVal(cAMP__3_2_)<=1 & [[maxVal(cAMP__3_5_)<=1 & [[maxVal(cAMP__5_3_)<=3 & maxVal(cAMP__3_4_)<=2] & [maxVal(cAMP__4_4_)<=3 & maxVal(cAMP__2_5_)<=2]]] & [maxVal(cAMP__2_3_)<=1 & [[maxVal(cAMP__2_2_)<=1 & maxVal(cAMP__3_3_)<=1] & [maxVal(cAMP__4_1_)<=3 & maxVal(cAMP__1_1_)<=1]]]]] & [[[maxVal(cAMP__3_4_)<=3 & [[maxVal(cAMP__1_3_)<=1 & maxVal(cAMP__1_1_)<=1] & [maxVal(cAMP__1_3_)<=3 & maxVal(cAMP__2_4_)<=1]]] & [maxVal(cAMP__5_3_)<=2 & [maxVal(cAMP__2_5_)<=3 & [maxVal(cAMP__2_2_)<=3 & maxVal(cAMP__3_5_)<=1]]]] & [maxVal(cAMP__3_5_)<=2 & [[[maxVal(cAMP__1_4_)<=3 & maxVal(cAMP__1_1_)<=1] & [maxVal(cAMP__3_4_)<=3 & maxVal(cAMP__1_1_)<=3]] & [[maxVal(cAMP__1_5_)<=2 & maxVal(cAMP__4_3_)<=3] & [maxVal(cAMP__1_3_)<=2 & maxVal(cAMP__5_3_)<=3]]]]]]
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=2) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=1) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(cAMP__1_1_)<=1 & [maxVal(cAMP__1_2_)<=1 & [maxVal(cAMP__2_1_)<=3 & [maxVal(cAMP__1_4_)<=1 & maxVal(cAMP__3_5_)<=1]]]]
normalized: [maxVal(cAMP__1_1_)<=1 & [maxVal(cAMP__1_2_)<=1 & [maxVal(cAMP__2_1_)<=3 & [maxVal(cAMP__1_4_)<=1 & maxVal(cAMP__3_5_)<=1]]]]
abstracting: (10<=1) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=3) states: 0
abstracting: (10<=1) states: 0
abstracting: (10<=1) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: maxVal(cAMP__5_3_)<=2
normalized: maxVal(cAMP__5_3_)<=2
abstracting: (10<=2) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [maxVal(cAMP__3_4_)<=1 & maxVal(cAMP__3_5_)<=2]
normalized: [maxVal(cAMP__3_4_)<=1 & maxVal(cAMP__3_5_)<=2]
abstracting: (10<=2) states: 0
abstracting: (10<=1) states: 0
-> the formula is FALSE
FORMULA Diffusion2D-PT-D05N010-ReachabilityBounds-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 0m4sec
BK_STOP 1432483074253
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
80 136 165 185 203 220 240
iterations count:7924 (55), effective:240 (1)
initing FirstDep: 0m0sec
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Diffusion2D-PT-D05N010"
export BK_EXAMINATION="ReachabilityBounds"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/user/u8/hulinhub/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/Diffusion2D-PT-D05N010.tgz
mv Diffusion2D-PT-D05N010 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is Diffusion2D-PT-D05N010, examination is ReachabilityBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r022kn-blw3-143214376300086"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityBounds" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;