About the Execution of Marcie for DatabaseWithMutex-PT-02
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3960.290 | 8627.00 | 7870.00 | 180.00 | FTTFTFFFTTFFTTTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.............
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is DatabaseWithMutex-PT-02, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r008kn-ebro-143214239300496
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-0
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-1
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-10
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-11
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-12
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-13
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-14
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-15
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-2
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-3
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-4
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-5
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-6
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-7
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-8
FORMULA_NAME DatabaseWithMutex-COL-02-CTLCardinality-9
=== Now, execution of the tool begins
BK_START 1432339236626
Model: DatabaseWithMutex-PT-02
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5
Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5
parse successfull
net created successfully
(NrP: 38 NrTr: 32 NrArc: 88)
net check time: 0m0sec
parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec
init dd package: 0m5sec
RS generation: 0m0sec
-> reachability set: #nodes 125 (1.2e+02) #states 153
starting MCC model checker
--------------------------
checking: EG [[AG [sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)<=sum(Mutex_1, Mutex_2)] & [sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2) & [2<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2) & 1<=sum(Modify_1_2, Modify_1_1, Modify_2_1, Modify_2_2)]]]]
normalized: EG [[~ [E [true U ~ [sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)<=sum(Mutex_1, Mutex_2)]]] & [sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2) & [2<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2) & 1<=sum(Modify_1_2, Modify_1_1, Modify_2_1, Modify_2_2)]]]]
abstracting: (1<=sum(Modify_1_2, Modify_1_1, Modify_2_1, Modify_2_2)) states: 34
abstracting: (2<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)) states: 2
abstracting: (sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)) states: 123
abstracting: (sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)<=sum(Mutex_1, Mutex_2)) states: 131
.
EG iterations: 1
-> the formula is FALSE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: AG [[2<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1) | EF [1<=sum(Mutex_1, Mutex_2)]]]
normalized: ~ [E [true U ~ [[2<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1) | E [true U 1<=sum(Mutex_1, Mutex_2)]]]]]
abstracting: (1<=sum(Mutex_1, Mutex_2)) states: 81
abstracting: (2<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)) states: 4
-> the formula is TRUE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: A [[[3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2) & 2<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)] | sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)] U [[sum(all_active_2, all_active_1)<=sum(Mutex_1, Mutex_2) | 2<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)] | ~ [1<=sum(all_active_2, all_active_1)]]]
normalized: [~ [EG [~ [[[sum(all_active_2, all_active_1)<=sum(Mutex_1, Mutex_2) | 2<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)] | ~ [1<=sum(all_active_2, all_active_1)]]]]] & ~ [E [~ [[sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1) | [3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2) & 2<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)]]] U [~ [[[sum(all_active_2, all_active_1)<=sum(Mutex_1, Mutex_2) | 2<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)] | ~ [1<=sum(all_active_2, all_active_1)]]] & ~ [[sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1) | [3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2) & 2<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)]]]]]]]
abstracting: (2<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)) states: 2
abstracting: (3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)) states: 0
abstracting: (sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)) states: 127
abstracting: (1<=sum(all_active_2, all_active_1)) states: 29
abstracting: (2<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)) states: 2
abstracting: (sum(all_active_2, all_active_1)<=sum(Mutex_1, Mutex_2)) states: 153
abstracting: (2<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)) states: 2
abstracting: (3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)) states: 0
abstracting: (sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)) states: 127
abstracting: (1<=sum(all_active_2, all_active_1)) states: 29
abstracting: (2<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)) states: 2
abstracting: (sum(all_active_2, all_active_1)<=sum(Mutex_1, Mutex_2)) states: 153
.
EG iterations: 1
-> the formula is TRUE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [~ [sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)] | [[sum(Mutex_1, Mutex_2)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1) | 2<=sum(all_active_2, all_active_1)] | AF [1<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)]]]
normalized: [~ [sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)] | [[sum(Mutex_1, Mutex_2)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1) | 2<=sum(all_active_2, all_active_1)] | ~ [EG [~ [1<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)]]]]]
abstracting: (1<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)) states: 130
......
EG iterations: 6
abstracting: (2<=sum(all_active_2, all_active_1)) states: 1
abstracting: (sum(Mutex_1, Mutex_2)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)) states: 84
abstracting: (sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)) states: 127
-> the formula is TRUE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: 3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)
normalized: 3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)
abstracting: (3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)) states: 0
-> the formula is FALSE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EG [~ [AX [sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)]]]
normalized: EG [EX [~ [sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)]]]
abstracting: (sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)) states: 153
..
EG iterations: 1
-> the formula is FALSE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: A [[3<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2) & [1<=sum(all_active_2, all_active_1) | sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)]] U AF [sum(all_active_2, all_active_1)<=sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1)]]
normalized: [~ [EG [EG [~ [sum(all_active_2, all_active_1)<=sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1)]]]] & ~ [E [~ [[3<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2) & [1<=sum(all_active_2, all_active_1) | sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)]]] U [~ [[3<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2) & [1<=sum(all_active_2, all_active_1) | sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)]]] & EG [~ [sum(all_active_2, all_active_1)<=sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1)]]]]]]
abstracting: (sum(all_active_2, all_active_1)<=sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1)) states: 128
........
EG iterations: 8
abstracting: (sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)) states: 41
abstracting: (1<=sum(all_active_2, all_active_1)) states: 29
abstracting: (3<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)) states: 0
abstracting: (sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)) states: 41
abstracting: (1<=sum(all_active_2, all_active_1)) states: 29
abstracting: (3<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)) states: 0
abstracting: (sum(all_active_2, all_active_1)<=sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1)) states: 128
........
EG iterations: 8
.
EG iterations: 1
-> the formula is TRUE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: ~ [1<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)]
normalized: ~ [1<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)]
abstracting: (1<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)) states: 34
-> the formula is TRUE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: A [EG [sum(all_passive_1, all_passive_2)<=sum(all_passive_1, all_passive_2)] U [~ [1<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)] | [sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1)<=sum(Mutex_1, Mutex_2) | 3<=sum(all_passive_1, all_passive_2)]]]
normalized: [~ [EG [~ [[[sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1)<=sum(Mutex_1, Mutex_2) | 3<=sum(all_passive_1, all_passive_2)] | ~ [1<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)]]]]] & ~ [E [~ [EG [sum(all_passive_1, all_passive_2)<=sum(all_passive_1, all_passive_2)]] U [~ [EG [sum(all_passive_1, all_passive_2)<=sum(all_passive_1, all_passive_2)]] & ~ [[[sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1)<=sum(Mutex_1, Mutex_2) | 3<=sum(all_passive_1, all_passive_2)] | ~ [1<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)]]]]]]]
abstracting: (1<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)) states: 56
abstracting: (3<=sum(all_passive_1, all_passive_2)) states: 0
abstracting: (sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1)<=sum(Mutex_1, Mutex_2)) states: 131
abstracting: (sum(all_passive_1, all_passive_2)<=sum(all_passive_1, all_passive_2)) states: 153
EG iterations: 0
abstracting: (sum(all_passive_1, all_passive_2)<=sum(all_passive_1, all_passive_2)) states: 153
EG iterations: 0
abstracting: (1<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)) states: 56
abstracting: (3<=sum(all_passive_1, all_passive_2)) states: 0
abstracting: (sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1)<=sum(Mutex_1, Mutex_2)) states: 131
.
EG iterations: 1
-> the formula is TRUE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [2<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2) | ~ [~ [EF [3<=sum(Message_1_1, Message_2_1, Message_1_2, Message_2_2)]]]]
normalized: [2<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2) | E [true U 3<=sum(Message_1_1, Message_2_1, Message_1_2, Message_2_2)]]
abstracting: (3<=sum(Message_1_1, Message_2_1, Message_1_2, Message_2_2)) states: 0
abstracting: (2<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)) states: 50
-> the formula is FALSE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EF [~ [sum(all_passive_1, all_passive_2)<=sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1)]]
normalized: E [true U ~ [sum(all_passive_1, all_passive_2)<=sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1)]]
abstracting: (sum(all_passive_1, all_passive_2)<=sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1)) states: 34
-> the formula is TRUE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [[[EX [2<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)] & [[sum(Message_1_1, Message_2_1, Message_1_2, Message_2_2)<=sum(Message_1_1, Message_2_1, Message_1_2, Message_2_2) & 1<=sum(Modify_1_2, Modify_1_1, Modify_2_1, Modify_2_2)] | [sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1) | 2<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)]]] & sum(all_passive_1, all_passive_2)<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)] & [E [3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2) U sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)] & [1<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1) & ~ [sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)]]]]
normalized: [[[1<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1) & ~ [sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)]] & E [3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2) U sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)]] & [sum(all_passive_1, all_passive_2)<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1) & [[[sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1) | 2<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)] | [sum(Message_1_1, Message_2_1, Message_1_2, Message_2_2)<=sum(Message_1_1, Message_2_1, Message_1_2, Message_2_2) & 1<=sum(Modify_1_2, Modify_1_1, Modify_2_1, Modify_2_2)]] & EX [2<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)]]]]
abstracting: (2<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)) states: 2
.abstracting: (1<=sum(Modify_1_2, Modify_1_1, Modify_2_1, Modify_2_2)) states: 34
abstracting: (sum(Message_1_1, Message_2_1, Message_1_2, Message_2_2)<=sum(Message_1_1, Message_2_1, Message_1_2, Message_2_2)) states: 153
abstracting: (2<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)) states: 2
abstracting: (sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)) states: 41
abstracting: (sum(all_passive_1, all_passive_2)<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)) states: 8
abstracting: (sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)) states: 41
abstracting: (3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)) states: 0
abstracting: (sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)) states: 123
abstracting: (1<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)) states: 56
-> the formula is FALSE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: ~ [[EF [[1<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2) & sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)]] & [AF [1<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)] & EG [1<=sum(Message_1_1, Message_2_1, Message_1_2, Message_2_2)]]]]
normalized: ~ [[[EG [1<=sum(Message_1_1, Message_2_1, Message_1_2, Message_2_2)] & ~ [EG [~ [1<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)]]]] & E [true U [1<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2) & sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)]]]]
abstracting: (sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)) states: 105
abstracting: (1<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)) states: 130
abstracting: (1<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)) states: 56
..............
EG iterations: 14
abstracting: (1<=sum(Message_1_1, Message_2_1, Message_1_2, Message_2_2)) states: 34
..
EG iterations: 2
-> the formula is TRUE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: EG [[~ [1<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)] | AX [1<=sum(Modify_1_2, Modify_1_1, Modify_2_1, Modify_2_2)]]]
normalized: EG [[~ [EX [~ [1<=sum(Modify_1_2, Modify_1_1, Modify_2_1, Modify_2_2)]]] | ~ [1<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)]]]
abstracting: (1<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)) states: 56
abstracting: (1<=sum(Modify_1_2, Modify_1_1, Modify_2_1, Modify_2_2)) states: 34
...............
EG iterations: 14
-> the formula is FALSE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: A [AX [3<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)] U [~ [1<=sum(Modify_1_2, Modify_1_1, Modify_2_1, Modify_2_2)] & [3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2) | sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)]]]
normalized: [~ [EG [~ [[[3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2) | sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)] & ~ [1<=sum(Modify_1_2, Modify_1_1, Modify_2_1, Modify_2_2)]]]]] & ~ [E [EX [~ [3<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)]] U [EX [~ [3<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)]] & ~ [[[3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2) | sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)] & ~ [1<=sum(Modify_1_2, Modify_1_1, Modify_2_1, Modify_2_2)]]]]]]]
abstracting: (1<=sum(Modify_1_2, Modify_1_1, Modify_2_1, Modify_2_2)) states: 34
abstracting: (sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)) states: 105
abstracting: (3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)) states: 0
abstracting: (3<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)) states: 0
.abstracting: (3<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)) states: 0
.abstracting: (1<=sum(Modify_1_2, Modify_1_1, Modify_2_1, Modify_2_2)) states: 34
abstracting: (sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)<=sum(RecBuff_2_2, RecBuff_1_2, RecBuff_2_1, RecBuff_1_1)) states: 105
abstracting: (3<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)) states: 0
....
EG iterations: 4
-> the formula is FALSE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
checking: [AG [[[sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1) & 3<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)] & 3<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)]] & [EF [[1<=sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1) | 1<=sum(all_passive_1, all_passive_2)]] & AG [~ [1<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)]]]]
normalized: [[~ [E [true U 1<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)]] & E [true U [1<=sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1) | 1<=sum(all_passive_1, all_passive_2)]]] & ~ [E [true U ~ [[3<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1) & [sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1) & 3<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)]]]]]]
abstracting: (3<=sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)) states: 0
abstracting: (sum(Active_2_1, Active_1_1, Active_2_2, Active_1_2)<=sum(WaitMutex_2_1, WaitMutex_1_2, WaitMutex_2_2, WaitMutex_1_1)) states: 63
abstracting: (3<=sum(MesBuffReply_1_1, MesBuffReply_2_2, MesBuffReply_1_2, MesBuffReply_2_1)) states: 0
abstracting: (1<=sum(all_passive_1, all_passive_2)) states: 151
abstracting: (1<=sum(updating_2_2, updating_1_2, updating_1_1, updating_2_1)) states: 34
abstracting: (1<=sum(Acknowledge_1_1, Acknowledge_2_1, Acknowledge_1_2, Acknowledge_2_2)) states: 34
-> the formula is FALSE
FORMULA DatabaseWithMutex-COL-02-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m0sec
Total processing time: 0m8sec
BK_STOP 1432339245253
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
iterations count:147 (4), effective:28 (0)
initing FirstDep: 0m0sec
iterations count:242 (7), effective:43 (1)
iterations count:86 (2), effective:12 (0)
iterations count:47 (1), effective:4 (0)
iterations count:32 (1), effective:0 (0)
iterations count:152 (4), effective:24 (0)
iterations count:144 (4), effective:29 (0)
iterations count:32 (1), effective:0 (0)
iterations count:32 (1), effective:0 (0)
iterations count:127 (3), effective:24 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="DatabaseWithMutex-PT-02"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/users/gast00/fkordon/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/DatabaseWithMutex-PT-02.tgz
mv DatabaseWithMutex-PT-02 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is DatabaseWithMutex-PT-02, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r008kn-ebro-143214239300496"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;