fond
Model Checking Contest @ Petri Nets 2015
Bruxelles, Belgium, June 23, 2015
Execution of r008kn-ebro-143214239100294
Last Updated
August 19, 2015

About the Execution of Marcie for CircadianClock-PT-000100

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
3962.960 8451.00 8029.00 10.10 TTTFFFFFFFFFFFFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
..............
=====================================================================
Generated by BenchKit 2-2265
Executing tool marcie
Input is CircadianClock-PT-000100, examination is ReachabilityBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r008kn-ebro-143214239100294
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-0
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-1
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-10
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-11
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-12
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-13
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-14
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-15
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-2
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-3
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-4
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-5
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-6
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-7
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-8
FORMULA_NAME CircadianClock-PT-000100-ReachabilityBounds-9

=== Now, execution of the tool begins

BK_START 1432333059856

Model: CircadianClock-PT-000100
reachability algorithm:
Saturation-based algorithm
variable ordering algorithm:
Calculated like in [Noa99]
--memory=6 --suppress --rs-algorithm=3 --place-order=5

Marcie rev. 1429:1432M (built: crohr on 2014-10-22)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=ReachabilityBounds.xml --memory=6 --suppress --rs-algorithm=3 --place-order=5

parse successfull
net created successfully

(NrP: 14 NrTr: 16 NrArc: 58)

net check time: 0m0sec

parse formulas successfull
formulas created successfully
place and transition orderings generation:0m0sec

init dd package: 0m5sec


RS generation: 0m0sec


-> reachability set: #nodes 516 (5.2e+02) #states 42,040,402,004 (10)



starting MCC model checker
--------------------------

checking: maxVal(da)<=3
normalized: maxVal(da)<=3

abstracting: (1<=3) states: 42,040,402,004 (10)
-> the formula is TRUE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: maxVal(da_a)<=3
normalized: maxVal(da_a)<=3

abstracting: (1<=3) states: 42,040,402,004 (10)
-> the formula is TRUE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: maxVal(ma_cap)<=3
normalized: maxVal(ma_cap)<=3

abstracting: (100<=3) states: 0
-> the formula is FALSE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: [[maxVal(ma_cap)<=2 & [maxVal(a)<=2 & maxVal(da)<=3]] & [[maxVal(r_cap)<=3 & [[[maxVal(mr)<=3 & maxVal(a)<=3] & maxVal(da_a)<=1] & [[maxVal(r_cap)<=3 & maxVal(a_cap)<=3] & [maxVal(a)<=1 & maxVal(da_a)<=3]]]] & maxVal(c)<=1]]
normalized: [[maxVal(c)<=1 & [maxVal(r_cap)<=3 & [[[maxVal(r_cap)<=3 & maxVal(a_cap)<=3] & [maxVal(a)<=1 & maxVal(da_a)<=3]] & [maxVal(da_a)<=1 & [maxVal(mr)<=3 & maxVal(a)<=3]]]]] & [maxVal(ma_cap)<=2 & [maxVal(a)<=2 & maxVal(da)<=3]]]

abstracting: (1<=3) states: 42,040,402,004 (10)
abstracting: (100<=2) states: 0
abstracting: (100<=2) states: 0
abstracting: (100<=3) states: 0
abstracting: (100<=3) states: 0
abstracting: (1<=1) states: 42,040,402,004 (10)
abstracting: (1<=3) states: 42,040,402,004 (10)
abstracting: (100<=1) states: 0
abstracting: (100<=3) states: 0
abstracting: (100<=3) states: 0
abstracting: (100<=3) states: 0
abstracting: (100<=1) states: 0
-> the formula is FALSE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: maxVal(r)<=3
normalized: maxVal(r)<=3

abstracting: (100<=3) states: 0
-> the formula is FALSE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: maxVal(a_cap)<=2
normalized: maxVal(a_cap)<=2

abstracting: (100<=2) states: 0
-> the formula is FALSE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: maxVal(c_cap)<=1
normalized: maxVal(c_cap)<=1

abstracting: (100<=1) states: 0
-> the formula is FALSE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: [maxVal(mr)<=3 & [maxVal(da)<=2 & maxVal(r)<=3]]
normalized: [maxVal(mr)<=3 & [maxVal(da)<=2 & maxVal(r)<=3]]

abstracting: (100<=3) states: 0
abstracting: (1<=2) states: 42,040,402,004 (10)
abstracting: (100<=3) states: 0
-> the formula is FALSE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: [maxVal(mr_cap)<=1 & [[[maxVal(mr_cap)<=1 & maxVal(mr_cap)<=3] & [[maxVal(mr_cap)<=3 & [maxVal(dr_a)<=3 & maxVal(a)<=2]] & maxVal(c_cap)<=1]] & [[[[maxVal(mr_cap)<=1 & maxVal(da)<=2] & [maxVal(ma)<=3 & maxVal(dr_a)<=3]] & [maxVal(ma_cap)<=3 & maxVal(c)<=1]] & maxVal(c)<=1]]]
normalized: [maxVal(mr_cap)<=1 & [[maxVal(c)<=1 & [[maxVal(ma_cap)<=3 & maxVal(c)<=1] & [[maxVal(ma)<=3 & maxVal(dr_a)<=3] & [maxVal(mr_cap)<=1 & maxVal(da)<=2]]]] & [[maxVal(c_cap)<=1 & [maxVal(mr_cap)<=3 & [maxVal(dr_a)<=3 & maxVal(a)<=2]]] & [maxVal(mr_cap)<=1 & maxVal(mr_cap)<=3]]]]

abstracting: (100<=3) states: 0
abstracting: (100<=1) states: 0
abstracting: (100<=2) states: 0
abstracting: (1<=3) states: 42,040,402,004 (10)
abstracting: (100<=3) states: 0
abstracting: (100<=1) states: 0
abstracting: (1<=2) states: 42,040,402,004 (10)
abstracting: (100<=1) states: 0
abstracting: (1<=3) states: 42,040,402,004 (10)
abstracting: (100<=3) states: 0
abstracting: (100<=1) states: 0
abstracting: (100<=3) states: 0
abstracting: (100<=1) states: 0
abstracting: (100<=1) states: 0
-> the formula is FALSE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: [maxVal(dr)<=1 & [[[[maxVal(r)<=1 & [maxVal(a)<=3 & maxVal(dr_a)<=2]] & [[maxVal(r)<=3 & maxVal(dr)<=2] & [maxVal(ma)<=3 & maxVal(da)<=1]]] & [maxVal(da_a)<=2 & [maxVal(a)<=3 & maxVal(r)<=3]]] & maxVal(a)<=3]]
normalized: [maxVal(dr)<=1 & [maxVal(a)<=3 & [[maxVal(da_a)<=2 & [maxVal(a)<=3 & maxVal(r)<=3]] & [[[maxVal(ma)<=3 & maxVal(da)<=1] & [maxVal(r)<=3 & maxVal(dr)<=2]] & [maxVal(r)<=1 & [maxVal(a)<=3 & maxVal(dr_a)<=2]]]]]]

abstracting: (1<=2) states: 42,040,402,004 (10)
abstracting: (100<=3) states: 0
abstracting: (100<=1) states: 0
abstracting: (1<=2) states: 42,040,402,004 (10)
abstracting: (100<=3) states: 0
abstracting: (1<=1) states: 42,040,402,004 (10)
abstracting: (100<=3) states: 0
abstracting: (100<=3) states: 0
abstracting: (100<=3) states: 0
abstracting: (1<=2) states: 42,040,402,004 (10)
abstracting: (100<=3) states: 0
abstracting: (1<=1) states: 42,040,402,004 (10)
-> the formula is FALSE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: maxVal(dr_a)<=2
normalized: maxVal(dr_a)<=2

abstracting: (1<=2) states: 42,040,402,004 (10)
-> the formula is TRUE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: maxVal(c_cap)<=1
normalized: maxVal(c_cap)<=1

abstracting: (100<=1) states: 0
-> the formula is FALSE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: maxVal(mr)<=3
normalized: maxVal(mr)<=3

abstracting: (100<=3) states: 0
-> the formula is FALSE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: [maxVal(dr)<=2 & [[maxVal(ma)<=3 & maxVal(a)<=3] & maxVal(mr)<=2]]
normalized: [maxVal(dr)<=2 & [maxVal(mr)<=2 & [maxVal(ma)<=3 & maxVal(a)<=3]]]

abstracting: (100<=3) states: 0
abstracting: (100<=3) states: 0
abstracting: (100<=2) states: 0
abstracting: (1<=2) states: 42,040,402,004 (10)
-> the formula is FALSE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: [[[maxVal(r_cap)<=3 & [[maxVal(r)<=1 & maxVal(dr)<=3] & [[maxVal(ma)<=2 & maxVal(da_a)<=2] & [maxVal(a_cap)<=2 & maxVal(mr_cap)<=2]]]] & [[[maxVal(c_cap)<=2 & [maxVal(dr)<=1 & maxVal(a_cap)<=2]] & [maxVal(c_cap)<=3 & maxVal(mr)<=2]] & [[[maxVal(da)<=3 & maxVal(mr_cap)<=2] & maxVal(dr_a)<=2] & [[maxVal(da)<=1 & maxVal(r_cap)<=2] & maxVal(c_cap)<=3]]]] & [[[[[maxVal(r)<=3 & maxVal(mr_cap)<=1] & [maxVal(da)<=2 & maxVal(ma)<=3]] & maxVal(ma)<=3] & [maxVal(da_a)<=3 & [[maxVal(c)<=2 & maxVal(dr)<=2] & maxVal(c_cap)<=3]]] & maxVal(dr_a)<=1]]
normalized: [[maxVal(dr_a)<=1 & [[maxVal(da_a)<=3 & [maxVal(c_cap)<=3 & [maxVal(c)<=2 & maxVal(dr)<=2]]] & [maxVal(ma)<=3 & [[maxVal(da)<=2 & maxVal(ma)<=3] & [maxVal(r)<=3 & maxVal(mr_cap)<=1]]]]] & [[[[maxVal(c_cap)<=3 & [maxVal(da)<=1 & maxVal(r_cap)<=2]] & [maxVal(dr_a)<=2 & [maxVal(da)<=3 & maxVal(mr_cap)<=2]]] & [[maxVal(c_cap)<=3 & maxVal(mr)<=2] & [maxVal(c_cap)<=2 & [maxVal(dr)<=1 & maxVal(a_cap)<=2]]]] & [maxVal(r_cap)<=3 & [[[maxVal(a_cap)<=2 & maxVal(mr_cap)<=2] & [maxVal(ma)<=2 & maxVal(da_a)<=2]] & [maxVal(r)<=1 & maxVal(dr)<=3]]]]]

abstracting: (1<=3) states: 42,040,402,004 (10)
abstracting: (100<=1) states: 0
abstracting: (1<=2) states: 42,040,402,004 (10)
abstracting: (100<=2) states: 0
abstracting: (100<=2) states: 0
abstracting: (100<=2) states: 0
abstracting: (100<=3) states: 0
abstracting: (100<=2) states: 0
abstracting: (1<=1) states: 42,040,402,004 (10)
abstracting: (100<=2) states: 0
abstracting: (100<=2) states: 0
abstracting: (100<=3) states: 0
abstracting: (100<=2) states: 0
abstracting: (1<=3) states: 42,040,402,004 (10)
abstracting: (1<=2) states: 42,040,402,004 (10)
abstracting: (100<=2) states: 0
abstracting: (1<=1) states: 42,040,402,004 (10)
abstracting: (100<=3) states: 0
abstracting: (100<=1) states: 0
abstracting: (100<=3) states: 0
abstracting: (100<=3) states: 0
abstracting: (1<=2) states: 42,040,402,004 (10)
abstracting: (100<=3) states: 0
abstracting: (1<=2) states: 42,040,402,004 (10)
abstracting: (100<=2) states: 0
abstracting: (100<=3) states: 0
abstracting: (1<=3) states: 42,040,402,004 (10)
abstracting: (1<=1) states: 42,040,402,004 (10)
-> the formula is FALSE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec

checking: [[maxVal(a)<=1 & maxVal(c)<=3] & maxVal(da_a)<=1]
normalized: [maxVal(da_a)<=1 & [maxVal(a)<=1 & maxVal(c)<=3]]

abstracting: (100<=3) states: 0
abstracting: (100<=1) states: 0
abstracting: (1<=1) states: 42,040,402,004 (10)
-> the formula is FALSE

FORMULA CircadianClock-PT-000100-ReachabilityBounds-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m0sec


Total processing time: 0m8sec


BK_STOP 1432333068307

--------------------
content from stderr:

check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m0sec

385 595 800 536 681 623
iterations count:6143 (383), effective:1306 (81)

initing FirstDep: 0m0sec

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="CircadianClock-PT-000100"
export BK_EXAMINATION="ReachabilityBounds"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/users/gast00/fkordon/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/CircadianClock-PT-000100.tgz
mv CircadianClock-PT-000100 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2265"
echo " Executing tool marcie"
echo " Input is CircadianClock-PT-000100, examination is ReachabilityBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r008kn-ebro-143214239100294"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityBounds" = "ReachabilityComputeBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityBounds.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;