fond
Model Checking Contest @ Petri Nets 2015
Bruxelles, Belgium, June 23, 2015
Marcie compared to other tools («Surprise» models, ReachabilityComputeBounds)
Last Updated
August 19, 2015

Introduction

This page presents how Marcie do cope efficiently with the ReachabilityComputeBounds examination face to the other participating tools. In this page, we consider «Surprise» models.

The next sections will show chart comparing performances in termsof both memory and execution time.The x-axis corresponds to the challenging tool where the y-axes represents Marcie' performances. Thus, points below the diagonal of a chart denote comparisons favorables to the tool whileothers corresponds to situations where the challenging tool performs better.

You might also find plots out of the range that denote the case were at least one tool could not answer appropriately (error, time-out, could not compute or did not competed).

Marcie versus GreatSPN-Meddly

Some statistics are displayed below, based on 242 runs (121 for Marcie and 121 for GreatSPN-Meddly, so there are 121 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Marcie to GreatSPN-Meddly are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Marcie GreatSPN-Meddly Both tools   Marcie GreatSPN-Meddly
Computed OK 28 3 36   Smallest Memory Footprint
Do not compete 0 0 0 Times tool wins 28 39
Error detected 1 5 9   Shortest Execution Time
Cannot Compute + Time-out 7 28 40 Times tool wins 43 24


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

Marcie versus LoLA2.0

Some statistics are displayed below, based on 242 runs (121 for Marcie and 121 for LoLA2.0, so there are 121 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Marcie to LoLA2.0 are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Marcie LoLA2.0 Both tools   Marcie LoLA2.0
Computed OK 15 42 49   Smallest Memory Footprint
Do not compete 0 27 0 Times tool wins 24 82
Error detected 8 1 2   Shortest Execution Time
Cannot Compute + Time-out 47 0 0 Times tool wins 27 79


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

Marcie versus LTSMin

Some statistics are displayed below, based on 242 runs (121 for Marcie and 121 for LTSMin, so there are 121 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Marcie to LTSMin are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Marcie LTSMin Both tools   Marcie LTSMin
Computed OK 64 0 0   Smallest Memory Footprint
Do not compete 0 94 0 Times tool wins 64 0
Error detected 10 0 0   Shortest Execution Time
Cannot Compute + Time-out 34 14 13 Times tool wins 64 0


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

Marcie versus TAPAAL(MC)

Some statistics are displayed below, based on 242 runs (121 for Marcie and 121 for TAPAAL(MC), so there are 121 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Marcie to TAPAAL(MC) are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Marcie TAPAAL(MC) Both tools   Marcie TAPAAL(MC)
Computed OK 27 6 37   Smallest Memory Footprint
Do not compete 0 27 0 Times tool wins 27 43
Error detected 8 0 2   Shortest Execution Time
Cannot Compute + Time-out 14 16 33 Times tool wins 28 42


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

Marcie versus TAPAAL(SEQ)

Some statistics are displayed below, based on 242 runs (121 for Marcie and 121 for TAPAAL(SEQ), so there are 121 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Marcie to TAPAAL(SEQ) are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Marcie TAPAAL(SEQ) Both tools   Marcie TAPAAL(SEQ)
Computed OK 14 44 50   Smallest Memory Footprint
Do not compete 0 27 0 Times tool wins 16 92
Error detected 10 0 0   Shortest Execution Time
Cannot Compute + Time-out 47 0 0 Times tool wins 29 79


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

Marcie versus TAPAAL-OTF(PAR)

Some statistics are displayed below, based on 242 runs (121 for Marcie and 121 for TAPAAL-OTF(PAR), so there are 121 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Marcie to TAPAAL-OTF(PAR) are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Marcie TAPAAL-OTF(PAR) Both tools   Marcie TAPAAL-OTF(PAR)
Computed OK 36 3 28   Smallest Memory Footprint
Do not compete 0 27 0 Times tool wins 37 30
Error detected 10 7 0   Shortest Execution Time
Cannot Compute + Time-out 14 23 33 Times tool wins 41 26


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart

Marcie versus TAPAAL-OTF(SEQ)

Some statistics are displayed below, based on 242 runs (121 for Marcie and 121 for TAPAAL-OTF(SEQ), so there are 121 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Marcie to TAPAAL-OTF(SEQ) are shown (you may click on one graph to enlarge it).

Statistics on the execution
  Marcie TAPAAL-OTF(SEQ) Both tools   Marcie TAPAAL-OTF(SEQ)
Computed OK 26 9 38   Smallest Memory Footprint
Do not compete 0 27 0 Times tool wins 26 47
Error detected 9 8 1   Shortest Execution Time
Cannot Compute + Time-out 20 11 27 Times tool wins 36 37


On the chart below, denote cases where the two tools did computed a result, denote the cases where at least one tool did not competed, denote the cases where at least one tool did a mistake and denote the cases where at least one tool stated it could not compute a result or timed-out.

memory chart time chart