Description

This model has been extracted from the petriweb.org repository available at http://www.petriweb.org. According to the provided information, the net was designed by J. L. Peterson, from a PERT chart by F. Levy. The PERT chart contains timing information, which is not accurately translated.

Graphical representation for $N = 2$
References

This model was probably described in: Peterson, James Lyle (1981). *Petri Net Theory and the Modeling of Systems*. Prentice Hall. ISBN 0-13-661983-5. However, this was not checked, the book being unavailable in our library.

Scaling parameter

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Parameter description</th>
<th>Chosen parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>initial number of tokens on place p2</td>
<td>2, 5, 10, 20, 50, 100, 200, 500</td>
</tr>
</tbody>
</table>

Size of the model

Although the model is parameterized, its size does not depend on parameter values.

- number of places: 26
- number of transitions: 18
- number of arcs: 51

Structural properties

- **free choice** — all (different) transitions with a shared input place have no other input place
- **state machine** — every transition has exactly one input place and exactly one output place
- **marked graph** — every place has exactly one input transition and exactly one output transition
- **connected** — there is a undirected path between every two nodes (places or transitions)
- **strongly connected** — there is a directed path between every two nodes (places or transitions)
- **source place(s)** — one or more places have no input transitions
- **sink place(s)** — one or more places have no output transitions
- **source transition(s)** — one or more transitions have no input places
- **sink transition(s)** — one or more transitions have no output places
- **loop-free** — no transition has an input place that is also an output place
- **conservative** — for each transition, the number of input arcs equals the number of output arcs
- **subconservative** — for each transition, the number of input arcs equals or exceeds the number of output arcs

Behavioural properties

- **safe** — in every reachable marking, there is no more than one token on a place
- **deadlock** — there exists a reachable marking from which no transition can be fired
- **reversible** — from every reachable marking, there is a transition path going back to the initial marking
- **quasi-live** — for every transition t, there exists a reachable marking in which t can fire
- **live** — for every transition t, from every reachable marking, one can reach a marking in which t can fire

(a) stated by CÆSAR.BDD version 1.7 on all 8 instances (2, 5, 10, 20, 50, 100, 200, and 500).
(b) 11 transitions are not of a state machine, e.g., transition “t3”.
(c) place “p1” is not of a marked graph.
(d) stated by CÆSAR.BDD version 1.7 on all 8 instances (2, 5, 10, 20, 50, 100, 200, and 500).
(e) from place “p2” one cannot reach place “p1”.
(f) place “p1” is a source place.
(g) stated by CÆSAR.BDD version 1.7 on all 8 instances (2, 5, 10, 20, 50, 100, 200, and 500).
(h) stated by CÆSAR.BDD version 1.7 on all 8 instances (2, 5, 10, 20, 50, 100, 200, and 500).
(i) transition “t18” is a sink transition.
(j) stated by CÆSAR.BDD version 1.7 on all 8 instances (2, 5, 10, 20, 50, 100, 200, and 500).
(k) 11 transitions are not conservative, e.g., transition “t3”.
(l) 5 transitions are not subconservative, e.g., transition “t3”.
(m) in the initial marking, some places have several tokens (the number of which depends on N).
(n) stated by CÆSAR.BDD version 2.0 on all 8 instances (2, 5, 10, 20, 50, 100, 200, and 500).
Size of the marking graphs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of reachable markings</th>
<th>Number of transition firings</th>
<th>Max. number of tokens per place</th>
<th>Max. number of tokens per marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N = 1$</td>
<td>66</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$N = 2$</td>
<td>1501 $^{(o)}$</td>
<td>?</td>
<td>?</td>
<td>≥ 2 $^{(p)}$</td>
</tr>
<tr>
<td>$N = 3$</td>
<td>1 187 984 $^{(q)}$</td>
<td>?</td>
<td>?</td>
<td>≥ 3</td>
</tr>
<tr>
<td>$N = 10$</td>
<td>1.664×10^9 $^{(r)}$</td>
<td>?</td>
<td>?</td>
<td>≥ 10</td>
</tr>
<tr>
<td>$N = 20$</td>
<td>1.367×10^{13} $^{(s)}$</td>
<td>?</td>
<td>?</td>
<td>≥ 20</td>
</tr>
</tbody>
</table>

(o) Computed by alpina, ITS-Tools, marcie, neco, and pnxdd at MCC’2013.
(p) Lower bound given by the number of initial tokens.
(q) Computed by alpina, ITS-Tools, marcie, neco, and pnxdd at MCC’2013.
(r) Computed by ITS-Tools, marcie, and pnxdd at MCC’2013.
(s) Computed by ITS-Tools, and marcie at MCC’2013.