Introduction
This page shows the outputs produced by the execution of marcie on NeoElection/2 (P/T). We provide:
- A short summary,
- the execution chart (evolution of CPU and memory over the execution),
- the sequence of actions to be executed by the VM,
- the results of these actions.
About the Execution
Execution Summary | |||
Memory (MB) | CPU (s) | End | |
669.64 | 0.46 | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
export BK_INPUT=NeoElection-PT-2
export BK_EXAMINATION=CTLPlaceComparison
export BK_TOOL=marcie
export BK_RESULT_DIR=/tmp
export BK_LOG_FILE=/tmp/BenchKit_head_log_file.1659
export BIN_DIR=/home/mcc/BenchKit/bin
cd /home/mcc/BenchKit/INPUTS/NeoElection-PT-2
echo =====================================================================
echo ' Generated by BenchKit 1.0'
echo ' Executing tool marcie:'
echo ' Test is NeoElection-PT-2, examination is CTLPlaceComparison'
echo =====================================================================
echo
echo --------------------
echo 'content from stdout:'
echo
bash /home/mcc/BenchKit/BenchKit_head.sh
Execution Outputs of marcie for NeoElection/2 (P/T)
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
execution on node 41: cluster1u43.lip6.fr (runId=136959876701548_n_41)
=====================================================================
runnning marcie on NeoElection-PT-2 (CTLPlaceComparison)
We got on stdout:
Probing ssh
Waiting ssh to respond
Ssh up and responding
=====================================================================
Generated by BenchKit 1.0
Executing tool marcie:
Test is NeoElection-PT-2, examination is CTLPlaceComparison
=====================================================================
--------------------
content from stdout:
START 1369655051
Marcie rev. 1103M (build: rohrch on 2013-02-17)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mem=4 --mcc-file=CTLPlaceComparison.txt
constant oo registered with value < INFINITY >
parse successfull!
(NrP: 438 NrTr: 357)
net check time: 0m0sec
parse mcc successfull!
place and transition orderings generation:0m0sec
init dd package: 0m1sec
RS generation: 0m0sec
-> reachability set: #nodes 1806 (1.8e+03) #states 241
starting CTL model checker
--------------------------
checking: AF [[[[poll__networl_1_1_AnsP_1=network_1_1_AnsP_1 & [poll__networl_1_0_RI_1=network_1_0_RI_1 & [[poll__networl_2_0_AI_2=network_2_0_AI_2 & [[poll__networl_1_0_AnsP_2=network_1_0_AnsP_2 & [poll__networl_2_2_RI_1=network_2_2_RI_1 & [poll__networl_1_2_RP_0=network_1_2_RP_0 & [poll__networl_1_2_AskP_1=network_1_2_AskP_1 & [[[[[[poll__networl_0_1_AI_2=network_0_1_AI_2 & [[poll__networl_0_2_RI_1=network_0_2_RI_1 & [poll__networl_0_1_RI_0=network_0_1_RI_0 & [poll__networl_2_2_RP_1=network_2_2_RP_1 & [[[[poll__networl_2_2_AnsP_2=network_2_2_AnsP_2 & [poll__networl_0_2_AnnP_0=network_0_2_AnnP_0 & [poll__networl_2_1_RI_2=network_2_1_RI_2 & [poll__networl_0_0_AnsP_0=network_0_0_AnsP_0 & [poll__networl_2_1_RP_1=network_2_1_RP_1 & [poll__networl_2_0_AnsP_2=network_2_0_AnsP_2 & [poll__networl_2_0_AnsP_0=network_2_0_AnsP_0 & [poll__networl_1_1_AskP_2=network_1_1_AskP_2 & [poll__networl_0_1_AskP_2=network_0_1_AskP_2 & [poll__networl_2_0_RP_0=network_2_0_RP_0 & [poll__networl_1_0_AI_0=network_1_0_AI_0 & [poll__networl_2_0_AI_0=network_2_0_AI_0 & [poll__networl_2_1_AnnP_0=network_2_1_AnnP_0 & [poll__networl_1_1_AnnP_0=network_1_1_AnnP_0 & [poll__networl_1_0_AskP_2=network_1_0_AskP_2 & [poll__networl_0_1_AnsP_2=network_0_1_AnsP_2 & [poll__networl_0_0_RI_0=network_0_0_RI_0 & [poll__networl_1_2_AskP_0=network_1_2_AskP_0 & [[poll__networl_0_0_RP_2=network_0_0_RP_2 & [[[poll__networl_0_1_RP_2=network_0_1_RP_2 & [poll__networl_1_1_RI_2=network_1_1_RI_2 & [poll__networl_1_1_RI_1=network_1_1_RI_1 & [poll__networl_2_1_AI_2=network_2_1_AI_2 & [poll__networl_0_0_RP_1=network_0_0_RP_1 & [poll__networl_0_2_AskP_2=network_0_2_AskP_2 & [poll__networl_1_2_AI_2=network_1_2_AI_2 & [poll__networl_0_2_AI_1=network_0_2_AI_1 & [poll__networl_1_0_AnnP_0=network_1_0_AnnP_0 & [poll__networl_1_1_AskP_0=network_1_1_AskP_0 & [poll__networl_2_1_AI_1=network_2_1_AI_1 & [poll__networl_0_2_RI_2=network_0_2_RI_2 & [poll__networl_1_0_AI_1=network_1_0_AI_1 & [poll__networl_0_0_RI_2=network_0_0_RI_2 & [poll__networl_0_0_AskP_1=network_0_0_AskP_1 & [poll__networl_0_2_AnsP_2=network_0_2_AnsP_2 & [[poll__networl_1_0_AnsP_0=network_1_0_AnsP_0 & [poll__networl_2_2_RP_2=network_2_2_RP_2 & [poll__networl_1_2_AskP_2=network_1_2_AskP_2 & [poll__networl_0_1_RI_1=network_0_1_RI_1 & [poll__networl_0_1_AI_0=network_0_1_AI_0 & [poll__networl_0_1_AnsP_1=network_0_1_AnsP_1 & [poll__networl_2_2_RI_0=network_2_2_RI_0 & [poll__networl_0_0_RI_1=network_0_0_RI_1 & [poll__networl_0_0_AskP_2=network_0_0_AskP_2 & [poll__networl_1_0_RP_2=network_1_0_RP_2 & [poll__networl_1_2_AnsP_0=network_1_2_AnsP_0 & [[poll__networl_0_1_RI_2=network_0_1_RI_2 & [poll__networl_0_1_AnsP_0=network_0_1_AnsP_0 & [poll__networl_0_2_RP_2=network_0_2_RP_2 & [poll__networl_2_2_AskP_2=network_2_2_AskP_2 & [poll__networl_2_1_AnsP_1=network_2_1_AnsP_1 & [poll__networl_2_2_AnsP_1=network_2_2_AnsP_1 & [poll__networl_2_0_AskP_0=network_2_0_AskP_0 & [poll__networl_2_2_AnnP_0=network_2_2_AnnP_0 & [poll__networl_2_2_AskP_1=network_2_2_AskP_1 & [poll__networl_1_1_RI_0=network_1_1_RI_0 & [poll__networl_1_1_AI_1=network_1_1_AI_1 & [poll__networl_0_2_AnsP_1=network_0_2_AnsP_1 & [poll__networl_2_0_AnnP_1=network_2_0_AnnP_1 & [poll__networl_0_0_AnnP_0=network_0_0_AnnP_0 & [poll__networl_0_2_AI_0=network_0_2_AI_0 & [poll__networl_1_2_AnnP_1=network_1_2_AnnP_1 & [poll__networl_1_0_AnnP_2=network_1_0_AnnP_2 & [poll__networl_1_2_AnsP_2=network_1_2_AnsP_2 & [poll__networl_2_0_AskP_2=network_2_0_AskP_2 & [poll__networl_2_0_RI_2=network_2_0_RI_2 & [poll__networl_0_2_AnnP_2=network_0_2_AnnP_2 & [poll__networl_0_0_RP_0=network_0_0_RP_0 & [poll__networl_1_0_RI_0=network_1_0_RI_0 & [poll__networl_2_1_AI_0=network_2_1_AI_0 & [poll__networl_0_0_AnnP_2=network_0_0_AnnP_2 & [poll__networl_2_2_RI_2=network_2_2_RI_2 & [poll__networl_1_1_AI_0=network_1_1_AI_0 & [poll__networl_1_2_RI_0=network_1_2_RI_0 & [poll__networl_2_1_RI_1=network_2_1_RI_1 & [poll__networl_2_2_AnnP_2=network_2_2_AnnP_2 & [poll__networl_2_0_AI_1=network_2_0_AI_1 & [poll__networl_0_2_RP_0=network_0_2_RP_0 & [poll__networl_1_0_AnsP_1=network_1_0_AnsP_1 & [poll__networl_0_0_AnsP_1=network_0_0_AnsP_1 & [poll__networl_2_2_AI_2=network_2_2_AI_2 & [poll__networl_0_2_AnsP_0=network_0_2_AnsP_0 & [poll__networl_2_2_RP_0=network_2_2_RP_0 & [poll__networl_1_0_AnnP_1=network_1_0_AnnP_1 & [poll__networl_2_1_AnsP_0=network_2_1_AnsP_0 & [poll__networl_1_0_RI_2=network_1_0_RI_2 & [poll__networl_2_2_AI_1=network_2_2_AI_1 & [poll__networl_2_0_AskP_1=network_2_0_AskP_1 & [poll__networl_0_2_AnnP_1=network_0_2_AnnP_1 & [poll__networl_2_2_AskP_0=network_2_2_AskP_0 & [poll__networl_2_1_RP_2=network_2_1_RP_2 & [poll__networl_2_2_AnsP_0=network_2_2_AnsP_0 & [poll__networl_0_1_RP_0=network_0_1_RP_0 & [poll__networl_1_1_RP_0=network_1_1_RP_0 & [poll__networl_2_2_AnnP_1=network_2_2_AnnP_1 & [poll__networl_0_1_AskP_0=network_0_1_AskP_0 & [poll__networl_1_0_AskP_1=network_1_0_AskP_1 & [poll__networl_1_1_AnnP_1=network_1_1_AnnP_1 & [poll__networl_1_0_RP_0=network_1_0_RP_0 & [[[[poll__networl_0_0_AI_2=network_0_0_AI_2 & [poll__networl_2_0_RP_2=network_2_0_RP_2 & [poll__networl_1_2_AI_1=network_1_2_AI_1 & [poll__networl_2_0_RI_1=network_2_0_RI_1 & [[poll__networl_0_2_AI_2=network_0_2_AI_2 & [poll__networl_1_2_RI_1=network_1_2_RI_1 & [[[poll__networl_1_2_RI_2=network_1_2_RI_2 & [poll__networl_2_0_RI_0=network_2_0_RI_0 & [poll__networl_0_2_RI_0=network_0_2_RI_0 & [[[poll__networl_0_0_AskP_0=network_0_0_AskP_0 & [poll__networl_0_2_RP_1=network_0_2_RP_1 & [poll__networl_1_1_RP_2=network_1_1_RP_2 & [[poll__networl_0_1_AskP_1=network_0_1_AskP_1 & [[poll__networl_2_0_RP_1=network_2_0_RP_1 & [poll__networl_0_0_AnnP_1=network_0_0_AnnP_1 & [[[poll__networl_2_0_AnnP_0=network_2_0_AnnP_0 & [poll__networl_1_2_AnsP_1=network_1_2_AnsP_1 & [poll__networl_1_1_AnsP_2=network_1_1_AnsP_2 & [poll__networl_0_0_AI_1=network_0_0_AI_1 & [poll__networl_1_2_AnnP_0=network_1_2_AnnP_0 & [poll__networl_1_1_AskP_1=network_1_1_AskP_1 & [poll__networl_2_0_AnnP_2=network_2_0_AnnP_2 & [true & poll__networl_1_0_RP_1=network_1_0_RP_1]]]]]]]] & poll__networl_0_1_AI_1=network_0_1_AI_1] & poll__networl_1_0_AI_2=network_1_0_AI_2]]] & poll__networl_1_2_AnnP_2=network_1_2_AnnP_2]] & poll__networl_2_1_AnnP_1=network_2_1_AnnP_1]]]] & poll__networl_0_2_AskP_1=network_0_2_AskP_1] & poll__networl_1_2_RP_1=network_1_2_RP_1]]]] & poll__networl_2_1_AnsP_2=network_2_1_AnsP_2] & poll__networl_0_0_AnsP_2=network_0_0_AnsP_2]]] & poll__networl_2_2_AI_0=network_2_2_AI_0]]]]] & poll__networl_0_1_AnnP_2=network_0_1_AnnP_2] & poll__networl_2_1_RP_0=network_2_1_RP_0] & poll__networl_1_2_AI_0=network_1_2_AI_0]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & poll__networl_2_1_AnnP_2=network_2_1_AnnP_2]]]]]]]]]]]] & poll__networl_1_1_AI_2=network_1_1_AI_2]]]]]]]]]]]]]]]]] & poll__networl_1_1_RP_1=network_1_1_RP_1] & poll__networl_1_0_AskP_0=network_1_0_AskP_0]] & poll__networl_0_2_AskP_0=network_0_2_AskP_0]]]]]]]]]]]]]]]]]]] & poll__networl_1_1_AnsP_0=network_1_1_AnsP_0] & poll__networl_2_1_AskP_0=network_2_1_AskP_0] & poll__networl_1_2_RP_2=network_1_2_RP_2]]]] & poll__networl_0_1_AnnP_0=network_0_1_AnnP_0]] & poll__networl_2_0_AnsP_1=network_2_0_AnsP_1] & poll__networl_2_1_RI_0=network_2_1_RI_0] & poll__networl_0_1_RP_1=network_0_1_RP_1] & poll__networl_0_1_AnnP_1=network_0_1_AnnP_1] & poll__networl_1_1_AnnP_2=network_1_1_AnnP_2]]]]] & poll__networl_2_1_AskP_1=network_2_1_AskP_1]] & poll__networl_0_0_AI_0=network_0_0_AI_0]]] & poll__networl_2_1_AskP_2=network_2_1_AskP_2] & [[[[network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2 & [[[[network_0_2_AI_0!=poll__networl_0_2_AI_0 & [[[network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0 & [network_0_2_RI_2!=poll__networl_0_2_RI_2 & [network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [[network_2_0_AI_1!=poll__networl_2_0_AI_1 & [network_0_2_AI_2!=poll__networl_0_2_AI_2 & [network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2 & [network_1_1_RI_1!=poll__networl_1_1_RI_1 & [network_0_0_RP_1!=poll__networl_0_0_RP_1 & [network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [network_0_1_RP_1!=poll__networl_0_1_RP_1 & [network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [network_0_1_RI_1!=poll__networl_0_1_RI_1 & [network_1_0_AskP_1!=poll__networl_1_0_AskP_1 & [[network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0 & [network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1 & [network_1_1_RP_1!=poll__networl_1_1_RP_1 & [network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [[network_0_0_AI_1!=poll__networl_0_0_AI_1 & [network_2_2_RP_0!=poll__networl_2_2_RP_0 & [network_0_2_AskP_1!=poll__networl_0_2_AskP_1 & [network_2_0_RI_0!=poll__networl_2_0_RI_0 & [network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1 & [network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0 & [network_2_1_RP_0!=poll__networl_2_1_RP_0 & [network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [[network_1_1_AskP_2!=poll__networl_1_1_AskP_2 & [network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0 & [network_1_2_RI_2!=poll__networl_1_2_RI_2 & [[network_2_2_RI_2!=poll__networl_2_2_RI_2 & [[network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2 & [network_0_1_RP_2!=poll__networl_0_1_RP_2 & [network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1 & [network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1 & [network_0_1_RI_0!=poll__networl_0_1_RI_0 & [network_0_0_RP_0!=poll__networl_0_0_RP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [network_0_1_AI_1!=poll__networl_0_1_AI_1 & [network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2 & [network_2_0_RI_1!=poll__networl_2_0_RI_1 & [network_2_1_AI_1!=poll__networl_2_1_AI_1 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1 & [network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [network_1_2_AskP_2!=poll__networl_1_2_AskP_2 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [network_1_1_AI_2!=poll__networl_1_1_AI_2 & [network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2 & [network_1_2_AI_1!=poll__networl_1_2_AI_1 & [network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2 & [network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_0_0_RI_0!=poll__networl_0_0_RI_0 & [network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_0_RI_2!=poll__networl_2_0_RI_2 & [network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_1_0_AI_1!=poll__networl_1_0_AI_1 & [network_0_0_AI_0!=poll__networl_0_0_AI_0 & [network_1_1_AI_1!=poll__networl_1_1_AI_1 & [network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_2_1_RI_1!=poll__networl_2_1_RI_1 & [network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [network_2_2_RP_1!=poll__networl_2_2_RP_1 & [network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [network_0_0_AskP_1!=poll__networl_0_0_AskP_1 & [network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0 & [network_1_2_RI_1!=poll__networl_1_2_RI_1 & [network_1_0_AI_0!=poll__networl_1_0_AI_0 & [network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [network_1_2_AI_0!=poll__networl_1_2_AI_0 & [network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1 & [network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [network_0_2_RP_1!=poll__networl_0_2_RP_1 & [network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2 & [network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [network_1_2_RP_0!=poll__networl_1_2_RP_0 & [network_2_0_AskP_0!=poll__networl_2_0_AskP_0 & [network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1 & [network_1_2_AI_2!=poll__networl_1_2_AI_2 & [[[network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [[network_0_2_AI_1!=poll__networl_0_2_AI_1 & [network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [network_2_2_AI_2!=poll__networl_2_2_AI_2 & [[[network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [[[[network_0_1_AskP_2!=poll__networl_0_1_AskP_2 & [[[[[network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [[[[[[network_1_1_RP_0!=poll__networl_1_1_RP_0 & [true & network_1_1_RP_2!=poll__networl_1_1_RP_2]] & network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0] & network_1_0_AI_2!=poll__networl_1_0_AI_2] & network_0_2_RI_1!=poll__networl_0_2_RI_1] & network_0_2_RP_0!=poll__networl_0_2_RP_0] & network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0]]] & network_2_0_AskP_1!=poll__networl_2_0_AskP_1] & network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0] & network_0_0_RI_2!=poll__networl_0_0_RI_2] & network_1_0_RI_2!=poll__networl_1_0_RI_2]] & network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0] & network_0_0_AI_2!=poll__networl_0_0_AI_2] & network_2_2_RI_0!=poll__networl_2_2_RI_0]]]] & network_1_2_RP_2!=poll__networl_1_2_RP_2] & network_1_1_RI_0!=poll__networl_1_1_RI_0]]]] & network_2_0_AI_0!=poll__networl_2_0_AI_0]]] & network_2_1_AskP_1!=poll__networl_2_1_AskP_1] & network_2_0_RP_0!=poll__networl_2_0_RP_0]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & network_1_2_AskP_0!=poll__networl_1_2_AskP_0]] & network_1_0_RI_1!=poll__networl_1_0_RI_1]]]] & network_2_0_AskP_2!=poll__networl_2_0_AskP_2]]]]]]]]]]]] & network_2_2_RI_1!=poll__networl_2_2_RI_1]]]]]]]] & network_0_0_AskP_0!=poll__networl_0_0_AskP_0]]]]]]]]]]]]]] & network_2_2_AskP_1!=poll__networl_2_2_AskP_1]]]] & network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0] & network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0]] & network_0_1_AI_2!=poll__networl_0_1_AI_2] & network_2_0_AI_2!=poll__networl_2_0_AI_2] & network_1_2_RI_0!=poll__networl_1_2_RI_0]] & network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2] & network_1_0_RI_0!=poll__networl_1_0_RI_0] & network_2_2_RP_2!=poll__networl_2_2_RP_2]]]
normalized: ~ [EG [~ [[[network_2_2_RP_2!=poll__networl_2_2_RP_2 & [network_1_0_RI_0!=poll__networl_1_0_RI_0 & [network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2 & [network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2 & [network_1_2_RI_0!=poll__networl_1_2_RI_0 & [network_2_0_AI_2!=poll__networl_2_0_AI_2 & [network_0_1_AI_2!=poll__networl_0_1_AI_2 & [network_0_2_AI_0!=poll__networl_0_2_AI_0 & [network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0 & [network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0 & [network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0 & [network_0_2_RI_2!=poll__networl_0_2_RI_2 & [network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [network_2_2_AskP_1!=poll__networl_2_2_AskP_1 & [network_2_0_AI_1!=poll__networl_2_0_AI_1 & [network_0_2_AI_2!=poll__networl_0_2_AI_2 & [network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2 & [network_1_1_RI_1!=poll__networl_1_1_RI_1 & [network_0_0_RP_1!=poll__networl_0_0_RP_1 & [network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [network_0_1_RP_1!=poll__networl_0_1_RP_1 & [network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [network_0_1_RI_1!=poll__networl_0_1_RI_1 & [network_1_0_AskP_1!=poll__networl_1_0_AskP_1 & [network_0_0_AskP_0!=poll__networl_0_0_AskP_0 & [network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0 & [network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1 & [network_1_1_RP_1!=poll__networl_1_1_RP_1 & [network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [network_2_2_RI_1!=poll__networl_2_2_RI_1 & [network_0_0_AI_1!=poll__networl_0_0_AI_1 & [network_2_2_RP_0!=poll__networl_2_2_RP_0 & [network_0_2_AskP_1!=poll__networl_0_2_AskP_1 & [network_2_0_RI_0!=poll__networl_2_0_RI_0 & [network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1 & [network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0 & [network_2_1_RP_0!=poll__networl_2_1_RP_0 & [network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [network_2_0_AskP_2!=poll__networl_2_0_AskP_2 & [network_1_1_AskP_2!=poll__networl_1_1_AskP_2 & [network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0 & [network_1_2_RI_2!=poll__networl_1_2_RI_2 & [network_1_0_RI_1!=poll__networl_1_0_RI_1 & [network_2_2_RI_2!=poll__networl_2_2_RI_2 & [network_1_2_AskP_0!=poll__networl_1_2_AskP_0 & [network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2 & [network_0_1_RP_2!=poll__networl_0_1_RP_2 & [network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1 & [network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1 & [network_0_1_RI_0!=poll__networl_0_1_RI_0 & [network_0_0_RP_0!=poll__networl_0_0_RP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [network_0_1_AI_1!=poll__networl_0_1_AI_1 & [network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2 & [network_2_0_RI_1!=poll__networl_2_0_RI_1 & [network_2_1_AI_1!=poll__networl_2_1_AI_1 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1 & [network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [network_1_2_AskP_2!=poll__networl_1_2_AskP_2 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [network_1_1_AI_2!=poll__networl_1_1_AI_2 & [network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2 & [network_1_2_AI_1!=poll__networl_1_2_AI_1 & [network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2 & [network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_0_0_RI_0!=poll__networl_0_0_RI_0 & [network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_0_RI_2!=poll__networl_2_0_RI_2 & [network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_1_0_AI_1!=poll__networl_1_0_AI_1 & [network_0_0_AI_0!=poll__networl_0_0_AI_0 & [network_1_1_AI_1!=poll__networl_1_1_AI_1 & [network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_2_1_RI_1!=poll__networl_2_1_RI_1 & [network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [network_2_2_RP_1!=poll__networl_2_2_RP_1 & [network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [network_0_0_AskP_1!=poll__networl_0_0_AskP_1 & [network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0 & [network_1_2_RI_1!=poll__networl_1_2_RI_1 & [network_1_0_AI_0!=poll__networl_1_0_AI_0 & [network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [network_1_2_AI_0!=poll__networl_1_2_AI_0 & [network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1 & [network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [network_0_2_RP_1!=poll__networl_0_2_RP_1 & [network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2 & [network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [network_1_2_RP_0!=poll__networl_1_2_RP_0 & [network_2_0_AskP_0!=poll__networl_2_0_AskP_0 & [network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1 & [network_1_2_AI_2!=poll__networl_1_2_AI_2 & [network_2_0_RP_0!=poll__networl_2_0_RP_0 & [network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [network_2_0_AI_0!=poll__networl_2_0_AI_0 & [network_0_2_AI_1!=poll__networl_0_2_AI_1 & [network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [network_2_2_AI_2!=poll__networl_2_2_AI_2 & [network_1_1_RI_0!=poll__networl_1_1_RI_0 & [network_1_2_RP_2!=poll__networl_1_2_RP_2 & [network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [network_2_2_RI_0!=poll__networl_2_2_RI_0 & [network_0_0_AI_2!=poll__networl_0_0_AI_2 & [network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0 & [network_0_1_AskP_2!=poll__networl_0_1_AskP_2 & [network_1_0_RI_2!=poll__networl_1_0_RI_2 & [network_0_0_RI_2!=poll__networl_0_0_RI_2 & [network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0 & [network_2_0_AskP_1!=poll__networl_2_0_AskP_1 & [network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0 & [network_0_2_RP_0!=poll__networl_0_2_RP_0 & [network_0_2_RI_1!=poll__networl_0_2_RI_1 & [network_1_0_AI_2!=poll__networl_1_0_AI_2 & [network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0 & [network_1_1_RP_0!=poll__networl_1_1_RP_0 & [network_1_1_RP_2!=poll__networl_1_1_RP_2 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & [poll__networl_2_1_AskP_2=network_2_1_AskP_2 & [poll__networl_1_1_AnsP_1=network_1_1_AnsP_1 & [poll__networl_1_0_RI_1=network_1_0_RI_1 & [poll__networl_0_0_AI_0=network_0_0_AI_0 & [poll__networl_2_0_AI_2=network_2_0_AI_2 & [poll__networl_2_1_AskP_1=network_2_1_AskP_1 & [poll__networl_1_0_AnsP_2=network_1_0_AnsP_2 & [poll__networl_2_2_RI_1=network_2_2_RI_1 & [poll__networl_1_2_RP_0=network_1_2_RP_0 & [poll__networl_1_2_AskP_1=network_1_2_AskP_1 & [poll__networl_1_1_AnnP_2=network_1_1_AnnP_2 & [poll__networl_0_1_AnnP_1=network_0_1_AnnP_1 & [poll__networl_0_1_RP_1=network_0_1_RP_1 & [poll__networl_2_1_RI_0=network_2_1_RI_0 & [poll__networl_2_0_AnsP_1=network_2_0_AnsP_1 & [poll__networl_0_1_AI_2=network_0_1_AI_2 & [poll__networl_0_1_AnnP_0=network_0_1_AnnP_0 & [poll__networl_0_2_RI_1=network_0_2_RI_1 & [poll__networl_0_1_RI_0=network_0_1_RI_0 & [poll__networl_2_2_RP_1=network_2_2_RP_1 & [poll__networl_1_2_RP_2=network_1_2_RP_2 & [poll__networl_2_1_AskP_0=network_2_1_AskP_0 & [poll__networl_1_1_AnsP_0=network_1_1_AnsP_0 & [poll__networl_2_2_AnsP_2=network_2_2_AnsP_2 & [poll__networl_0_2_AnnP_0=network_0_2_AnnP_0 & [poll__networl_2_1_RI_2=network_2_1_RI_2 & [poll__networl_0_0_AnsP_0=network_0_0_AnsP_0 & [poll__networl_2_1_RP_1=network_2_1_RP_1 & [poll__networl_2_0_AnsP_2=network_2_0_AnsP_2 & [poll__networl_2_0_AnsP_0=network_2_0_AnsP_0 & [poll__networl_1_1_AskP_2=network_1_1_AskP_2 & [poll__networl_0_1_AskP_2=network_0_1_AskP_2 & [poll__networl_2_0_RP_0=network_2_0_RP_0 & [poll__networl_1_0_AI_0=network_1_0_AI_0 & [poll__networl_2_0_AI_0=network_2_0_AI_0 & [poll__networl_2_1_AnnP_0=network_2_1_AnnP_0 & [poll__networl_1_1_AnnP_0=network_1_1_AnnP_0 & [poll__networl_1_0_AskP_2=network_1_0_AskP_2 & [poll__networl_0_1_AnsP_2=network_0_1_AnsP_2 & [poll__networl_0_0_RI_0=network_0_0_RI_0 & [poll__networl_1_2_AskP_0=network_1_2_AskP_0 & [poll__networl_0_2_AskP_0=network_0_2_AskP_0 & [poll__networl_0_0_RP_2=network_0_0_RP_2 & [poll__networl_1_0_AskP_0=network_1_0_AskP_0 & [poll__networl_1_1_RP_1=network_1_1_RP_1 & [poll__networl_0_1_RP_2=network_0_1_RP_2 & [poll__networl_1_1_RI_2=network_1_1_RI_2 & [poll__networl_1_1_RI_1=network_1_1_RI_1 & [poll__networl_2_1_AI_2=network_2_1_AI_2 & [poll__networl_0_0_RP_1=network_0_0_RP_1 & [poll__networl_0_2_AskP_2=network_0_2_AskP_2 & [poll__networl_1_2_AI_2=network_1_2_AI_2 & [poll__networl_0_2_AI_1=network_0_2_AI_1 & [poll__networl_1_0_AnnP_0=network_1_0_AnnP_0 & [poll__networl_1_1_AskP_0=network_1_1_AskP_0 & [poll__networl_2_1_AI_1=network_2_1_AI_1 & [poll__networl_0_2_RI_2=network_0_2_RI_2 & [poll__networl_1_0_AI_1=network_1_0_AI_1 & [poll__networl_0_0_RI_2=network_0_0_RI_2 & [poll__networl_0_0_AskP_1=network_0_0_AskP_1 & [poll__networl_0_2_AnsP_2=network_0_2_AnsP_2 & [poll__networl_1_1_AI_2=network_1_1_AI_2 & [poll__networl_1_0_AnsP_0=network_1_0_AnsP_0 & [poll__networl_2_2_RP_2=network_2_2_RP_2 & [poll__networl_1_2_AskP_2=network_1_2_AskP_2 & [poll__networl_0_1_RI_1=network_0_1_RI_1 & [poll__networl_0_1_AI_0=network_0_1_AI_0 & [poll__networl_0_1_AnsP_1=network_0_1_AnsP_1 & [poll__networl_2_2_RI_0=network_2_2_RI_0 & [poll__networl_0_0_RI_1=network_0_0_RI_1 & [poll__networl_0_0_AskP_2=network_0_0_AskP_2 & [poll__networl_1_0_RP_2=network_1_0_RP_2 & [poll__networl_1_2_AnsP_0=network_1_2_AnsP_0 & [poll__networl_2_1_AnnP_2=network_2_1_AnnP_2 & [poll__networl_0_1_RI_2=network_0_1_RI_2 & [poll__networl_0_1_AnsP_0=network_0_1_AnsP_0 & [poll__networl_0_2_RP_2=network_0_2_RP_2 & [poll__networl_2_2_AskP_2=network_2_2_AskP_2 & [poll__networl_2_1_AnsP_1=network_2_1_AnsP_1 & [poll__networl_2_2_AnsP_1=network_2_2_AnsP_1 & [poll__networl_2_0_AskP_0=network_2_0_AskP_0 & [poll__networl_2_2_AnnP_0=network_2_2_AnnP_0 & [poll__networl_2_2_AskP_1=network_2_2_AskP_1 & [poll__networl_1_1_RI_0=network_1_1_RI_0 & [poll__networl_1_1_AI_1=network_1_1_AI_1 & [poll__networl_0_2_AnsP_1=network_0_2_AnsP_1 & [poll__networl_2_0_AnnP_1=network_2_0_AnnP_1 & [poll__networl_0_0_AnnP_0=network_0_0_AnnP_0 & [poll__networl_0_2_AI_0=network_0_2_AI_0 & [poll__networl_1_2_AnnP_1=network_1_2_AnnP_1 & [poll__networl_1_0_AnnP_2=network_1_0_AnnP_2 & [poll__networl_1_2_AnsP_2=network_1_2_AnsP_2 & [poll__networl_2_0_AskP_2=network_2_0_AskP_2 & [poll__networl_2_0_RI_2=network_2_0_RI_2 & [poll__networl_0_2_AnnP_2=network_0_2_AnnP_2 & [poll__networl_0_0_RP_0=network_0_0_RP_0 & [poll__networl_1_0_RI_0=network_1_0_RI_0 & [poll__networl_2_1_AI_0=network_2_1_AI_0 & [poll__networl_0_0_AnnP_2=network_0_0_AnnP_2 & [poll__networl_2_2_RI_2=network_2_2_RI_2 & [poll__networl_1_1_AI_0=network_1_1_AI_0 & [poll__networl_1_2_RI_0=network_1_2_RI_0 & [poll__networl_2_1_RI_1=network_2_1_RI_1 & [poll__networl_2_2_AnnP_2=network_2_2_AnnP_2 & [poll__networl_2_0_AI_1=network_2_0_AI_1 & [poll__networl_0_2_RP_0=network_0_2_RP_0 & [poll__networl_1_0_AnsP_1=network_1_0_AnsP_1 & [poll__networl_0_0_AnsP_1=network_0_0_AnsP_1 & [poll__networl_2_2_AI_2=network_2_2_AI_2 & [poll__networl_0_2_AnsP_0=network_0_2_AnsP_0 & [poll__networl_2_2_RP_0=network_2_2_RP_0 & [poll__networl_1_0_AnnP_1=network_1_0_AnnP_1 & [poll__networl_2_1_AnsP_0=network_2_1_AnsP_0 & [poll__networl_1_0_RI_2=network_1_0_RI_2 & [poll__networl_2_2_AI_1=network_2_2_AI_1 & [poll__networl_2_0_AskP_1=network_2_0_AskP_1 & [poll__networl_0_2_AnnP_1=network_0_2_AnnP_1 & [poll__networl_2_2_AskP_0=network_2_2_AskP_0 & [poll__networl_2_1_RP_2=network_2_1_RP_2 & [poll__networl_2_2_AnsP_0=network_2_2_AnsP_0 & [poll__networl_0_1_RP_0=network_0_1_RP_0 & [poll__networl_1_1_RP_0=network_1_1_RP_0 & [poll__networl_2_2_AnnP_1=network_2_2_AnnP_1 & [poll__networl_0_1_AskP_0=network_0_1_AskP_0 & [poll__networl_1_0_AskP_1=network_1_0_AskP_1 & [poll__networl_1_1_AnnP_1=network_1_1_AnnP_1 & [poll__networl_1_0_RP_0=network_1_0_RP_0 & [poll__networl_1_2_AI_0=network_1_2_AI_0 & [poll__networl_2_1_RP_0=network_2_1_RP_0 & [poll__networl_0_1_AnnP_2=network_0_1_AnnP_2 & [poll__networl_0_0_AI_2=network_0_0_AI_2 & [poll__networl_2_0_RP_2=network_2_0_RP_2 & [poll__networl_1_2_AI_1=network_1_2_AI_1 & [poll__networl_2_0_RI_1=network_2_0_RI_1 & [poll__networl_2_2_AI_0=network_2_2_AI_0 & [poll__networl_0_2_AI_2=network_0_2_AI_2 & [poll__networl_1_2_RI_1=network_1_2_RI_1 & [poll__networl_0_0_AnsP_2=network_0_0_AnsP_2 & [poll__networl_2_1_AnsP_2=network_2_1_AnsP_2 & [poll__networl_1_2_RI_2=network_1_2_RI_2 & [poll__networl_2_0_RI_0=network_2_0_RI_0 & [poll__networl_0_2_RI_0=network_0_2_RI_0 & [poll__networl_1_2_RP_1=network_1_2_RP_1 & [poll__networl_0_2_AskP_1=network_0_2_AskP_1 & [poll__networl_0_0_AskP_0=network_0_0_AskP_0 & [poll__networl_0_2_RP_1=network_0_2_RP_1 & [poll__networl_1_1_RP_2=network_1_1_RP_2 & [poll__networl_2_1_AnnP_1=network_2_1_AnnP_1 & [poll__networl_0_1_AskP_1=network_0_1_AskP_1 & [poll__networl_1_2_AnnP_2=network_1_2_AnnP_2 & [poll__networl_2_0_RP_1=network_2_0_RP_1 & [poll__networl_0_0_AnnP_1=network_0_0_AnnP_1 & [poll__networl_1_0_AI_2=network_1_0_AI_2 & [poll__networl_0_1_AI_1=network_0_1_AI_1 & [poll__networl_2_0_AnnP_0=network_2_0_AnnP_0 & [poll__networl_1_2_AnsP_1=network_1_2_AnsP_1 & [poll__networl_1_1_AnsP_2=network_1_1_AnsP_2 & [poll__networl_0_0_AI_1=network_0_0_AI_1 & [poll__networl_1_2_AnnP_0=network_1_2_AnnP_0 & [poll__networl_1_1_AskP_1=network_1_1_AskP_1 & [poll__networl_2_0_AnnP_2=network_2_0_AnnP_2 & [poll__networl_1_0_RP_1=network_1_0_RP_1 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
EG iterations: 0
-> the formula is FALSE
FORMULA p_1846_placecomparison_eq_and FALSE TECHNIQUES DECISION_DIAGRAMS
mc time: 0m0sec
checking: EF [[[network_2_2_RP_2!=poll__networl_2_2_RP_2 & [network_1_0_RI_0!=poll__networl_1_0_RI_0 & [[network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2 & [network_1_2_RI_0!=poll__networl_1_2_RI_0 & [network_2_0_AI_2!=poll__networl_2_0_AI_2 & [[network_0_2_AI_0!=poll__networl_0_2_AI_0 & [network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0 & [[network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0 & [[network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [[[[network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2 & [network_1_1_RI_1!=poll__networl_1_1_RI_1 & [network_0_0_RP_1!=poll__networl_0_0_RP_1 & [network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [[network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [[[[[[[[network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [[[[[[[network_2_0_RI_0!=poll__networl_2_0_RI_0 & [[[[network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [network_2_0_AskP_2!=poll__networl_2_0_AskP_2 & [network_1_1_AskP_2!=poll__networl_1_1_AskP_2 & [network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0 & [[network_1_0_RI_1!=poll__networl_1_0_RI_1 & [network_2_2_RI_2!=poll__networl_2_2_RI_2 & [network_1_2_AskP_0!=poll__networl_1_2_AskP_0 & [network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2 & [network_0_1_RP_2!=poll__networl_0_1_RP_2 & [network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1 & [[[[network_0_0_RP_0!=poll__networl_0_0_RP_0 & [[[[[[[[network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [network_1_2_AskP_2!=poll__networl_1_2_AskP_2 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [[[[[network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [[[[[network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [[network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_1_0_AI_1!=poll__networl_1_0_AI_1 & [network_0_0_AI_0!=poll__networl_0_0_AI_0 & [[network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_2_1_RI_1!=poll__networl_2_1_RI_1 & [network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [network_2_2_RP_1!=poll__networl_2_2_RP_1 & [network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [network_0_0_AskP_1!=poll__networl_0_0_AskP_1 & [network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0 & [network_1_2_RI_1!=poll__networl_1_2_RI_1 & [network_1_0_AI_0!=poll__networl_1_0_AI_0 & [network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [network_1_2_AI_0!=poll__networl_1_2_AI_0 & [network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1 & [network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [[[[[[[[network_2_0_RP_0!=poll__networl_2_0_RP_0 & [network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [network_2_0_AI_0!=poll__networl_2_0_AI_0 & [network_0_2_AI_1!=poll__networl_0_2_AI_1 & [network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [network_2_2_AI_2!=poll__networl_2_2_AI_2 & [network_1_1_RI_0!=poll__networl_1_1_RI_0 & [network_1_2_RP_2!=poll__networl_1_2_RP_2 & [network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [network_2_2_RI_0!=poll__networl_2_2_RI_0 & [network_0_0_AI_2!=poll__networl_0_0_AI_2 & [network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0 & [network_0_1_AskP_2!=poll__networl_0_1_AskP_2 & [network_1_0_RI_2!=poll__networl_1_0_RI_2 & [network_0_0_RI_2!=poll__networl_0_0_RI_2 & [network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0 & [network_2_0_AskP_1!=poll__networl_2_0_AskP_1 & [network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0 & [network_0_2_RP_0!=poll__networl_0_2_RP_0 & [network_0_2_RI_1!=poll__networl_0_2_RI_1 & [network_1_0_AI_2!=poll__networl_1_0_AI_2 & [[network_1_1_RP_0!=poll__networl_1_1_RP_0 & [network_1_1_RP_2!=poll__networl_1_1_RP_2 & true]] & network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0]]]]]]]]]]]]]]]]]]]]]]]]]]]] & network_1_2_AI_2!=poll__networl_1_2_AI_2] & network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1] & network_2_0_AskP_0!=poll__networl_2_0_AskP_0] & network_1_2_RP_0!=poll__networl_1_2_RP_0] & network_2_1_AskP_2!=poll__networl_2_1_AskP_2] & network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2] & network_0_2_RP_1!=poll__networl_0_2_RP_1]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & network_1_1_AI_1!=poll__networl_1_1_AI_1]]]] & network_2_0_RI_2!=poll__networl_2_0_RI_2]]] & network_0_0_RI_0!=poll__networl_0_0_RI_0] & network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0] & network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2] & network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0]]]]]] & network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0] & network_1_2_AI_1!=poll__networl_1_2_AI_1] & network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2] & network_1_1_AI_2!=poll__networl_1_1_AI_2]]]]]]]] & network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1] & network_0_1_RP_0!=poll__networl_0_1_RP_0] & network_2_1_AI_1!=poll__networl_2_1_AI_1] & network_2_0_RI_1!=poll__networl_2_0_RI_1] & network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2] & network_0_1_AI_1!=poll__networl_0_1_AI_1] & network_0_1_AI_0!=poll__networl_0_1_AI_0]] & network_0_1_RI_0!=poll__networl_0_1_RI_0] & network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1] & network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1]]]]]]]] & network_1_2_RI_2!=poll__networl_1_2_RI_2]]]]]]]] & network_2_1_RP_0!=poll__networl_2_1_RP_0] & network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0] & network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1]] & network_0_2_AskP_1!=poll__networl_0_2_AskP_1] & network_2_2_RP_0!=poll__networl_2_2_RP_0] & network_0_0_AI_1!=poll__networl_0_0_AI_1] & network_2_2_RI_1!=poll__networl_2_2_RI_1] & network_2_2_AskP_2!=poll__networl_2_2_AskP_2] & network_1_1_AI_0!=poll__networl_1_1_AI_0]] & network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2] & network_1_1_RP_1!=poll__networl_1_1_RP_1] & network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1] & network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0] & network_0_0_AskP_0!=poll__networl_0_0_AskP_0] & network_1_0_AskP_1!=poll__networl_1_0_AskP_1] & network_0_1_RI_1!=poll__networl_0_1_RI_1]]]] & network_0_1_RP_1!=poll__networl_0_1_RP_1]]]]]] & network_0_2_AI_2!=poll__networl_0_2_AI_2] & network_2_0_AI_1!=poll__networl_2_0_AI_1] & network_2_2_AskP_1!=poll__networl_2_2_AskP_1]] & network_0_2_RI_2!=poll__networl_0_2_RI_2]] & network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0]]] & network_0_1_AI_2!=poll__networl_0_1_AI_2]]]] & network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2]]] | [poll__networl_2_1_AskP_2=network_2_1_AskP_2 & [poll__networl_1_1_AnsP_1=network_1_1_AnsP_1 & [poll__networl_1_0_RI_1=network_1_0_RI_1 & [poll__networl_0_0_AI_0=network_0_0_AI_0 & [poll__networl_2_0_AI_2=network_2_0_AI_2 & [poll__networl_2_1_AskP_1=network_2_1_AskP_1 & [poll__networl_1_0_AnsP_2=network_1_0_AnsP_2 & [poll__networl_2_2_RI_1=network_2_2_RI_1 & [poll__networl_1_2_RP_0=network_1_2_RP_0 & [poll__networl_1_2_AskP_1=network_1_2_AskP_1 & [poll__networl_1_1_AnnP_2=network_1_1_AnnP_2 & [poll__networl_0_1_AnnP_1=network_0_1_AnnP_1 & [poll__networl_0_1_RP_1=network_0_1_RP_1 & [poll__networl_2_1_RI_0=network_2_1_RI_0 & [poll__networl_2_0_AnsP_1=network_2_0_AnsP_1 & [poll__networl_0_1_AI_2=network_0_1_AI_2 & [poll__networl_0_1_AnnP_0=network_0_1_AnnP_0 & [poll__networl_0_2_RI_1=network_0_2_RI_1 & [poll__networl_0_1_RI_0=network_0_1_RI_0 & [poll__networl_2_2_RP_1=network_2_2_RP_1 & [poll__networl_1_2_RP_2=network_1_2_RP_2 & [poll__networl_2_1_AskP_0=network_2_1_AskP_0 & [poll__networl_1_1_AnsP_0=network_1_1_AnsP_0 & [poll__networl_2_2_AnsP_2=network_2_2_AnsP_2 & [poll__networl_0_2_AnnP_0=network_0_2_AnnP_0 & [poll__networl_2_1_RI_2=network_2_1_RI_2 & [poll__networl_0_0_AnsP_0=network_0_0_AnsP_0 & [poll__networl_2_1_RP_1=network_2_1_RP_1 & [poll__networl_2_0_AnsP_2=network_2_0_AnsP_2 & [poll__networl_2_0_AnsP_0=network_2_0_AnsP_0 & [poll__networl_1_1_AskP_2=network_1_1_AskP_2 & [poll__networl_0_1_AskP_2=network_0_1_AskP_2 & [poll__networl_2_0_RP_0=network_2_0_RP_0 & [poll__networl_1_0_AI_0=network_1_0_AI_0 & [poll__networl_2_0_AI_0=network_2_0_AI_0 & [poll__networl_2_1_AnnP_0=network_2_1_AnnP_0 & [poll__networl_1_1_AnnP_0=network_1_1_AnnP_0 & [poll__networl_1_0_AskP_2=network_1_0_AskP_2 & [poll__networl_0_1_AnsP_2=network_0_1_AnsP_2 & [poll__networl_0_0_RI_0=network_0_0_RI_0 & [poll__networl_1_2_AskP_0=network_1_2_AskP_0 & [poll__networl_0_2_AskP_0=network_0_2_AskP_0 & [poll__networl_0_0_RP_2=network_0_0_RP_2 & [poll__networl_1_0_AskP_0=network_1_0_AskP_0 & [poll__networl_1_1_RP_1=network_1_1_RP_1 & [poll__networl_0_1_RP_2=network_0_1_RP_2 & [poll__networl_1_1_RI_2=network_1_1_RI_2 & [poll__networl_1_1_RI_1=network_1_1_RI_1 & [poll__networl_2_1_AI_2=network_2_1_AI_2 & [[[[[[[[[[[[[[poll__networl_1_0_AnsP_0=network_1_0_AnsP_0 & [[[[[[poll__networl_2_2_RI_0=network_2_2_RI_0 & [poll__networl_0_0_RI_1=network_0_0_RI_1 & [poll__networl_0_0_AskP_2=network_0_0_AskP_2 & [[[[[[[[poll__networl_2_1_AnsP_1=network_2_1_AnsP_1 & [[[poll__networl_2_2_AnnP_0=network_2_2_AnnP_0 & [[poll__networl_1_1_RI_0=network_1_1_RI_0 & [poll__networl_1_1_AI_1=network_1_1_AI_1 & [poll__networl_0_2_AnsP_1=network_0_2_AnsP_1 & [poll__networl_2_0_AnnP_1=network_2_0_AnnP_1 & [poll__networl_0_0_AnnP_0=network_0_0_AnnP_0 & [poll__networl_0_2_AI_0=network_0_2_AI_0 & [[poll__networl_1_0_AnnP_2=network_1_0_AnnP_2 & [poll__networl_1_2_AnsP_2=network_1_2_AnsP_2 & [poll__networl_2_0_AskP_2=network_2_0_AskP_2 & [poll__networl_2_0_RI_2=network_2_0_RI_2 & [poll__networl_0_2_AnnP_2=network_0_2_AnnP_2 & [poll__networl_0_0_RP_0=network_0_0_RP_0 & [poll__networl_1_0_RI_0=network_1_0_RI_0 & [poll__networl_2_1_AI_0=network_2_1_AI_0 & [poll__networl_0_0_AnnP_2=network_0_0_AnnP_2 & [poll__networl_2_2_RI_2=network_2_2_RI_2 & [[[[[[[[poll__networl_0_0_AnsP_1=network_0_0_AnsP_1 & [[poll__networl_0_2_AnsP_0=network_0_2_AnsP_0 & [poll__networl_2_2_RP_0=network_2_2_RP_0 & [[[[[poll__networl_2_0_AskP_1=network_2_0_AskP_1 & [[[[poll__networl_2_2_AnsP_0=network_2_2_AnsP_0 & [[poll__networl_1_1_RP_0=network_1_1_RP_0 & [[poll__networl_0_1_AskP_0=network_0_1_AskP_0 & [[poll__networl_1_1_AnnP_1=network_1_1_AnnP_1 & [[[poll__networl_2_1_RP_0=network_2_1_RP_0 & [poll__networl_0_1_AnnP_2=network_0_1_AnnP_2 & [poll__networl_0_0_AI_2=network_0_0_AI_2 & [[poll__networl_1_2_AI_1=network_1_2_AI_1 & [poll__networl_2_0_RI_1=network_2_0_RI_1 & [poll__networl_2_2_AI_0=network_2_2_AI_0 & [poll__networl_0_2_AI_2=network_0_2_AI_2 & [poll__networl_1_2_RI_1=network_1_2_RI_1 & [[[[[[[[poll__networl_0_0_AskP_0=network_0_0_AskP_0 & [[[[poll__networl_0_1_AskP_1=network_0_1_AskP_1 & [poll__networl_1_2_AnnP_2=network_1_2_AnnP_2 & [poll__networl_2_0_RP_1=network_2_0_RP_1 & [poll__networl_0_0_AnnP_1=network_0_0_AnnP_1 & [[[poll__networl_2_0_AnnP_0=network_2_0_AnnP_0 & [[poll__networl_1_1_AnsP_2=network_1_1_AnsP_2 & [poll__networl_0_0_AI_1=network_0_0_AI_1 & [poll__networl_1_2_AnnP_0=network_1_2_AnnP_0 & [poll__networl_1_1_AskP_1=network_1_1_AskP_1 & [poll__networl_2_0_AnnP_2=network_2_0_AnnP_2 & [poll__networl_1_0_RP_1=network_1_0_RP_1 & true]]]]]] & poll__networl_1_2_AnsP_1=network_1_2_AnsP_1]] & poll__networl_0_1_AI_1=network_0_1_AI_1] & poll__networl_1_0_AI_2=network_1_0_AI_2]]]]] & poll__networl_2_1_AnnP_1=network_2_1_AnnP_1] & poll__networl_1_1_RP_2=network_1_1_RP_2] & poll__networl_0_2_RP_1=network_0_2_RP_1]] & poll__networl_0_2_AskP_1=network_0_2_AskP_1] & poll__networl_1_2_RP_1=network_1_2_RP_1] & poll__networl_0_2_RI_0=network_0_2_RI_0] & poll__networl_2_0_RI_0=network_2_0_RI_0] & poll__networl_1_2_RI_2=network_1_2_RI_2] & poll__networl_2_1_AnsP_2=network_2_1_AnsP_2] & poll__networl_0_0_AnsP_2=network_0_0_AnsP_2]]]]]] & poll__networl_2_0_RP_2=network_2_0_RP_2]]]] & poll__networl_1_2_AI_0=network_1_2_AI_0] & poll__networl_1_0_RP_0=network_1_0_RP_0]] & poll__networl_1_0_AskP_1=network_1_0_AskP_1]] & poll__networl_2_2_AnnP_1=network_2_2_AnnP_1]] & poll__networl_0_1_RP_0=network_0_1_RP_0]] & poll__networl_2_1_RP_2=network_2_1_RP_2] & poll__networl_2_2_AskP_0=network_2_2_AskP_0] & poll__networl_0_2_AnnP_1=network_0_2_AnnP_1]] & poll__networl_2_2_AI_1=network_2_2_AI_1] & poll__networl_1_0_RI_2=network_1_0_RI_2] & poll__networl_2_1_AnsP_0=network_2_1_AnsP_0] & poll__networl_1_0_AnnP_1=network_1_0_AnnP_1]]] & poll__networl_2_2_AI_2=network_2_2_AI_2]] & poll__networl_1_0_AnsP_1=network_1_0_AnsP_1] & poll__networl_0_2_RP_0=network_0_2_RP_0] & poll__networl_2_0_AI_1=network_2_0_AI_1] & poll__networl_2_2_AnnP_2=network_2_2_AnnP_2] & poll__networl_2_1_RI_1=network_2_1_RI_1] & poll__networl_1_2_RI_0=network_1_2_RI_0] & poll__networl_1_1_AI_0=network_1_1_AI_0]]]]]]]]]]] & poll__networl_1_2_AnnP_1=network_1_2_AnnP_1]]]]]]] & poll__networl_2_2_AskP_1=network_2_2_AskP_1]] & poll__networl_2_0_AskP_0=network_2_0_AskP_0] & poll__networl_2_2_AnsP_1=network_2_2_AnsP_1]] & poll__networl_2_2_AskP_2=network_2_2_AskP_2] & poll__networl_0_2_RP_2=network_0_2_RP_2] & poll__networl_0_1_AnsP_0=network_0_1_AnsP_0] & poll__networl_0_1_RI_2=network_0_1_RI_2] & poll__networl_2_1_AnnP_2=network_2_1_AnnP_2] & poll__networl_1_2_AnsP_0=network_1_2_AnsP_0] & poll__networl_1_0_RP_2=network_1_0_RP_2]]]] & poll__networl_0_1_AnsP_1=network_0_1_AnsP_1] & poll__networl_0_1_AI_0=network_0_1_AI_0] & poll__networl_0_1_RI_1=network_0_1_RI_1] & poll__networl_1_2_AskP_2=network_1_2_AskP_2] & poll__networl_2_2_RP_2=network_2_2_RP_2]] & poll__networl_1_1_AI_2=network_1_1_AI_2] & poll__networl_0_2_AnsP_2=network_0_2_AnsP_2] & poll__networl_0_0_AskP_1=network_0_0_AskP_1] & poll__networl_0_0_RI_2=network_0_0_RI_2] & poll__networl_1_0_AI_1=network_1_0_AI_1] & poll__networl_0_2_RI_2=network_0_2_RI_2] & poll__networl_2_1_AI_1=network_2_1_AI_1] & poll__networl_1_1_AskP_0=network_1_1_AskP_0] & poll__networl_1_0_AnnP_0=network_1_0_AnnP_0] & poll__networl_0_2_AI_1=network_0_2_AI_1] & poll__networl_1_2_AI_2=network_1_2_AI_2] & poll__networl_0_2_AskP_2=network_0_2_AskP_2] & poll__networl_0_0_RP_1=network_0_0_RP_1]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
normalized: E [true U [[poll__networl_2_1_AskP_2=network_2_1_AskP_2 & [poll__networl_1_1_AnsP_1=network_1_1_AnsP_1 & [poll__networl_1_0_RI_1=network_1_0_RI_1 & [poll__networl_0_0_AI_0=network_0_0_AI_0 & [poll__networl_2_0_AI_2=network_2_0_AI_2 & [poll__networl_2_1_AskP_1=network_2_1_AskP_1 & [poll__networl_1_0_AnsP_2=network_1_0_AnsP_2 & [poll__networl_2_2_RI_1=network_2_2_RI_1 & [poll__networl_1_2_RP_0=network_1_2_RP_0 & [poll__networl_1_2_AskP_1=network_1_2_AskP_1 & [poll__networl_1_1_AnnP_2=network_1_1_AnnP_2 & [poll__networl_0_1_AnnP_1=network_0_1_AnnP_1 & [poll__networl_0_1_RP_1=network_0_1_RP_1 & [poll__networl_2_1_RI_0=network_2_1_RI_0 & [poll__networl_2_0_AnsP_1=network_2_0_AnsP_1 & [poll__networl_0_1_AI_2=network_0_1_AI_2 & [poll__networl_0_1_AnnP_0=network_0_1_AnnP_0 & [poll__networl_0_2_RI_1=network_0_2_RI_1 & [poll__networl_0_1_RI_0=network_0_1_RI_0 & [poll__networl_2_2_RP_1=network_2_2_RP_1 & [poll__networl_1_2_RP_2=network_1_2_RP_2 & [poll__networl_2_1_AskP_0=network_2_1_AskP_0 & [poll__networl_1_1_AnsP_0=network_1_1_AnsP_0 & [poll__networl_2_2_AnsP_2=network_2_2_AnsP_2 & [poll__networl_0_2_AnnP_0=network_0_2_AnnP_0 & [poll__networl_2_1_RI_2=network_2_1_RI_2 & [poll__networl_0_0_AnsP_0=network_0_0_AnsP_0 & [poll__networl_2_1_RP_1=network_2_1_RP_1 & [poll__networl_2_0_AnsP_2=network_2_0_AnsP_2 & [poll__networl_2_0_AnsP_0=network_2_0_AnsP_0 & [poll__networl_1_1_AskP_2=network_1_1_AskP_2 & [poll__networl_0_1_AskP_2=network_0_1_AskP_2 & [poll__networl_2_0_RP_0=network_2_0_RP_0 & [poll__networl_1_0_AI_0=network_1_0_AI_0 & [poll__networl_2_0_AI_0=network_2_0_AI_0 & [poll__networl_2_1_AnnP_0=network_2_1_AnnP_0 & [poll__networl_1_1_AnnP_0=network_1_1_AnnP_0 & [poll__networl_1_0_AskP_2=network_1_0_AskP_2 & [poll__networl_0_1_AnsP_2=network_0_1_AnsP_2 & [poll__networl_0_0_RI_0=network_0_0_RI_0 & [poll__networl_1_2_AskP_0=network_1_2_AskP_0 & [poll__networl_0_2_AskP_0=network_0_2_AskP_0 & [poll__networl_0_0_RP_2=network_0_0_RP_2 & [poll__networl_1_0_AskP_0=network_1_0_AskP_0 & [poll__networl_1_1_RP_1=network_1_1_RP_1 & [poll__networl_0_1_RP_2=network_0_1_RP_2 & [poll__networl_1_1_RI_2=network_1_1_RI_2 & [poll__networl_1_1_RI_1=network_1_1_RI_1 & [poll__networl_2_1_AI_2=network_2_1_AI_2 & [poll__networl_0_0_RP_1=network_0_0_RP_1 & [poll__networl_0_2_AskP_2=network_0_2_AskP_2 & [poll__networl_1_2_AI_2=network_1_2_AI_2 & [poll__networl_0_2_AI_1=network_0_2_AI_1 & [poll__networl_1_0_AnnP_0=network_1_0_AnnP_0 & [poll__networl_1_1_AskP_0=network_1_1_AskP_0 & [poll__networl_2_1_AI_1=network_2_1_AI_1 & [poll__networl_0_2_RI_2=network_0_2_RI_2 & [poll__networl_1_0_AI_1=network_1_0_AI_1 & [poll__networl_0_0_RI_2=network_0_0_RI_2 & [poll__networl_0_0_AskP_1=network_0_0_AskP_1 & [poll__networl_0_2_AnsP_2=network_0_2_AnsP_2 & [poll__networl_1_1_AI_2=network_1_1_AI_2 & [poll__networl_1_0_AnsP_0=network_1_0_AnsP_0 & [poll__networl_2_2_RP_2=network_2_2_RP_2 & [poll__networl_1_2_AskP_2=network_1_2_AskP_2 & [poll__networl_0_1_RI_1=network_0_1_RI_1 & [poll__networl_0_1_AI_0=network_0_1_AI_0 & [poll__networl_0_1_AnsP_1=network_0_1_AnsP_1 & [poll__networl_2_2_RI_0=network_2_2_RI_0 & [poll__networl_0_0_RI_1=network_0_0_RI_1 & [poll__networl_0_0_AskP_2=network_0_0_AskP_2 & [poll__networl_1_0_RP_2=network_1_0_RP_2 & [poll__networl_1_2_AnsP_0=network_1_2_AnsP_0 & [poll__networl_2_1_AnnP_2=network_2_1_AnnP_2 & [poll__networl_0_1_RI_2=network_0_1_RI_2 & [poll__networl_0_1_AnsP_0=network_0_1_AnsP_0 & [poll__networl_0_2_RP_2=network_0_2_RP_2 & [poll__networl_2_2_AskP_2=network_2_2_AskP_2 & [poll__networl_2_1_AnsP_1=network_2_1_AnsP_1 & [poll__networl_2_2_AnsP_1=network_2_2_AnsP_1 & [poll__networl_2_0_AskP_0=network_2_0_AskP_0 & [poll__networl_2_2_AnnP_0=network_2_2_AnnP_0 & [poll__networl_2_2_AskP_1=network_2_2_AskP_1 & [poll__networl_1_1_RI_0=network_1_1_RI_0 & [poll__networl_1_1_AI_1=network_1_1_AI_1 & [poll__networl_0_2_AnsP_1=network_0_2_AnsP_1 & [poll__networl_2_0_AnnP_1=network_2_0_AnnP_1 & [poll__networl_0_0_AnnP_0=network_0_0_AnnP_0 & [poll__networl_0_2_AI_0=network_0_2_AI_0 & [poll__networl_1_2_AnnP_1=network_1_2_AnnP_1 & [poll__networl_1_0_AnnP_2=network_1_0_AnnP_2 & [poll__networl_1_2_AnsP_2=network_1_2_AnsP_2 & [poll__networl_2_0_AskP_2=network_2_0_AskP_2 & [poll__networl_2_0_RI_2=network_2_0_RI_2 & [poll__networl_0_2_AnnP_2=network_0_2_AnnP_2 & [poll__networl_0_0_RP_0=network_0_0_RP_0 & [poll__networl_1_0_RI_0=network_1_0_RI_0 & [poll__networl_2_1_AI_0=network_2_1_AI_0 & [poll__networl_0_0_AnnP_2=network_0_0_AnnP_2 & [poll__networl_2_2_RI_2=network_2_2_RI_2 & [poll__networl_1_1_AI_0=network_1_1_AI_0 & [poll__networl_1_2_RI_0=network_1_2_RI_0 & [poll__networl_2_1_RI_1=network_2_1_RI_1 & [poll__networl_2_2_AnnP_2=network_2_2_AnnP_2 & [poll__networl_2_0_AI_1=network_2_0_AI_1 & [poll__networl_0_2_RP_0=network_0_2_RP_0 & [poll__networl_1_0_AnsP_1=network_1_0_AnsP_1 & [poll__networl_0_0_AnsP_1=network_0_0_AnsP_1 & [poll__networl_2_2_AI_2=network_2_2_AI_2 & [poll__networl_0_2_AnsP_0=network_0_2_AnsP_0 & [poll__networl_2_2_RP_0=network_2_2_RP_0 & [poll__networl_1_0_AnnP_1=network_1_0_AnnP_1 & [poll__networl_2_1_AnsP_0=network_2_1_AnsP_0 & [poll__networl_1_0_RI_2=network_1_0_RI_2 & [poll__networl_2_2_AI_1=network_2_2_AI_1 & [poll__networl_2_0_AskP_1=network_2_0_AskP_1 & [poll__networl_0_2_AnnP_1=network_0_2_AnnP_1 & [poll__networl_2_2_AskP_0=network_2_2_AskP_0 & [poll__networl_2_1_RP_2=network_2_1_RP_2 & [poll__networl_2_2_AnsP_0=network_2_2_AnsP_0 & [poll__networl_0_1_RP_0=network_0_1_RP_0 & [poll__networl_1_1_RP_0=network_1_1_RP_0 & [poll__networl_2_2_AnnP_1=network_2_2_AnnP_1 & [poll__networl_0_1_AskP_0=network_0_1_AskP_0 & [poll__networl_1_0_AskP_1=network_1_0_AskP_1 & [poll__networl_1_1_AnnP_1=network_1_1_AnnP_1 & [poll__networl_1_0_RP_0=network_1_0_RP_0 & [poll__networl_1_2_AI_0=network_1_2_AI_0 & [poll__networl_2_1_RP_0=network_2_1_RP_0 & [poll__networl_0_1_AnnP_2=network_0_1_AnnP_2 & [poll__networl_0_0_AI_2=network_0_0_AI_2 & [poll__networl_2_0_RP_2=network_2_0_RP_2 & [poll__networl_1_2_AI_1=network_1_2_AI_1 & [poll__networl_2_0_RI_1=network_2_0_RI_1 & [poll__networl_2_2_AI_0=network_2_2_AI_0 & [poll__networl_0_2_AI_2=network_0_2_AI_2 & [poll__networl_1_2_RI_1=network_1_2_RI_1 & [poll__networl_0_0_AnsP_2=network_0_0_AnsP_2 & [poll__networl_2_1_AnsP_2=network_2_1_AnsP_2 & [poll__networl_1_2_RI_2=network_1_2_RI_2 & [poll__networl_2_0_RI_0=network_2_0_RI_0 & [poll__networl_0_2_RI_0=network_0_2_RI_0 & [poll__networl_1_2_RP_1=network_1_2_RP_1 & [poll__networl_0_2_AskP_1=network_0_2_AskP_1 & [poll__networl_0_0_AskP_0=network_0_0_AskP_0 & [poll__networl_0_2_RP_1=network_0_2_RP_1 & [poll__networl_1_1_RP_2=network_1_1_RP_2 & [poll__networl_2_1_AnnP_1=network_2_1_AnnP_1 & [poll__networl_0_1_AskP_1=network_0_1_AskP_1 & [poll__networl_1_2_AnnP_2=network_1_2_AnnP_2 & [poll__networl_2_0_RP_1=network_2_0_RP_1 & [poll__networl_0_0_AnnP_1=network_0_0_AnnP_1 & [poll__networl_1_0_AI_2=network_1_0_AI_2 & [poll__networl_0_1_AI_1=network_0_1_AI_1 & [poll__networl_2_0_AnnP_0=network_2_0_AnnP_0 & [poll__networl_1_2_AnsP_1=network_1_2_AnsP_1 & [poll__networl_1_1_AnsP_2=network_1_1_AnsP_2 & [poll__networl_0_0_AI_1=network_0_0_AI_1 & [poll__networl_1_2_AnnP_0=network_1_2_AnnP_0 & [poll__networl_1_1_AskP_1=network_1_1_AskP_1 & [poll__networl_2_0_AnnP_2=network_2_0_AnnP_2 & [poll__networl_1_0_RP_1=network_1_0_RP_1 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] | [network_2_2_RP_2!=poll__networl_2_2_RP_2 & [network_1_0_RI_0!=poll__networl_1_0_RI_0 & [network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2 & [network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2 & [network_1_2_RI_0!=poll__networl_1_2_RI_0 & [network_2_0_AI_2!=poll__networl_2_0_AI_2 & [network_0_1_AI_2!=poll__networl_0_1_AI_2 & [network_0_2_AI_0!=poll__networl_0_2_AI_0 & [network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0 & [network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0 & [network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0 & [network_0_2_RI_2!=poll__networl_0_2_RI_2 & [network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [network_2_2_AskP_1!=poll__networl_2_2_AskP_1 & [network_2_0_AI_1!=poll__networl_2_0_AI_1 & [network_0_2_AI_2!=poll__networl_0_2_AI_2 & [network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2 & [network_1_1_RI_1!=poll__networl_1_1_RI_1 & [network_0_0_RP_1!=poll__networl_0_0_RP_1 & [network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [network_0_1_RP_1!=poll__networl_0_1_RP_1 & [network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [network_0_1_RI_1!=poll__networl_0_1_RI_1 & [network_1_0_AskP_1!=poll__networl_1_0_AskP_1 & [network_0_0_AskP_0!=poll__networl_0_0_AskP_0 & [network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0 & [network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1 & [network_1_1_RP_1!=poll__networl_1_1_RP_1 & [network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [network_2_2_RI_1!=poll__networl_2_2_RI_1 & [network_0_0_AI_1!=poll__networl_0_0_AI_1 & [network_2_2_RP_0!=poll__networl_2_2_RP_0 & [network_0_2_AskP_1!=poll__networl_0_2_AskP_1 & [network_2_0_RI_0!=poll__networl_2_0_RI_0 & [network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1 & [network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0 & [network_2_1_RP_0!=poll__networl_2_1_RP_0 & [network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [network_2_0_AskP_2!=poll__networl_2_0_AskP_2 & [network_1_1_AskP_2!=poll__networl_1_1_AskP_2 & [network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0 & [network_1_2_RI_2!=poll__networl_1_2_RI_2 & [network_1_0_RI_1!=poll__networl_1_0_RI_1 & [network_2_2_RI_2!=poll__networl_2_2_RI_2 & [network_1_2_AskP_0!=poll__networl_1_2_AskP_0 & [network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2 & [network_0_1_RP_2!=poll__networl_0_1_RP_2 & [network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1 & [network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1 & [network_0_1_RI_0!=poll__networl_0_1_RI_0 & [network_0_0_RP_0!=poll__networl_0_0_RP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [network_0_1_AI_1!=poll__networl_0_1_AI_1 & [network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2 & [network_2_0_RI_1!=poll__networl_2_0_RI_1 & [network_2_1_AI_1!=poll__networl_2_1_AI_1 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1 & [network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [network_1_2_AskP_2!=poll__networl_1_2_AskP_2 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [network_1_1_AI_2!=poll__networl_1_1_AI_2 & [network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2 & [network_1_2_AI_1!=poll__networl_1_2_AI_1 & [network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2 & [network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_0_0_RI_0!=poll__networl_0_0_RI_0 & [network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_0_RI_2!=poll__networl_2_0_RI_2 & [network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_1_0_AI_1!=poll__networl_1_0_AI_1 & [network_0_0_AI_0!=poll__networl_0_0_AI_0 & [network_1_1_AI_1!=poll__networl_1_1_AI_1 & [network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_2_1_RI_1!=poll__networl_2_1_RI_1 & [network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [network_2_2_RP_1!=poll__networl_2_2_RP_1 & [network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [network_0_0_AskP_1!=poll__networl_0_0_AskP_1 & [network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0 & [network_1_2_RI_1!=poll__networl_1_2_RI_1 & [network_1_0_AI_0!=poll__networl_1_0_AI_0 & [network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [network_1_2_AI_0!=poll__networl_1_2_AI_0 & [network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1 & [network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [network_0_2_RP_1!=poll__networl_0_2_RP_1 & [network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2 & [network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [network_1_2_RP_0!=poll__networl_1_2_RP_0 & [network_2_0_AskP_0!=poll__networl_2_0_AskP_0 & [network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1 & [network_1_2_AI_2!=poll__networl_1_2_AI_2 & [network_2_0_RP_0!=poll__networl_2_0_RP_0 & [network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [network_2_0_AI_0!=poll__networl_2_0_AI_0 & [network_0_2_AI_1!=poll__networl_0_2_AI_1 & [network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [network_2_2_AI_2!=poll__networl_2_2_AI_2 & [network_1_1_RI_0!=poll__networl_1_1_RI_0 & [network_1_2_RP_2!=poll__networl_1_2_RP_2 & [network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [network_2_2_RI_0!=poll__networl_2_2_RI_0 & [network_0_0_AI_2!=poll__networl_0_0_AI_2 & [network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0 & [network_0_1_AskP_2!=poll__networl_0_1_AskP_2 & [network_1_0_RI_2!=poll__networl_1_0_RI_2 & [network_0_0_RI_2!=poll__networl_0_0_RI_2 & [network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0 & [network_2_0_AskP_1!=poll__networl_2_0_AskP_1 & [network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0 & [network_0_2_RP_0!=poll__networl_0_2_RP_0 & [network_0_2_RI_1!=poll__networl_0_2_RI_1 & [network_1_0_AI_2!=poll__networl_1_0_AI_2 & [network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0 & [network_1_1_RP_0!=poll__networl_1_1_RP_0 & [network_1_1_RP_2!=poll__networl_1_1_RP_2 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
-> the formula is FALSE
FORMULA p_1847_placecomparison_eq_or FALSE TECHNIQUES DECISION_DIAGRAMS
mc time: 0m0sec
checking: EF [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[true & network_1_1_RP_2!=poll__networl_1_1_RP_2] & network_1_1_RP_0!=poll__networl_1_1_RP_0] & network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0] & network_1_0_AI_2!=poll__networl_1_0_AI_2] & network_0_2_RI_1!=poll__networl_0_2_RI_1] & network_0_2_RP_0!=poll__networl_0_2_RP_0] & network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0] & network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2] & network_1_0_AskP_2!=poll__networl_1_0_AskP_2] & network_2_0_AskP_1!=poll__networl_2_0_AskP_1] & network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0] & network_0_0_RI_2!=poll__networl_0_0_RI_2] & network_1_0_RI_2!=poll__networl_1_0_RI_2] & network_0_1_AskP_2!=poll__networl_0_1_AskP_2] & network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0] & network_0_0_AI_2!=poll__networl_0_0_AI_2] & network_2_2_RI_0!=poll__networl_2_2_RI_0] & network_1_0_AskP_0!=poll__networl_1_0_AskP_0] & network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1] & network_1_1_AskP_0!=poll__networl_1_1_AskP_0] & network_1_2_RP_2!=poll__networl_1_2_RP_2] & network_1_1_RI_0!=poll__networl_1_1_RI_0] & network_2_2_AI_2!=poll__networl_2_2_AI_2] & network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2] & network_0_2_AI_1!=poll__networl_0_2_AI_1] & network_2_0_AI_0!=poll__networl_2_0_AI_0] & network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2] & network_1_0_RP_0!=poll__networl_1_0_RP_0] & network_2_1_AskP_1!=poll__networl_2_1_AskP_1] & network_2_0_RP_0!=poll__networl_2_0_RP_0] & network_1_2_AI_2!=poll__networl_1_2_AI_2] & network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1] & network_2_0_AskP_0!=poll__networl_2_0_AskP_0] & network_1_2_RP_0!=poll__networl_1_2_RP_0] & network_2_1_AskP_2!=poll__networl_2_1_AskP_2] & network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2] & network_0_2_RP_1!=poll__networl_0_2_RP_1] & network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1] & network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1] & network_1_2_AI_0!=poll__networl_1_2_AI_0] & network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1] & network_1_0_AI_0!=poll__networl_1_0_AI_0] & network_1_2_RI_1!=poll__networl_1_2_RI_1] & network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0] & network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1] & network_1_1_AskP_1!=poll__networl_1_1_AskP_1] & network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0] & network_2_1_RP_2!=poll__networl_2_1_RP_2] & network_0_1_RI_2!=poll__networl_0_1_RI_2] & network_2_1_RP_1!=poll__networl_2_1_RP_1] & network_2_2_AI_1!=poll__networl_2_2_AI_1] & network_0_1_AskP_1!=poll__networl_0_1_AskP_1] & network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0] & network_0_0_AskP_1!=poll__networl_0_0_AskP_1] & network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2] & network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2] & network_2_2_RP_1!=poll__networl_2_2_RP_1] & network_0_1_AskP_0!=poll__networl_0_1_AskP_0] & network_0_2_AskP_0!=poll__networl_0_2_AskP_0] & network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1] & network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1] & network_2_1_RI_1!=poll__networl_2_1_RI_1] & network_1_2_RP_1!=poll__networl_1_2_RP_1] & network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1] & network_0_2_RI_0!=poll__networl_0_2_RI_0] & network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1] & network_1_1_AI_1!=poll__networl_1_1_AI_1] & network_0_0_AI_0!=poll__networl_0_0_AI_0] & network_1_0_AI_1!=poll__networl_1_0_AI_1] & network_1_1_RI_2!=poll__networl_1_1_RI_2] & network_2_0_RI_2!=poll__networl_2_0_RI_2] & network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1] & network_0_0_AskP_2!=poll__networl_0_0_AskP_2] & network_0_0_RI_0!=poll__networl_0_0_RI_0] & network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0] & network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2] & network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0] & network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0] & network_2_0_RP_2!=poll__networl_2_0_RP_2] & network_0_0_RI_1!=poll__networl_0_0_RI_1] & network_2_1_RI_0!=poll__networl_2_1_RI_0] & network_2_1_RI_2!=poll__networl_2_1_RI_2] & network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0] & network_1_2_AI_1!=poll__networl_1_2_AI_1] & network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2] & network_1_1_AI_2!=poll__networl_1_1_AI_2] & network_2_2_AskP_0!=poll__networl_2_2_AskP_0] & network_0_2_RP_2!=poll__networl_0_2_RP_2] & network_2_0_RP_1!=poll__networl_2_0_RP_1] & network_0_0_RP_2!=poll__networl_0_0_RP_2] & network_1_2_AskP_2!=poll__networl_1_2_AskP_2] & network_2_1_AI_0!=poll__networl_2_1_AI_0] & network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0] & network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1] & network_0_1_RP_0!=poll__networl_0_1_RP_0] & network_2_1_AI_1!=poll__networl_2_1_AI_1] & network_2_0_RI_1!=poll__networl_2_0_RI_1] & network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2] & network_0_1_AI_1!=poll__networl_0_1_AI_1] & network_0_1_AI_0!=poll__networl_0_1_AI_0] & network_0_0_RP_0!=poll__networl_0_0_RP_0] & network_0_1_RI_0!=poll__networl_0_1_RI_0] & network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1] & network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1] & network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1] & network_0_1_RP_2!=poll__networl_0_1_RP_2] & network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2] & network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2] & network_1_2_AskP_0!=poll__networl_1_2_AskP_0] & network_2_2_RI_2!=poll__networl_2_2_RI_2] & network_1_0_RI_1!=poll__networl_1_0_RI_1] & network_1_2_RI_2!=poll__networl_1_2_RI_2] & network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0] & network_1_1_AskP_2!=poll__networl_1_1_AskP_2] & network_2_0_AskP_2!=poll__networl_2_0_AskP_2] & network_2_1_AskP_0!=poll__networl_2_1_AskP_0] & network_1_2_AskP_1!=poll__networl_1_2_AskP_1] & network_2_2_AI_0!=poll__networl_2_2_AI_0] & network_2_1_AI_2!=poll__networl_2_1_AI_2] & network_2_1_RP_0!=poll__networl_2_1_RP_0] & network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0] & network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1] & network_2_0_RI_0!=poll__networl_2_0_RI_0] & network_0_2_AskP_1!=poll__networl_0_2_AskP_1] & network_2_2_RP_0!=poll__networl_2_2_RP_0] & network_0_0_AI_1!=poll__networl_0_0_AI_1] & network_2_2_RI_1!=poll__networl_2_2_RI_1] & network_2_2_AskP_2!=poll__networl_2_2_AskP_2] & network_1_1_AI_0!=poll__networl_1_1_AI_0] & network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1] & network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2] & network_1_1_RP_1!=poll__networl_1_1_RP_1] & network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1] & network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0] & network_0_0_AskP_0!=poll__networl_0_0_AskP_0] & network_1_0_AskP_1!=poll__networl_1_0_AskP_1] & network_0_1_RI_1!=poll__networl_0_1_RI_1] & network_1_0_RP_1!=poll__networl_1_0_RP_1] & network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2] & network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2] & network_0_1_RP_1!=poll__networl_0_1_RP_1] & network_0_2_AskP_2!=poll__networl_0_2_AskP_2] & network_1_0_RP_2!=poll__networl_1_0_RP_2] & network_0_0_RP_1!=poll__networl_0_0_RP_1] & network_1_1_RI_1!=poll__networl_1_1_RI_1] & network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2] & network_0_2_AI_2!=poll__networl_0_2_AI_2] & network_2_0_AI_1!=poll__networl_2_0_AI_1] & network_2_2_AskP_1!=poll__networl_2_2_AskP_1] & network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2] & network_0_2_RI_2!=poll__networl_0_2_RI_2] & network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0] & network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0] & network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0] & network_0_2_AI_0!=poll__networl_0_2_AI_0] & network_0_1_AI_2!=poll__networl_0_1_AI_2] & network_2_0_AI_2!=poll__networl_2_0_AI_2] & network_1_2_RI_0!=poll__networl_1_2_RI_0] & network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2] & network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2] & network_1_0_RI_0!=poll__networl_1_0_RI_0] & network_2_2_RP_2!=poll__networl_2_2_RP_2] & [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[poll__networl_2_0_RP_2=network_2_0_RP_2 & [poll__networl_1_2_AI_1=network_1_2_AI_1 & [[[[poll__networl_1_2_RI_1=network_1_2_RI_1 & [poll__networl_0_0_AnsP_2=network_0_0_AnsP_2 & [poll__networl_2_1_AnsP_2=network_2_1_AnsP_2 & [[[[[[poll__networl_0_0_AskP_0=network_0_0_AskP_0 & [[poll__networl_1_1_RP_2=network_1_1_RP_2 & [poll__networl_2_1_AnnP_1=network_2_1_AnnP_1 & [poll__networl_0_1_AskP_1=network_0_1_AskP_1 & [poll__networl_1_2_AnnP_2=network_1_2_AnnP_2 & [poll__networl_2_0_RP_1=network_2_0_RP_1 & [poll__networl_0_0_AnnP_1=network_0_0_AnnP_1 & [poll__networl_1_0_AI_2=network_1_0_AI_2 & [[poll__networl_2_0_AnnP_0=network_2_0_AnnP_0 & [[[[[[[poll__networl_1_0_RP_1=network_1_0_RP_1 & true] & poll__networl_2_0_AnnP_2=network_2_0_AnnP_2] & poll__networl_1_1_AskP_1=network_1_1_AskP_1] & poll__networl_1_2_AnnP_0=network_1_2_AnnP_0] & poll__networl_0_0_AI_1=network_0_0_AI_1] & poll__networl_1_1_AnsP_2=network_1_1_AnsP_2] & poll__networl_1_2_AnsP_1=network_1_2_AnsP_1]] & poll__networl_0_1_AI_1=network_0_1_AI_1]]]]]]]] & poll__networl_0_2_RP_1=network_0_2_RP_1]] & poll__networl_0_2_AskP_1=network_0_2_AskP_1] & poll__networl_1_2_RP_1=network_1_2_RP_1] & poll__networl_0_2_RI_0=network_0_2_RI_0] & poll__networl_2_0_RI_0=network_2_0_RI_0] & poll__networl_1_2_RI_2=network_1_2_RI_2]]]] & poll__networl_0_2_AI_2=network_0_2_AI_2] & poll__networl_2_2_AI_0=network_2_2_AI_0] & poll__networl_2_0_RI_1=network_2_0_RI_1]]] & poll__networl_0_0_AI_2=network_0_0_AI_2] & poll__networl_0_1_AnnP_2=network_0_1_AnnP_2] & poll__networl_2_1_RP_0=network_2_1_RP_0] & poll__networl_1_2_AI_0=network_1_2_AI_0] & poll__networl_1_0_RP_0=network_1_0_RP_0] & poll__networl_1_1_AnnP_1=network_1_1_AnnP_1] & poll__networl_1_0_AskP_1=network_1_0_AskP_1] & poll__networl_0_1_AskP_0=network_0_1_AskP_0] & poll__networl_2_2_AnnP_1=network_2_2_AnnP_1] & poll__networl_1_1_RP_0=network_1_1_RP_0] & poll__networl_0_1_RP_0=network_0_1_RP_0] & poll__networl_2_2_AnsP_0=network_2_2_AnsP_0] & poll__networl_2_1_RP_2=network_2_1_RP_2] & poll__networl_2_2_AskP_0=network_2_2_AskP_0] & poll__networl_0_2_AnnP_1=network_0_2_AnnP_1] & poll__networl_2_0_AskP_1=network_2_0_AskP_1] & poll__networl_2_2_AI_1=network_2_2_AI_1] & poll__networl_1_0_RI_2=network_1_0_RI_2] & poll__networl_2_1_AnsP_0=network_2_1_AnsP_0] & poll__networl_1_0_AnnP_1=network_1_0_AnnP_1] & poll__networl_2_2_RP_0=network_2_2_RP_0] & poll__networl_0_2_AnsP_0=network_0_2_AnsP_0] & poll__networl_2_2_AI_2=network_2_2_AI_2] & poll__networl_0_0_AnsP_1=network_0_0_AnsP_1] & poll__networl_1_0_AnsP_1=network_1_0_AnsP_1] & poll__networl_0_2_RP_0=network_0_2_RP_0] & poll__networl_2_0_AI_1=network_2_0_AI_1] & poll__networl_2_2_AnnP_2=network_2_2_AnnP_2] & poll__networl_2_1_RI_1=network_2_1_RI_1] & poll__networl_1_2_RI_0=network_1_2_RI_0] & poll__networl_1_1_AI_0=network_1_1_AI_0] & poll__networl_2_2_RI_2=network_2_2_RI_2] & poll__networl_0_0_AnnP_2=network_0_0_AnnP_2] & poll__networl_2_1_AI_0=network_2_1_AI_0] & poll__networl_1_0_RI_0=network_1_0_RI_0] & poll__networl_0_0_RP_0=network_0_0_RP_0] & poll__networl_0_2_AnnP_2=network_0_2_AnnP_2] & poll__networl_2_0_RI_2=network_2_0_RI_2] & poll__networl_2_0_AskP_2=network_2_0_AskP_2] & poll__networl_1_2_AnsP_2=network_1_2_AnsP_2] & poll__networl_1_0_AnnP_2=network_1_0_AnnP_2] & poll__networl_1_2_AnnP_1=network_1_2_AnnP_1] & poll__networl_0_2_AI_0=network_0_2_AI_0] & poll__networl_0_0_AnnP_0=network_0_0_AnnP_0] & poll__networl_2_0_AnnP_1=network_2_0_AnnP_1] & poll__networl_0_2_AnsP_1=network_0_2_AnsP_1] & poll__networl_1_1_AI_1=network_1_1_AI_1] & poll__networl_1_1_RI_0=network_1_1_RI_0] & poll__networl_2_2_AskP_1=network_2_2_AskP_1] & poll__networl_2_2_AnnP_0=network_2_2_AnnP_0] & poll__networl_2_0_AskP_0=network_2_0_AskP_0] & poll__networl_2_2_AnsP_1=network_2_2_AnsP_1] & poll__networl_2_1_AnsP_1=network_2_1_AnsP_1] & poll__networl_2_2_AskP_2=network_2_2_AskP_2] & poll__networl_0_2_RP_2=network_0_2_RP_2] & poll__networl_0_1_AnsP_0=network_0_1_AnsP_0] & poll__networl_0_1_RI_2=network_0_1_RI_2] & poll__networl_2_1_AnnP_2=network_2_1_AnnP_2] & poll__networl_1_2_AnsP_0=network_1_2_AnsP_0] & poll__networl_1_0_RP_2=network_1_0_RP_2] & poll__networl_0_0_AskP_2=network_0_0_AskP_2] & poll__networl_0_0_RI_1=network_0_0_RI_1] & poll__networl_2_2_RI_0=network_2_2_RI_0] & poll__networl_0_1_AnsP_1=network_0_1_AnsP_1] & poll__networl_0_1_AI_0=network_0_1_AI_0] & poll__networl_0_1_RI_1=network_0_1_RI_1] & poll__networl_1_2_AskP_2=network_1_2_AskP_2] & poll__networl_2_2_RP_2=network_2_2_RP_2] & poll__networl_1_0_AnsP_0=network_1_0_AnsP_0] & poll__networl_1_1_AI_2=network_1_1_AI_2] & poll__networl_0_2_AnsP_2=network_0_2_AnsP_2] & poll__networl_0_0_AskP_1=network_0_0_AskP_1] & poll__networl_0_0_RI_2=network_0_0_RI_2] & poll__networl_1_0_AI_1=network_1_0_AI_1] & poll__networl_0_2_RI_2=network_0_2_RI_2] & poll__networl_2_1_AI_1=network_2_1_AI_1] & poll__networl_1_1_AskP_0=network_1_1_AskP_0] & poll__networl_1_0_AnnP_0=network_1_0_AnnP_0] & poll__networl_0_2_AI_1=network_0_2_AI_1] & poll__networl_1_2_AI_2=network_1_2_AI_2] & poll__networl_0_2_AskP_2=network_0_2_AskP_2] & poll__networl_0_0_RP_1=network_0_0_RP_1] & poll__networl_2_1_AI_2=network_2_1_AI_2] & poll__networl_1_1_RI_1=network_1_1_RI_1] & poll__networl_1_1_RI_2=network_1_1_RI_2] & poll__networl_0_1_RP_2=network_0_1_RP_2] & poll__networl_1_1_RP_1=network_1_1_RP_1] & poll__networl_1_0_AskP_0=network_1_0_AskP_0] & poll__networl_0_0_RP_2=network_0_0_RP_2] & poll__networl_0_2_AskP_0=network_0_2_AskP_0] & poll__networl_1_2_AskP_0=network_1_2_AskP_0] & poll__networl_0_0_RI_0=network_0_0_RI_0] & poll__networl_0_1_AnsP_2=network_0_1_AnsP_2] & poll__networl_1_0_AskP_2=network_1_0_AskP_2] & poll__networl_1_1_AnnP_0=network_1_1_AnnP_0] & poll__networl_2_1_AnnP_0=network_2_1_AnnP_0] & poll__networl_2_0_AI_0=network_2_0_AI_0] & poll__networl_1_0_AI_0=network_1_0_AI_0] & poll__networl_2_0_RP_0=network_2_0_RP_0] & poll__networl_0_1_AskP_2=network_0_1_AskP_2] & poll__networl_1_1_AskP_2=network_1_1_AskP_2] & poll__networl_2_0_AnsP_0=network_2_0_AnsP_0] & poll__networl_2_0_AnsP_2=network_2_0_AnsP_2] & poll__networl_2_1_RP_1=network_2_1_RP_1] & poll__networl_0_0_AnsP_0=network_0_0_AnsP_0] & poll__networl_2_1_RI_2=network_2_1_RI_2] & poll__networl_0_2_AnnP_0=network_0_2_AnnP_0] & poll__networl_2_2_AnsP_2=network_2_2_AnsP_2] & poll__networl_1_1_AnsP_0=network_1_1_AnsP_0] & poll__networl_2_1_AskP_0=network_2_1_AskP_0] & poll__networl_1_2_RP_2=network_1_2_RP_2] & poll__networl_2_2_RP_1=network_2_2_RP_1] & poll__networl_0_1_RI_0=network_0_1_RI_0] & poll__networl_0_2_RI_1=network_0_2_RI_1] & poll__networl_0_1_AnnP_0=network_0_1_AnnP_0] & poll__networl_0_1_AI_2=network_0_1_AI_2] & poll__networl_2_0_AnsP_1=network_2_0_AnsP_1] & poll__networl_2_1_RI_0=network_2_1_RI_0] & poll__networl_0_1_RP_1=network_0_1_RP_1] & poll__networl_0_1_AnnP_1=network_0_1_AnnP_1] & poll__networl_1_1_AnnP_2=network_1_1_AnnP_2] & poll__networl_1_2_AskP_1=network_1_2_AskP_1] & poll__networl_1_2_RP_0=network_1_2_RP_0] & poll__networl_2_2_RI_1=network_2_2_RI_1] & poll__networl_1_0_AnsP_2=network_1_0_AnsP_2] & poll__networl_2_1_AskP_1=network_2_1_AskP_1] & poll__networl_2_0_AI_2=network_2_0_AI_2] & poll__networl_0_0_AI_0=network_0_0_AI_0] & poll__networl_1_0_RI_1=network_1_0_RI_1] & poll__networl_1_1_AnsP_1=network_1_1_AnsP_1] & poll__networl_2_1_AskP_2=network_2_1_AskP_2]]]
normalized: E [true U [[network_2_2_RP_2!=poll__networl_2_2_RP_2 & [network_1_0_RI_0!=poll__networl_1_0_RI_0 & [network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2 & [network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2 & [network_1_2_RI_0!=poll__networl_1_2_RI_0 & [network_2_0_AI_2!=poll__networl_2_0_AI_2 & [network_0_1_AI_2!=poll__networl_0_1_AI_2 & [network_0_2_AI_0!=poll__networl_0_2_AI_0 & [network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0 & [network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0 & [network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0 & [network_0_2_RI_2!=poll__networl_0_2_RI_2 & [network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [network_2_2_AskP_1!=poll__networl_2_2_AskP_1 & [network_2_0_AI_1!=poll__networl_2_0_AI_1 & [network_0_2_AI_2!=poll__networl_0_2_AI_2 & [network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2 & [network_1_1_RI_1!=poll__networl_1_1_RI_1 & [network_0_0_RP_1!=poll__networl_0_0_RP_1 & [network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [network_0_1_RP_1!=poll__networl_0_1_RP_1 & [network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [network_0_1_RI_1!=poll__networl_0_1_RI_1 & [network_1_0_AskP_1!=poll__networl_1_0_AskP_1 & [network_0_0_AskP_0!=poll__networl_0_0_AskP_0 & [network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0 & [network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1 & [network_1_1_RP_1!=poll__networl_1_1_RP_1 & [network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [network_2_2_RI_1!=poll__networl_2_2_RI_1 & [network_0_0_AI_1!=poll__networl_0_0_AI_1 & [network_2_2_RP_0!=poll__networl_2_2_RP_0 & [network_0_2_AskP_1!=poll__networl_0_2_AskP_1 & [network_2_0_RI_0!=poll__networl_2_0_RI_0 & [network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1 & [network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0 & [network_2_1_RP_0!=poll__networl_2_1_RP_0 & [network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [network_2_0_AskP_2!=poll__networl_2_0_AskP_2 & [network_1_1_AskP_2!=poll__networl_1_1_AskP_2 & [network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0 & [network_1_2_RI_2!=poll__networl_1_2_RI_2 & [network_1_0_RI_1!=poll__networl_1_0_RI_1 & [network_2_2_RI_2!=poll__networl_2_2_RI_2 & [network_1_2_AskP_0!=poll__networl_1_2_AskP_0 & [network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2 & [network_0_1_RP_2!=poll__networl_0_1_RP_2 & [network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1 & [network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1 & [network_0_1_RI_0!=poll__networl_0_1_RI_0 & [network_0_0_RP_0!=poll__networl_0_0_RP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [network_0_1_AI_1!=poll__networl_0_1_AI_1 & [network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2 & [network_2_0_RI_1!=poll__networl_2_0_RI_1 & [network_2_1_AI_1!=poll__networl_2_1_AI_1 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1 & [network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [network_1_2_AskP_2!=poll__networl_1_2_AskP_2 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [network_1_1_AI_2!=poll__networl_1_1_AI_2 & [network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2 & [network_1_2_AI_1!=poll__networl_1_2_AI_1 & [network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2 & [network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_0_0_RI_0!=poll__networl_0_0_RI_0 & [network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_0_RI_2!=poll__networl_2_0_RI_2 & [network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_1_0_AI_1!=poll__networl_1_0_AI_1 & [network_0_0_AI_0!=poll__networl_0_0_AI_0 & [network_1_1_AI_1!=poll__networl_1_1_AI_1 & [network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_2_1_RI_1!=poll__networl_2_1_RI_1 & [network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [network_2_2_RP_1!=poll__networl_2_2_RP_1 & [network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [network_0_0_AskP_1!=poll__networl_0_0_AskP_1 & [network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0 & [network_1_2_RI_1!=poll__networl_1_2_RI_1 & [network_1_0_AI_0!=poll__networl_1_0_AI_0 & [network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [network_1_2_AI_0!=poll__networl_1_2_AI_0 & [network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1 & [network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [network_0_2_RP_1!=poll__networl_0_2_RP_1 & [network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2 & [network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [network_1_2_RP_0!=poll__networl_1_2_RP_0 & [network_2_0_AskP_0!=poll__networl_2_0_AskP_0 & [network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1 & [network_1_2_AI_2!=poll__networl_1_2_AI_2 & [network_2_0_RP_0!=poll__networl_2_0_RP_0 & [network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [network_2_0_AI_0!=poll__networl_2_0_AI_0 & [network_0_2_AI_1!=poll__networl_0_2_AI_1 & [network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [network_2_2_AI_2!=poll__networl_2_2_AI_2 & [network_1_1_RI_0!=poll__networl_1_1_RI_0 & [network_1_2_RP_2!=poll__networl_1_2_RP_2 & [network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [network_2_2_RI_0!=poll__networl_2_2_RI_0 & [network_0_0_AI_2!=poll__networl_0_0_AI_2 & [network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0 & [network_0_1_AskP_2!=poll__networl_0_1_AskP_2 & [network_1_0_RI_2!=poll__networl_1_0_RI_2 & [network_0_0_RI_2!=poll__networl_0_0_RI_2 & [network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0 & [network_2_0_AskP_1!=poll__networl_2_0_AskP_1 & [network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0 & [network_0_2_RP_0!=poll__networl_0_2_RP_0 & [network_0_2_RI_1!=poll__networl_0_2_RI_1 & [network_1_0_AI_2!=poll__networl_1_0_AI_2 & [network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0 & [network_1_1_RP_0!=poll__networl_1_1_RP_0 & [network_1_1_RP_2!=poll__networl_1_1_RP_2 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & [poll__networl_2_1_AskP_2=network_2_1_AskP_2 & [poll__networl_1_1_AnsP_1=network_1_1_AnsP_1 & [poll__networl_1_0_RI_1=network_1_0_RI_1 & [poll__networl_0_0_AI_0=network_0_0_AI_0 & [poll__networl_2_0_AI_2=network_2_0_AI_2 & [poll__networl_2_1_AskP_1=network_2_1_AskP_1 & [poll__networl_1_0_AnsP_2=network_1_0_AnsP_2 & [poll__networl_2_2_RI_1=network_2_2_RI_1 & [poll__networl_1_2_RP_0=network_1_2_RP_0 & [poll__networl_1_2_AskP_1=network_1_2_AskP_1 & [poll__networl_1_1_AnnP_2=network_1_1_AnnP_2 & [poll__networl_0_1_AnnP_1=network_0_1_AnnP_1 & [poll__networl_0_1_RP_1=network_0_1_RP_1 & [poll__networl_2_1_RI_0=network_2_1_RI_0 & [poll__networl_2_0_AnsP_1=network_2_0_AnsP_1 & [poll__networl_0_1_AI_2=network_0_1_AI_2 & [poll__networl_0_1_AnnP_0=network_0_1_AnnP_0 & [poll__networl_0_2_RI_1=network_0_2_RI_1 & [poll__networl_0_1_RI_0=network_0_1_RI_0 & [poll__networl_2_2_RP_1=network_2_2_RP_1 & [poll__networl_1_2_RP_2=network_1_2_RP_2 & [poll__networl_2_1_AskP_0=network_2_1_AskP_0 & [poll__networl_1_1_AnsP_0=network_1_1_AnsP_0 & [poll__networl_2_2_AnsP_2=network_2_2_AnsP_2 & [poll__networl_0_2_AnnP_0=network_0_2_AnnP_0 & [poll__networl_2_1_RI_2=network_2_1_RI_2 & [poll__networl_0_0_AnsP_0=network_0_0_AnsP_0 & [poll__networl_2_1_RP_1=network_2_1_RP_1 & [poll__networl_2_0_AnsP_2=network_2_0_AnsP_2 & [poll__networl_2_0_AnsP_0=network_2_0_AnsP_0 & [poll__networl_1_1_AskP_2=network_1_1_AskP_2 & [poll__networl_0_1_AskP_2=network_0_1_AskP_2 & [poll__networl_2_0_RP_0=network_2_0_RP_0 & [poll__networl_1_0_AI_0=network_1_0_AI_0 & [poll__networl_2_0_AI_0=network_2_0_AI_0 & [poll__networl_2_1_AnnP_0=network_2_1_AnnP_0 & [poll__networl_1_1_AnnP_0=network_1_1_AnnP_0 & [poll__networl_1_0_AskP_2=network_1_0_AskP_2 & [poll__networl_0_1_AnsP_2=network_0_1_AnsP_2 & [poll__networl_0_0_RI_0=network_0_0_RI_0 & [poll__networl_1_2_AskP_0=network_1_2_AskP_0 & [poll__networl_0_2_AskP_0=network_0_2_AskP_0 & [poll__networl_0_0_RP_2=network_0_0_RP_2 & [poll__networl_1_0_AskP_0=network_1_0_AskP_0 & [poll__networl_1_1_RP_1=network_1_1_RP_1 & [poll__networl_0_1_RP_2=network_0_1_RP_2 & [poll__networl_1_1_RI_2=network_1_1_RI_2 & [poll__networl_1_1_RI_1=network_1_1_RI_1 & [poll__networl_2_1_AI_2=network_2_1_AI_2 & [poll__networl_0_0_RP_1=network_0_0_RP_1 & [poll__networl_0_2_AskP_2=network_0_2_AskP_2 & [poll__networl_1_2_AI_2=network_1_2_AI_2 & [poll__networl_0_2_AI_1=network_0_2_AI_1 & [poll__networl_1_0_AnnP_0=network_1_0_AnnP_0 & [poll__networl_1_1_AskP_0=network_1_1_AskP_0 & [poll__networl_2_1_AI_1=network_2_1_AI_1 & [poll__networl_0_2_RI_2=network_0_2_RI_2 & [poll__networl_1_0_AI_1=network_1_0_AI_1 & [poll__networl_0_0_RI_2=network_0_0_RI_2 & [poll__networl_0_0_AskP_1=network_0_0_AskP_1 & [poll__networl_0_2_AnsP_2=network_0_2_AnsP_2 & [poll__networl_1_1_AI_2=network_1_1_AI_2 & [poll__networl_1_0_AnsP_0=network_1_0_AnsP_0 & [poll__networl_2_2_RP_2=network_2_2_RP_2 & [poll__networl_1_2_AskP_2=network_1_2_AskP_2 & [poll__networl_0_1_RI_1=network_0_1_RI_1 & [poll__networl_0_1_AI_0=network_0_1_AI_0 & [poll__networl_0_1_AnsP_1=network_0_1_AnsP_1 & [poll__networl_2_2_RI_0=network_2_2_RI_0 & [poll__networl_0_0_RI_1=network_0_0_RI_1 & [poll__networl_0_0_AskP_2=network_0_0_AskP_2 & [poll__networl_1_0_RP_2=network_1_0_RP_2 & [poll__networl_1_2_AnsP_0=network_1_2_AnsP_0 & [poll__networl_2_1_AnnP_2=network_2_1_AnnP_2 & [poll__networl_0_1_RI_2=network_0_1_RI_2 & [poll__networl_0_1_AnsP_0=network_0_1_AnsP_0 & [poll__networl_0_2_RP_2=network_0_2_RP_2 & [poll__networl_2_2_AskP_2=network_2_2_AskP_2 & [poll__networl_2_1_AnsP_1=network_2_1_AnsP_1 & [poll__networl_2_2_AnsP_1=network_2_2_AnsP_1 & [poll__networl_2_0_AskP_0=network_2_0_AskP_0 & [poll__networl_2_2_AnnP_0=network_2_2_AnnP_0 & [poll__networl_2_2_AskP_1=network_2_2_AskP_1 & [poll__networl_1_1_RI_0=network_1_1_RI_0 & [poll__networl_1_1_AI_1=network_1_1_AI_1 & [poll__networl_0_2_AnsP_1=network_0_2_AnsP_1 & [poll__networl_2_0_AnnP_1=network_2_0_AnnP_1 & [poll__networl_0_0_AnnP_0=network_0_0_AnnP_0 & [poll__networl_0_2_AI_0=network_0_2_AI_0 & [poll__networl_1_2_AnnP_1=network_1_2_AnnP_1 & [poll__networl_1_0_AnnP_2=network_1_0_AnnP_2 & [poll__networl_1_2_AnsP_2=network_1_2_AnsP_2 & [poll__networl_2_0_AskP_2=network_2_0_AskP_2 & [poll__networl_2_0_RI_2=network_2_0_RI_2 & [poll__networl_0_2_AnnP_2=network_0_2_AnnP_2 & [poll__networl_0_0_RP_0=network_0_0_RP_0 & [poll__networl_1_0_RI_0=network_1_0_RI_0 & [poll__networl_2_1_AI_0=network_2_1_AI_0 & [poll__networl_0_0_AnnP_2=network_0_0_AnnP_2 & [poll__networl_2_2_RI_2=network_2_2_RI_2 & [poll__networl_1_1_AI_0=network_1_1_AI_0 & [poll__networl_1_2_RI_0=network_1_2_RI_0 & [poll__networl_2_1_RI_1=network_2_1_RI_1 & [poll__networl_2_2_AnnP_2=network_2_2_AnnP_2 & [poll__networl_2_0_AI_1=network_2_0_AI_1 & [poll__networl_0_2_RP_0=network_0_2_RP_0 & [poll__networl_1_0_AnsP_1=network_1_0_AnsP_1 & [poll__networl_0_0_AnsP_1=network_0_0_AnsP_1 & [poll__networl_2_2_AI_2=network_2_2_AI_2 & [poll__networl_0_2_AnsP_0=network_0_2_AnsP_0 & [poll__networl_2_2_RP_0=network_2_2_RP_0 & [poll__networl_1_0_AnnP_1=network_1_0_AnnP_1 & [poll__networl_2_1_AnsP_0=network_2_1_AnsP_0 & [poll__networl_1_0_RI_2=network_1_0_RI_2 & [poll__networl_2_2_AI_1=network_2_2_AI_1 & [poll__networl_2_0_AskP_1=network_2_0_AskP_1 & [poll__networl_0_2_AnnP_1=network_0_2_AnnP_1 & [poll__networl_2_2_AskP_0=network_2_2_AskP_0 & [poll__networl_2_1_RP_2=network_2_1_RP_2 & [poll__networl_2_2_AnsP_0=network_2_2_AnsP_0 & [poll__networl_0_1_RP_0=network_0_1_RP_0 & [poll__networl_1_1_RP_0=network_1_1_RP_0 & [poll__networl_2_2_AnnP_1=network_2_2_AnnP_1 & [poll__networl_0_1_AskP_0=network_0_1_AskP_0 & [poll__networl_1_0_AskP_1=network_1_0_AskP_1 & [poll__networl_1_1_AnnP_1=network_1_1_AnnP_1 & [poll__networl_1_0_RP_0=network_1_0_RP_0 & [poll__networl_1_2_AI_0=network_1_2_AI_0 & [poll__networl_2_1_RP_0=network_2_1_RP_0 & [poll__networl_0_1_AnnP_2=network_0_1_AnnP_2 & [poll__networl_0_0_AI_2=network_0_0_AI_2 & [poll__networl_2_0_RP_2=network_2_0_RP_2 & [poll__networl_1_2_AI_1=network_1_2_AI_1 & [poll__networl_2_0_RI_1=network_2_0_RI_1 & [poll__networl_2_2_AI_0=network_2_2_AI_0 & [poll__networl_0_2_AI_2=network_0_2_AI_2 & [poll__networl_1_2_RI_1=network_1_2_RI_1 & [poll__networl_0_0_AnsP_2=network_0_0_AnsP_2 & [poll__networl_2_1_AnsP_2=network_2_1_AnsP_2 & [poll__networl_1_2_RI_2=network_1_2_RI_2 & [poll__networl_2_0_RI_0=network_2_0_RI_0 & [poll__networl_0_2_RI_0=network_0_2_RI_0 & [poll__networl_1_2_RP_1=network_1_2_RP_1 & [poll__networl_0_2_AskP_1=network_0_2_AskP_1 & [poll__networl_0_0_AskP_0=network_0_0_AskP_0 & [poll__networl_0_2_RP_1=network_0_2_RP_1 & [poll__networl_1_1_RP_2=network_1_1_RP_2 & [poll__networl_2_1_AnnP_1=network_2_1_AnnP_1 & [poll__networl_0_1_AskP_1=network_0_1_AskP_1 & [poll__networl_1_2_AnnP_2=network_1_2_AnnP_2 & [poll__networl_2_0_RP_1=network_2_0_RP_1 & [poll__networl_0_0_AnnP_1=network_0_0_AnnP_1 & [poll__networl_1_0_AI_2=network_1_0_AI_2 & [poll__networl_0_1_AI_1=network_0_1_AI_1 & [poll__networl_2_0_AnnP_0=network_2_0_AnnP_0 & [poll__networl_1_2_AnsP_1=network_1_2_AnsP_1 & [poll__networl_1_1_AnsP_2=network_1_1_AnsP_2 & [poll__networl_0_0_AI_1=network_0_0_AI_1 & [poll__networl_1_2_AnnP_0=network_1_2_AnnP_0 & [poll__networl_1_1_AskP_1=network_1_1_AskP_1 & [poll__networl_2_0_AnnP_2=network_2_0_AnnP_2 & [poll__networl_1_0_RP_1=network_1_0_RP_1 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
-> the formula is FALSE
FORMULA p_1848_placecomparison_eq_and_notx FALSE TECHNIQUES DECISION_DIAGRAMS
mc time: 0m0sec
checking: AF [[[[[[[[[[[poll__networl_1_2_RP_0=network_1_2_RP_0 & [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[true & poll__networl_1_0_RP_1=network_1_0_RP_1] & poll__networl_2_0_AnnP_2=network_2_0_AnnP_2] & poll__networl_1_1_AskP_1=network_1_1_AskP_1] & poll__networl_1_2_AnnP_0=network_1_2_AnnP_0] & poll__networl_0_0_AI_1=network_0_0_AI_1] & poll__networl_1_1_AnsP_2=network_1_1_AnsP_2] & poll__networl_1_2_AnsP_1=network_1_2_AnsP_1] & poll__networl_2_0_AnnP_0=network_2_0_AnnP_0] & poll__networl_0_1_AI_1=network_0_1_AI_1] & poll__networl_1_0_AI_2=network_1_0_AI_2] & poll__networl_0_0_AnnP_1=network_0_0_AnnP_1] & poll__networl_2_0_RP_1=network_2_0_RP_1] & poll__networl_1_2_AnnP_2=network_1_2_AnnP_2] & poll__networl_0_1_AskP_1=network_0_1_AskP_1] & poll__networl_2_1_AnnP_1=network_2_1_AnnP_1] & poll__networl_1_1_RP_2=network_1_1_RP_2] & poll__networl_0_2_RP_1=network_0_2_RP_1] & poll__networl_0_0_AskP_0=network_0_0_AskP_0] & poll__networl_0_2_AskP_1=network_0_2_AskP_1] & poll__networl_1_2_RP_1=network_1_2_RP_1] & poll__networl_0_2_RI_0=network_0_2_RI_0] & poll__networl_2_0_RI_0=network_2_0_RI_0] & poll__networl_1_2_RI_2=network_1_2_RI_2] & poll__networl_2_1_AnsP_2=network_2_1_AnsP_2] & poll__networl_0_0_AnsP_2=network_0_0_AnsP_2] & poll__networl_1_2_RI_1=network_1_2_RI_1] & poll__networl_0_2_AI_2=network_0_2_AI_2] & poll__networl_2_2_AI_0=network_2_2_AI_0] & poll__networl_2_0_RI_1=network_2_0_RI_1] & poll__networl_1_2_AI_1=network_1_2_AI_1] & poll__networl_2_0_RP_2=network_2_0_RP_2] & poll__networl_0_0_AI_2=network_0_0_AI_2] & poll__networl_0_1_AnnP_2=network_0_1_AnnP_2] & poll__networl_2_1_RP_0=network_2_1_RP_0] & poll__networl_1_2_AI_0=network_1_2_AI_0] & poll__networl_1_0_RP_0=network_1_0_RP_0] & poll__networl_1_1_AnnP_1=network_1_1_AnnP_1] & poll__networl_1_0_AskP_1=network_1_0_AskP_1] & poll__networl_0_1_AskP_0=network_0_1_AskP_0] & poll__networl_2_2_AnnP_1=network_2_2_AnnP_1] & poll__networl_1_1_RP_0=network_1_1_RP_0] & poll__networl_0_1_RP_0=network_0_1_RP_0] & poll__networl_2_2_AnsP_0=network_2_2_AnsP_0] & poll__networl_2_1_RP_2=network_2_1_RP_2] & poll__networl_2_2_AskP_0=network_2_2_AskP_0] & poll__networl_0_2_AnnP_1=network_0_2_AnnP_1] & poll__networl_2_0_AskP_1=network_2_0_AskP_1] & poll__networl_2_2_AI_1=network_2_2_AI_1] & poll__networl_1_0_RI_2=network_1_0_RI_2] & poll__networl_2_1_AnsP_0=network_2_1_AnsP_0] & poll__networl_1_0_AnnP_1=network_1_0_AnnP_1] & poll__networl_2_2_RP_0=network_2_2_RP_0] & poll__networl_0_2_AnsP_0=network_0_2_AnsP_0] & poll__networl_2_2_AI_2=network_2_2_AI_2] & poll__networl_0_0_AnsP_1=network_0_0_AnsP_1] & poll__networl_1_0_AnsP_1=network_1_0_AnsP_1] & poll__networl_0_2_RP_0=network_0_2_RP_0] & poll__networl_2_0_AI_1=network_2_0_AI_1] & poll__networl_2_2_AnnP_2=network_2_2_AnnP_2] & poll__networl_2_1_RI_1=network_2_1_RI_1] & poll__networl_1_2_RI_0=network_1_2_RI_0] & poll__networl_1_1_AI_0=network_1_1_AI_0] & poll__networl_2_2_RI_2=network_2_2_RI_2] & poll__networl_0_0_AnnP_2=network_0_0_AnnP_2] & poll__networl_2_1_AI_0=network_2_1_AI_0] & poll__networl_1_0_RI_0=network_1_0_RI_0] & poll__networl_0_0_RP_0=network_0_0_RP_0] & poll__networl_0_2_AnnP_2=network_0_2_AnnP_2] & poll__networl_2_0_RI_2=network_2_0_RI_2] & poll__networl_2_0_AskP_2=network_2_0_AskP_2] & poll__networl_1_2_AnsP_2=network_1_2_AnsP_2] & poll__networl_1_0_AnnP_2=network_1_0_AnnP_2] & poll__networl_1_2_AnnP_1=network_1_2_AnnP_1] & poll__networl_0_2_AI_0=network_0_2_AI_0] & poll__networl_0_0_AnnP_0=network_0_0_AnnP_0] & poll__networl_2_0_AnnP_1=network_2_0_AnnP_1] & poll__networl_0_2_AnsP_1=network_0_2_AnsP_1] & poll__networl_1_1_AI_1=network_1_1_AI_1] & poll__networl_1_1_RI_0=network_1_1_RI_0] & poll__networl_2_2_AskP_1=network_2_2_AskP_1] & poll__networl_2_2_AnnP_0=network_2_2_AnnP_0] & poll__networl_2_0_AskP_0=network_2_0_AskP_0] & poll__networl_2_2_AnsP_1=network_2_2_AnsP_1] & poll__networl_2_1_AnsP_1=network_2_1_AnsP_1] & poll__networl_2_2_AskP_2=network_2_2_AskP_2] & poll__networl_0_2_RP_2=network_0_2_RP_2] & poll__networl_0_1_AnsP_0=network_0_1_AnsP_0] & poll__networl_0_1_RI_2=network_0_1_RI_2] & poll__networl_2_1_AnnP_2=network_2_1_AnnP_2] & poll__networl_1_2_AnsP_0=network_1_2_AnsP_0] & poll__networl_1_0_RP_2=network_1_0_RP_2] & poll__networl_0_0_AskP_2=network_0_0_AskP_2] & poll__networl_0_0_RI_1=network_0_0_RI_1] & poll__networl_2_2_RI_0=network_2_2_RI_0] & poll__networl_0_1_AnsP_1=network_0_1_AnsP_1] & poll__networl_0_1_AI_0=network_0_1_AI_0] & poll__networl_0_1_RI_1=network_0_1_RI_1] & poll__networl_1_2_AskP_2=network_1_2_AskP_2] & poll__networl_2_2_RP_2=network_2_2_RP_2] & poll__networl_1_0_AnsP_0=network_1_0_AnsP_0] & poll__networl_1_1_AI_2=network_1_1_AI_2] & poll__networl_0_2_AnsP_2=network_0_2_AnsP_2] & poll__networl_0_0_AskP_1=network_0_0_AskP_1] & poll__networl_0_0_RI_2=network_0_0_RI_2] & poll__networl_1_0_AI_1=network_1_0_AI_1] & poll__networl_0_2_RI_2=network_0_2_RI_2] & poll__networl_2_1_AI_1=network_2_1_AI_1] & poll__networl_1_1_AskP_0=network_1_1_AskP_0] & poll__networl_1_0_AnnP_0=network_1_0_AnnP_0] & poll__networl_0_2_AI_1=network_0_2_AI_1] & poll__networl_1_2_AI_2=network_1_2_AI_2] & poll__networl_0_2_AskP_2=network_0_2_AskP_2] & poll__networl_0_0_RP_1=network_0_0_RP_1] & poll__networl_2_1_AI_2=network_2_1_AI_2] & poll__networl_1_1_RI_1=network_1_1_RI_1] & poll__networl_1_1_RI_2=network_1_1_RI_2] & poll__networl_0_1_RP_2=network_0_1_RP_2] & poll__networl_1_1_RP_1=network_1_1_RP_1] & poll__networl_1_0_AskP_0=network_1_0_AskP_0] & poll__networl_0_0_RP_2=network_0_0_RP_2] & poll__networl_0_2_AskP_0=network_0_2_AskP_0] & poll__networl_1_2_AskP_0=network_1_2_AskP_0] & poll__networl_0_0_RI_0=network_0_0_RI_0] & poll__networl_0_1_AnsP_2=network_0_1_AnsP_2] & poll__networl_1_0_AskP_2=network_1_0_AskP_2] & poll__networl_1_1_AnnP_0=network_1_1_AnnP_0] & poll__networl_2_1_AnnP_0=network_2_1_AnnP_0] & poll__networl_2_0_AI_0=network_2_0_AI_0] & poll__networl_1_0_AI_0=network_1_0_AI_0] & poll__networl_2_0_RP_0=network_2_0_RP_0] & poll__networl_0_1_AskP_2=network_0_1_AskP_2] & poll__networl_1_1_AskP_2=network_1_1_AskP_2] & poll__networl_2_0_AnsP_0=network_2_0_AnsP_0] & poll__networl_2_0_AnsP_2=network_2_0_AnsP_2] & poll__networl_2_1_RP_1=network_2_1_RP_1] & poll__networl_0_0_AnsP_0=network_0_0_AnsP_0] & poll__networl_2_1_RI_2=network_2_1_RI_2] & poll__networl_0_2_AnnP_0=network_0_2_AnnP_0] & poll__networl_2_2_AnsP_2=network_2_2_AnsP_2] & poll__networl_1_1_AnsP_0=network_1_1_AnsP_0] & poll__networl_2_1_AskP_0=network_2_1_AskP_0] & poll__networl_1_2_RP_2=network_1_2_RP_2] & poll__networl_2_2_RP_1=network_2_2_RP_1] & poll__networl_0_1_RI_0=network_0_1_RI_0] & poll__networl_0_2_RI_1=network_0_2_RI_1] & poll__networl_0_1_AnnP_0=network_0_1_AnnP_0] & poll__networl_0_1_AI_2=network_0_1_AI_2] & poll__networl_2_0_AnsP_1=network_2_0_AnsP_1] & poll__networl_2_1_RI_0=network_2_1_RI_0] & poll__networl_0_1_RP_1=network_0_1_RP_1] & poll__networl_0_1_AnnP_1=network_0_1_AnnP_1] & poll__networl_1_1_AnnP_2=network_1_1_AnnP_2] & poll__networl_1_2_AskP_1=network_1_2_AskP_1]] & poll__networl_2_2_RI_1=network_2_2_RI_1] & poll__networl_1_0_AnsP_2=network_1_0_AnsP_2] & poll__networl_2_1_AskP_1=network_2_1_AskP_1] & poll__networl_2_0_AI_2=network_2_0_AI_2] & poll__networl_0_0_AI_0=network_0_0_AI_0] & poll__networl_1_0_RI_1=network_1_0_RI_1] & poll__networl_1_1_AnsP_1=network_1_1_AnsP_1] & poll__networl_2_1_AskP_2=network_2_1_AskP_2] | [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[true & network_1_1_RP_2!=poll__networl_1_1_RP_2] & network_1_1_RP_0!=poll__networl_1_1_RP_0] & network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0] & network_1_0_AI_2!=poll__networl_1_0_AI_2] & network_0_2_RI_1!=poll__networl_0_2_RI_1] & network_0_2_RP_0!=poll__networl_0_2_RP_0] & network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0] & network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2] & network_1_0_AskP_2!=poll__networl_1_0_AskP_2] & network_2_0_AskP_1!=poll__networl_2_0_AskP_1] & network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0] & network_0_0_RI_2!=poll__networl_0_0_RI_2] & network_1_0_RI_2!=poll__networl_1_0_RI_2] & network_0_1_AskP_2!=poll__networl_0_1_AskP_2] & network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0] & network_0_0_AI_2!=poll__networl_0_0_AI_2] & network_2_2_RI_0!=poll__networl_2_2_RI_0] & network_1_0_AskP_0!=poll__networl_1_0_AskP_0] & network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1] & network_1_1_AskP_0!=poll__networl_1_1_AskP_0] & network_1_2_RP_2!=poll__networl_1_2_RP_2] & network_1_1_RI_0!=poll__networl_1_1_RI_0] & network_2_2_AI_2!=poll__networl_2_2_AI_2] & network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2] & network_0_2_AI_1!=poll__networl_0_2_AI_1] & network_2_0_AI_0!=poll__networl_2_0_AI_0] & network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2] & network_1_0_RP_0!=poll__networl_1_0_RP_0] & network_2_1_AskP_1!=poll__networl_2_1_AskP_1] & network_2_0_RP_0!=poll__networl_2_0_RP_0] & network_1_2_AI_2!=poll__networl_1_2_AI_2] & network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1] & network_2_0_AskP_0!=poll__networl_2_0_AskP_0] & network_1_2_RP_0!=poll__networl_1_2_RP_0] & network_2_1_AskP_2!=poll__networl_2_1_AskP_2] & network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2] & network_0_2_RP_1!=poll__networl_0_2_RP_1] & network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1] & network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1] & network_1_2_AI_0!=poll__networl_1_2_AI_0] & network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1] & network_1_0_AI_0!=poll__networl_1_0_AI_0] & network_1_2_RI_1!=poll__networl_1_2_RI_1] & network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0] & network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1] & network_1_1_AskP_1!=poll__networl_1_1_AskP_1] & network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0] & network_2_1_RP_2!=poll__networl_2_1_RP_2] & network_0_1_RI_2!=poll__networl_0_1_RI_2] & network_2_1_RP_1!=poll__networl_2_1_RP_1] & network_2_2_AI_1!=poll__networl_2_2_AI_1] & network_0_1_AskP_1!=poll__networl_0_1_AskP_1] & network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0] & network_0_0_AskP_1!=poll__networl_0_0_AskP_1] & network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2] & network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2] & network_2_2_RP_1!=poll__networl_2_2_RP_1] & network_0_1_AskP_0!=poll__networl_0_1_AskP_0] & network_0_2_AskP_0!=poll__networl_0_2_AskP_0] & network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1] & network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1] & network_2_1_RI_1!=poll__networl_2_1_RI_1] & network_1_2_RP_1!=poll__networl_1_2_RP_1] & network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1] & network_0_2_RI_0!=poll__networl_0_2_RI_0] & network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1] & network_1_1_AI_1!=poll__networl_1_1_AI_1] & network_0_0_AI_0!=poll__networl_0_0_AI_0] & network_1_0_AI_1!=poll__networl_1_0_AI_1] & network_1_1_RI_2!=poll__networl_1_1_RI_2] & network_2_0_RI_2!=poll__networl_2_0_RI_2] & network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1] & network_0_0_AskP_2!=poll__networl_0_0_AskP_2] & network_0_0_RI_0!=poll__networl_0_0_RI_0] & network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0] & network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2] & network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0] & network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0] & network_2_0_RP_2!=poll__networl_2_0_RP_2] & network_0_0_RI_1!=poll__networl_0_0_RI_1] & network_2_1_RI_0!=poll__networl_2_1_RI_0] & network_2_1_RI_2!=poll__networl_2_1_RI_2] & network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0] & network_1_2_AI_1!=poll__networl_1_2_AI_1] & network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2] & network_1_1_AI_2!=poll__networl_1_1_AI_2] & network_2_2_AskP_0!=poll__networl_2_2_AskP_0] & network_0_2_RP_2!=poll__networl_0_2_RP_2] & network_2_0_RP_1!=poll__networl_2_0_RP_1] & network_0_0_RP_2!=poll__networl_0_0_RP_2] & network_1_2_AskP_2!=poll__networl_1_2_AskP_2] & network_2_1_AI_0!=poll__networl_2_1_AI_0] & network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0] & network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1] & network_0_1_RP_0!=poll__networl_0_1_RP_0] & network_2_1_AI_1!=poll__networl_2_1_AI_1] & network_2_0_RI_1!=poll__networl_2_0_RI_1] & network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2] & network_0_1_AI_1!=poll__networl_0_1_AI_1] & network_0_1_AI_0!=poll__networl_0_1_AI_0] & network_0_0_RP_0!=poll__networl_0_0_RP_0] & network_0_1_RI_0!=poll__networl_0_1_RI_0] & network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1] & network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1] & network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1] & network_0_1_RP_2!=poll__networl_0_1_RP_2] & network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2] & network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2] & network_1_2_AskP_0!=poll__networl_1_2_AskP_0] & network_2_2_RI_2!=poll__networl_2_2_RI_2] & network_1_0_RI_1!=poll__networl_1_0_RI_1] & network_1_2_RI_2!=poll__networl_1_2_RI_2] & network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0] & network_1_1_AskP_2!=poll__networl_1_1_AskP_2] & network_2_0_AskP_2!=poll__networl_2_0_AskP_2] & network_2_1_AskP_0!=poll__networl_2_1_AskP_0] & network_1_2_AskP_1!=poll__networl_1_2_AskP_1] & network_2_2_AI_0!=poll__networl_2_2_AI_0] & network_2_1_AI_2!=poll__networl_2_1_AI_2] & network_2_1_RP_0!=poll__networl_2_1_RP_0] & network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0] & network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1] & network_2_0_RI_0!=poll__networl_2_0_RI_0] & network_0_2_AskP_1!=poll__networl_0_2_AskP_1] & network_2_2_RP_0!=poll__networl_2_2_RP_0] & network_0_0_AI_1!=poll__networl_0_0_AI_1] & network_2_2_RI_1!=poll__networl_2_2_RI_1] & network_2_2_AskP_2!=poll__networl_2_2_AskP_2] & network_1_1_AI_0!=poll__networl_1_1_AI_0] & network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1] & network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2] & network_1_1_RP_1!=poll__networl_1_1_RP_1] & network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1] & network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0] & network_0_0_AskP_0!=poll__networl_0_0_AskP_0] & network_1_0_AskP_1!=poll__networl_1_0_AskP_1] & network_0_1_RI_1!=poll__networl_0_1_RI_1] & network_1_0_RP_1!=poll__networl_1_0_RP_1] & network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2] & network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2] & network_0_1_RP_1!=poll__networl_0_1_RP_1] & network_0_2_AskP_2!=poll__networl_0_2_AskP_2] & network_1_0_RP_2!=poll__networl_1_0_RP_2] & network_0_0_RP_1!=poll__networl_0_0_RP_1] & network_1_1_RI_1!=poll__networl_1_1_RI_1] & network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2] & network_0_2_AI_2!=poll__networl_0_2_AI_2] & network_2_0_AI_1!=poll__networl_2_0_AI_1] & network_2_2_AskP_1!=poll__networl_2_2_AskP_1] & network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2] & network_0_2_RI_2!=poll__networl_0_2_RI_2] & network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0] & network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0] & network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0] & network_0_2_AI_0!=poll__networl_0_2_AI_0] & network_0_1_AI_2!=poll__networl_0_1_AI_2] & network_2_0_AI_2!=poll__networl_2_0_AI_2] & network_1_2_RI_0!=poll__networl_1_2_RI_0] & network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2] & network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2] & network_1_0_RI_0!=poll__networl_1_0_RI_0] & network_2_2_RP_2!=poll__networl_2_2_RP_2]]]
normalized: ~ [EG [~ [[[network_2_2_RP_2!=poll__networl_2_2_RP_2 & [network_1_0_RI_0!=poll__networl_1_0_RI_0 & [network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2 & [network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2 & [network_1_2_RI_0!=poll__networl_1_2_RI_0 & [network_2_0_AI_2!=poll__networl_2_0_AI_2 & [network_0_1_AI_2!=poll__networl_0_1_AI_2 & [network_0_2_AI_0!=poll__networl_0_2_AI_0 & [network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0 & [network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0 & [network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0 & [network_0_2_RI_2!=poll__networl_0_2_RI_2 & [network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [network_2_2_AskP_1!=poll__networl_2_2_AskP_1 & [network_2_0_AI_1!=poll__networl_2_0_AI_1 & [network_0_2_AI_2!=poll__networl_0_2_AI_2 & [network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2 & [network_1_1_RI_1!=poll__networl_1_1_RI_1 & [network_0_0_RP_1!=poll__networl_0_0_RP_1 & [network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [network_0_1_RP_1!=poll__networl_0_1_RP_1 & [network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [network_0_1_RI_1!=poll__networl_0_1_RI_1 & [network_1_0_AskP_1!=poll__networl_1_0_AskP_1 & [network_0_0_AskP_0!=poll__networl_0_0_AskP_0 & [network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0 & [network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1 & [network_1_1_RP_1!=poll__networl_1_1_RP_1 & [network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [network_2_2_RI_1!=poll__networl_2_2_RI_1 & [network_0_0_AI_1!=poll__networl_0_0_AI_1 & [network_2_2_RP_0!=poll__networl_2_2_RP_0 & [network_0_2_AskP_1!=poll__networl_0_2_AskP_1 & [network_2_0_RI_0!=poll__networl_2_0_RI_0 & [network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1 & [network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0 & [network_2_1_RP_0!=poll__networl_2_1_RP_0 & [network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [network_2_0_AskP_2!=poll__networl_2_0_AskP_2 & [network_1_1_AskP_2!=poll__networl_1_1_AskP_2 & [network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0 & [network_1_2_RI_2!=poll__networl_1_2_RI_2 & [network_1_0_RI_1!=poll__networl_1_0_RI_1 & [network_2_2_RI_2!=poll__networl_2_2_RI_2 & [network_1_2_AskP_0!=poll__networl_1_2_AskP_0 & [network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2 & [network_0_1_RP_2!=poll__networl_0_1_RP_2 & [network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1 & [network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1 & [network_0_1_RI_0!=poll__networl_0_1_RI_0 & [network_0_0_RP_0!=poll__networl_0_0_RP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [network_0_1_AI_1!=poll__networl_0_1_AI_1 & [network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2 & [network_2_0_RI_1!=poll__networl_2_0_RI_1 & [network_2_1_AI_1!=poll__networl_2_1_AI_1 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1 & [network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [network_1_2_AskP_2!=poll__networl_1_2_AskP_2 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [network_1_1_AI_2!=poll__networl_1_1_AI_2 & [network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2 & [network_1_2_AI_1!=poll__networl_1_2_AI_1 & [network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2 & [network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_0_0_RI_0!=poll__networl_0_0_RI_0 & [network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_0_RI_2!=poll__networl_2_0_RI_2 & [network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_1_0_AI_1!=poll__networl_1_0_AI_1 & [network_0_0_AI_0!=poll__networl_0_0_AI_0 & [network_1_1_AI_1!=poll__networl_1_1_AI_1 & [network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_2_1_RI_1!=poll__networl_2_1_RI_1 & [network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [network_2_2_RP_1!=poll__networl_2_2_RP_1 & [network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [network_0_0_AskP_1!=poll__networl_0_0_AskP_1 & [network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0 & [network_1_2_RI_1!=poll__networl_1_2_RI_1 & [network_1_0_AI_0!=poll__networl_1_0_AI_0 & [network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [network_1_2_AI_0!=poll__networl_1_2_AI_0 & [network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1 & [network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [network_0_2_RP_1!=poll__networl_0_2_RP_1 & [network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2 & [network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [network_1_2_RP_0!=poll__networl_1_2_RP_0 & [network_2_0_AskP_0!=poll__networl_2_0_AskP_0 & [network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1 & [network_1_2_AI_2!=poll__networl_1_2_AI_2 & [network_2_0_RP_0!=poll__networl_2_0_RP_0 & [network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [network_2_0_AI_0!=poll__networl_2_0_AI_0 & [network_0_2_AI_1!=poll__networl_0_2_AI_1 & [network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [network_2_2_AI_2!=poll__networl_2_2_AI_2 & [network_1_1_RI_0!=poll__networl_1_1_RI_0 & [network_1_2_RP_2!=poll__networl_1_2_RP_2 & [network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [network_2_2_RI_0!=poll__networl_2_2_RI_0 & [network_0_0_AI_2!=poll__networl_0_0_AI_2 & [network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0 & [network_0_1_AskP_2!=poll__networl_0_1_AskP_2 & [network_1_0_RI_2!=poll__networl_1_0_RI_2 & [network_0_0_RI_2!=poll__networl_0_0_RI_2 & [network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0 & [network_2_0_AskP_1!=poll__networl_2_0_AskP_1 & [network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0 & [network_0_2_RP_0!=poll__networl_0_2_RP_0 & [network_0_2_RI_1!=poll__networl_0_2_RI_1 & [network_1_0_AI_2!=poll__networl_1_0_AI_2 & [network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0 & [network_1_1_RP_0!=poll__networl_1_1_RP_0 & [network_1_1_RP_2!=poll__networl_1_1_RP_2 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] | [poll__networl_2_1_AskP_2=network_2_1_AskP_2 & [poll__networl_1_1_AnsP_1=network_1_1_AnsP_1 & [poll__networl_1_0_RI_1=network_1_0_RI_1 & [poll__networl_0_0_AI_0=network_0_0_AI_0 & [poll__networl_2_0_AI_2=network_2_0_AI_2 & [poll__networl_2_1_AskP_1=network_2_1_AskP_1 & [poll__networl_1_0_AnsP_2=network_1_0_AnsP_2 & [poll__networl_2_2_RI_1=network_2_2_RI_1 & [poll__networl_1_2_RP_0=network_1_2_RP_0 & [poll__networl_1_2_AskP_1=network_1_2_AskP_1 & [poll__networl_1_1_AnnP_2=network_1_1_AnnP_2 & [poll__networl_0_1_AnnP_1=network_0_1_AnnP_1 & [poll__networl_0_1_RP_1=network_0_1_RP_1 & [poll__networl_2_1_RI_0=network_2_1_RI_0 & [poll__networl_2_0_AnsP_1=network_2_0_AnsP_1 & [poll__networl_0_1_AI_2=network_0_1_AI_2 & [poll__networl_0_1_AnnP_0=network_0_1_AnnP_0 & [poll__networl_0_2_RI_1=network_0_2_RI_1 & [poll__networl_0_1_RI_0=network_0_1_RI_0 & [poll__networl_2_2_RP_1=network_2_2_RP_1 & [poll__networl_1_2_RP_2=network_1_2_RP_2 & [poll__networl_2_1_AskP_0=network_2_1_AskP_0 & [poll__networl_1_1_AnsP_0=network_1_1_AnsP_0 & [poll__networl_2_2_AnsP_2=network_2_2_AnsP_2 & [poll__networl_0_2_AnnP_0=network_0_2_AnnP_0 & [poll__networl_2_1_RI_2=network_2_1_RI_2 & [poll__networl_0_0_AnsP_0=network_0_0_AnsP_0 & [poll__networl_2_1_RP_1=network_2_1_RP_1 & [poll__networl_2_0_AnsP_2=network_2_0_AnsP_2 & [poll__networl_2_0_AnsP_0=network_2_0_AnsP_0 & [poll__networl_1_1_AskP_2=network_1_1_AskP_2 & [poll__networl_0_1_AskP_2=network_0_1_AskP_2 & [poll__networl_2_0_RP_0=network_2_0_RP_0 & [poll__networl_1_0_AI_0=network_1_0_AI_0 & [poll__networl_2_0_AI_0=network_2_0_AI_0 & [poll__networl_2_1_AnnP_0=network_2_1_AnnP_0 & [poll__networl_1_1_AnnP_0=network_1_1_AnnP_0 & [poll__networl_1_0_AskP_2=network_1_0_AskP_2 & [poll__networl_0_1_AnsP_2=network_0_1_AnsP_2 & [poll__networl_0_0_RI_0=network_0_0_RI_0 & [poll__networl_1_2_AskP_0=network_1_2_AskP_0 & [poll__networl_0_2_AskP_0=network_0_2_AskP_0 & [poll__networl_0_0_RP_2=network_0_0_RP_2 & [poll__networl_1_0_AskP_0=network_1_0_AskP_0 & [poll__networl_1_1_RP_1=network_1_1_RP_1 & [poll__networl_0_1_RP_2=network_0_1_RP_2 & [poll__networl_1_1_RI_2=network_1_1_RI_2 & [poll__networl_1_1_RI_1=network_1_1_RI_1 & [poll__networl_2_1_AI_2=network_2_1_AI_2 & [poll__networl_0_0_RP_1=network_0_0_RP_1 & [poll__networl_0_2_AskP_2=network_0_2_AskP_2 & [poll__networl_1_2_AI_2=network_1_2_AI_2 & [poll__networl_0_2_AI_1=network_0_2_AI_1 & [poll__networl_1_0_AnnP_0=network_1_0_AnnP_0 & [poll__networl_1_1_AskP_0=network_1_1_AskP_0 & [poll__networl_2_1_AI_1=network_2_1_AI_1 & [poll__networl_0_2_RI_2=network_0_2_RI_2 & [poll__networl_1_0_AI_1=network_1_0_AI_1 & [poll__networl_0_0_RI_2=network_0_0_RI_2 & [poll__networl_0_0_AskP_1=network_0_0_AskP_1 & [poll__networl_0_2_AnsP_2=network_0_2_AnsP_2 & [poll__networl_1_1_AI_2=network_1_1_AI_2 & [poll__networl_1_0_AnsP_0=network_1_0_AnsP_0 & [poll__networl_2_2_RP_2=network_2_2_RP_2 & [poll__networl_1_2_AskP_2=network_1_2_AskP_2 & [poll__networl_0_1_RI_1=network_0_1_RI_1 & [poll__networl_0_1_AI_0=network_0_1_AI_0 & [poll__networl_0_1_AnsP_1=network_0_1_AnsP_1 & [poll__networl_2_2_RI_0=network_2_2_RI_0 & [poll__networl_0_0_RI_1=network_0_0_RI_1 & [poll__networl_0_0_AskP_2=network_0_0_AskP_2 & [poll__networl_1_0_RP_2=network_1_0_RP_2 & [poll__networl_1_2_AnsP_0=network_1_2_AnsP_0 & [poll__networl_2_1_AnnP_2=network_2_1_AnnP_2 & [poll__networl_0_1_RI_2=network_0_1_RI_2 & [poll__networl_0_1_AnsP_0=network_0_1_AnsP_0 & [poll__networl_0_2_RP_2=network_0_2_RP_2 & [poll__networl_2_2_AskP_2=network_2_2_AskP_2 & [poll__networl_2_1_AnsP_1=network_2_1_AnsP_1 & [poll__networl_2_2_AnsP_1=network_2_2_AnsP_1 & [poll__networl_2_0_AskP_0=network_2_0_AskP_0 & [poll__networl_2_2_AnnP_0=network_2_2_AnnP_0 & [poll__networl_2_2_AskP_1=network_2_2_AskP_1 & [poll__networl_1_1_RI_0=network_1_1_RI_0 & [poll__networl_1_1_AI_1=network_1_1_AI_1 & [poll__networl_0_2_AnsP_1=network_0_2_AnsP_1 & [poll__networl_2_0_AnnP_1=network_2_0_AnnP_1 & [poll__networl_0_0_AnnP_0=network_0_0_AnnP_0 & [poll__networl_0_2_AI_0=network_0_2_AI_0 & [poll__networl_1_2_AnnP_1=network_1_2_AnnP_1 & [poll__networl_1_0_AnnP_2=network_1_0_AnnP_2 & [poll__networl_1_2_AnsP_2=network_1_2_AnsP_2 & [poll__networl_2_0_AskP_2=network_2_0_AskP_2 & [poll__networl_2_0_RI_2=network_2_0_RI_2 & [poll__networl_0_2_AnnP_2=network_0_2_AnnP_2 & [poll__networl_0_0_RP_0=network_0_0_RP_0 & [poll__networl_1_0_RI_0=network_1_0_RI_0 & [poll__networl_2_1_AI_0=network_2_1_AI_0 & [poll__networl_0_0_AnnP_2=network_0_0_AnnP_2 & [poll__networl_2_2_RI_2=network_2_2_RI_2 & [poll__networl_1_1_AI_0=network_1_1_AI_0 & [poll__networl_1_2_RI_0=network_1_2_RI_0 & [poll__networl_2_1_RI_1=network_2_1_RI_1 & [poll__networl_2_2_AnnP_2=network_2_2_AnnP_2 & [poll__networl_2_0_AI_1=network_2_0_AI_1 & [poll__networl_0_2_RP_0=network_0_2_RP_0 & [poll__networl_1_0_AnsP_1=network_1_0_AnsP_1 & [poll__networl_0_0_AnsP_1=network_0_0_AnsP_1 & [poll__networl_2_2_AI_2=network_2_2_AI_2 & [poll__networl_0_2_AnsP_0=network_0_2_AnsP_0 & [poll__networl_2_2_RP_0=network_2_2_RP_0 & [poll__networl_1_0_AnnP_1=network_1_0_AnnP_1 & [poll__networl_2_1_AnsP_0=network_2_1_AnsP_0 & [poll__networl_1_0_RI_2=network_1_0_RI_2 & [poll__networl_2_2_AI_1=network_2_2_AI_1 & [poll__networl_2_0_AskP_1=network_2_0_AskP_1 & [poll__networl_0_2_AnnP_1=network_0_2_AnnP_1 & [poll__networl_2_2_AskP_0=network_2_2_AskP_0 & [poll__networl_2_1_RP_2=network_2_1_RP_2 & [poll__networl_2_2_AnsP_0=network_2_2_AnsP_0 & [poll__networl_0_1_RP_0=network_0_1_RP_0 & [poll__networl_1_1_RP_0=network_1_1_RP_0 & [poll__networl_2_2_AnnP_1=network_2_2_AnnP_1 & [poll__networl_0_1_AskP_0=network_0_1_AskP_0 & [poll__networl_1_0_AskP_1=network_1_0_AskP_1 & [poll__networl_1_1_AnnP_1=network_1_1_AnnP_1 & [poll__networl_1_0_RP_0=network_1_0_RP_0 & [poll__networl_1_2_AI_0=network_1_2_AI_0 & [poll__networl_2_1_RP_0=network_2_1_RP_0 & [poll__networl_0_1_AnnP_2=network_0_1_AnnP_2 & [poll__networl_0_0_AI_2=network_0_0_AI_2 & [poll__networl_2_0_RP_2=network_2_0_RP_2 & [poll__networl_1_2_AI_1=network_1_2_AI_1 & [poll__networl_2_0_RI_1=network_2_0_RI_1 & [poll__networl_2_2_AI_0=network_2_2_AI_0 & [poll__networl_0_2_AI_2=network_0_2_AI_2 & [poll__networl_1_2_RI_1=network_1_2_RI_1 & [poll__networl_0_0_AnsP_2=network_0_0_AnsP_2 & [poll__networl_2_1_AnsP_2=network_2_1_AnsP_2 & [poll__networl_1_2_RI_2=network_1_2_RI_2 & [poll__networl_2_0_RI_0=network_2_0_RI_0 & [poll__networl_0_2_RI_0=network_0_2_RI_0 & [poll__networl_1_2_RP_1=network_1_2_RP_1 & [poll__networl_0_2_AskP_1=network_0_2_AskP_1 & [poll__networl_0_0_AskP_0=network_0_0_AskP_0 & [poll__networl_0_2_RP_1=network_0_2_RP_1 & [poll__networl_1_1_RP_2=network_1_1_RP_2 & [poll__networl_2_1_AnnP_1=network_2_1_AnnP_1 & [poll__networl_0_1_AskP_1=network_0_1_AskP_1 & [poll__networl_1_2_AnnP_2=network_1_2_AnnP_2 & [poll__networl_2_0_RP_1=network_2_0_RP_1 & [poll__networl_0_0_AnnP_1=network_0_0_AnnP_1 & [poll__networl_1_0_AI_2=network_1_0_AI_2 & [poll__networl_0_1_AI_1=network_0_1_AI_1 & [poll__networl_2_0_AnnP_0=network_2_0_AnnP_0 & [poll__networl_1_2_AnsP_1=network_1_2_AnsP_1 & [poll__networl_1_1_AnsP_2=network_1_1_AnsP_2 & [poll__networl_0_0_AI_1=network_0_0_AI_1 & [poll__networl_1_2_AnnP_0=network_1_2_AnnP_0 & [poll__networl_1_1_AskP_1=network_1_1_AskP_1 & [poll__networl_2_0_AnnP_2=network_2_0_AnnP_2 & [poll__networl_1_0_RP_1=network_1_0_RP_1 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
EG iterations: 0
-> the formula is FALSE
FORMULA p_1849_placecomparison_eq_or_notx FALSE TECHNIQUES DECISION_DIAGRAMS
mc time: 0m0sec
checking: EG [AF [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[true & poll__networl_1_0_RP_1=network_1_0_RP_1] & poll__networl_2_0_AnnP_2=network_2_0_AnnP_2] & poll__networl_1_1_AskP_1=network_1_1_AskP_1] & poll__networl_1_2_AnnP_0=network_1_2_AnnP_0] & poll__networl_0_0_AI_1=network_0_0_AI_1] & poll__networl_1_1_AnsP_2=network_1_1_AnsP_2] & poll__networl_1_2_AnsP_1=network_1_2_AnsP_1] & poll__networl_2_0_AnnP_0=network_2_0_AnnP_0] & poll__networl_0_1_AI_1=network_0_1_AI_1] & poll__networl_1_0_AI_2=network_1_0_AI_2] & poll__networl_0_0_AnnP_1=network_0_0_AnnP_1] & poll__networl_2_0_RP_1=network_2_0_RP_1] & poll__networl_1_2_AnnP_2=network_1_2_AnnP_2] & poll__networl_0_1_AskP_1=network_0_1_AskP_1] & poll__networl_2_1_AnnP_1=network_2_1_AnnP_1] & poll__networl_1_1_RP_2=network_1_1_RP_2] & poll__networl_0_2_RP_1=network_0_2_RP_1] & poll__networl_0_0_AskP_0=network_0_0_AskP_0] & poll__networl_0_2_AskP_1=network_0_2_AskP_1] & poll__networl_1_2_RP_1=network_1_2_RP_1] & poll__networl_0_2_RI_0=network_0_2_RI_0] & poll__networl_2_0_RI_0=network_2_0_RI_0] & poll__networl_1_2_RI_2=network_1_2_RI_2] & poll__networl_2_1_AnsP_2=network_2_1_AnsP_2] & poll__networl_0_0_AnsP_2=network_0_0_AnsP_2] & poll__networl_1_2_RI_1=network_1_2_RI_1] & poll__networl_0_2_AI_2=network_0_2_AI_2] & poll__networl_2_2_AI_0=network_2_2_AI_0] & poll__networl_2_0_RI_1=network_2_0_RI_1] & poll__networl_1_2_AI_1=network_1_2_AI_1] & poll__networl_2_0_RP_2=network_2_0_RP_2] & poll__networl_0_0_AI_2=network_0_0_AI_2] & poll__networl_0_1_AnnP_2=network_0_1_AnnP_2] & poll__networl_2_1_RP_0=network_2_1_RP_0] & poll__networl_1_2_AI_0=network_1_2_AI_0] & poll__networl_1_0_RP_0=network_1_0_RP_0] & poll__networl_1_1_AnnP_1=network_1_1_AnnP_1] & poll__networl_1_0_AskP_1=network_1_0_AskP_1] & poll__networl_0_1_AskP_0=network_0_1_AskP_0] & poll__networl_2_2_AnnP_1=network_2_2_AnnP_1] & poll__networl_1_1_RP_0=network_1_1_RP_0] & poll__networl_0_1_RP_0=network_0_1_RP_0] & poll__networl_2_2_AnsP_0=network_2_2_AnsP_0] & poll__networl_2_1_RP_2=network_2_1_RP_2] & poll__networl_2_2_AskP_0=network_2_2_AskP_0] & poll__networl_0_2_AnnP_1=network_0_2_AnnP_1] & poll__networl_2_0_AskP_1=network_2_0_AskP_1] & poll__networl_2_2_AI_1=network_2_2_AI_1] & poll__networl_1_0_RI_2=network_1_0_RI_2] & poll__networl_2_1_AnsP_0=network_2_1_AnsP_0] & poll__networl_1_0_AnnP_1=network_1_0_AnnP_1] & poll__networl_2_2_RP_0=network_2_2_RP_0] & poll__networl_0_2_AnsP_0=network_0_2_AnsP_0] & poll__networl_2_2_AI_2=network_2_2_AI_2] & poll__networl_0_0_AnsP_1=network_0_0_AnsP_1] & poll__networl_1_0_AnsP_1=network_1_0_AnsP_1] & poll__networl_0_2_RP_0=network_0_2_RP_0] & poll__networl_2_0_AI_1=network_2_0_AI_1] & poll__networl_2_2_AnnP_2=network_2_2_AnnP_2] & poll__networl_2_1_RI_1=network_2_1_RI_1] & poll__networl_1_2_RI_0=network_1_2_RI_0] & poll__networl_1_1_AI_0=network_1_1_AI_0] & poll__networl_2_2_RI_2=network_2_2_RI_2] & poll__networl_0_0_AnnP_2=network_0_0_AnnP_2] & poll__networl_2_1_AI_0=network_2_1_AI_0] & poll__networl_1_0_RI_0=network_1_0_RI_0] & poll__networl_0_0_RP_0=network_0_0_RP_0] & poll__networl_0_2_AnnP_2=network_0_2_AnnP_2] & poll__networl_2_0_RI_2=network_2_0_RI_2] & poll__networl_2_0_AskP_2=network_2_0_AskP_2] & poll__networl_1_2_AnsP_2=network_1_2_AnsP_2] & poll__networl_1_0_AnnP_2=network_1_0_AnnP_2] & poll__networl_1_2_AnnP_1=network_1_2_AnnP_1] & poll__networl_0_2_AI_0=network_0_2_AI_0] & poll__networl_0_0_AnnP_0=network_0_0_AnnP_0] & poll__networl_2_0_AnnP_1=network_2_0_AnnP_1] & poll__networl_0_2_AnsP_1=network_0_2_AnsP_1] & poll__networl_1_1_AI_1=network_1_1_AI_1] & poll__networl_1_1_RI_0=network_1_1_RI_0] & poll__networl_2_2_AskP_1=network_2_2_AskP_1] & poll__networl_2_2_AnnP_0=network_2_2_AnnP_0] & poll__networl_2_0_AskP_0=network_2_0_AskP_0] & poll__networl_2_2_AnsP_1=network_2_2_AnsP_1] & poll__networl_2_1_AnsP_1=network_2_1_AnsP_1] & poll__networl_2_2_AskP_2=network_2_2_AskP_2] & poll__networl_0_2_RP_2=network_0_2_RP_2] & poll__networl_0_1_AnsP_0=network_0_1_AnsP_0] & poll__networl_0_1_RI_2=network_0_1_RI_2] & poll__networl_2_1_AnnP_2=network_2_1_AnnP_2] & poll__networl_1_2_AnsP_0=network_1_2_AnsP_0] & poll__networl_1_0_RP_2=network_1_0_RP_2] & poll__networl_0_0_AskP_2=network_0_0_AskP_2] & poll__networl_0_0_RI_1=network_0_0_RI_1] & poll__networl_2_2_RI_0=network_2_2_RI_0] & poll__networl_0_1_AnsP_1=network_0_1_AnsP_1] & poll__networl_0_1_AI_0=network_0_1_AI_0] & poll__networl_0_1_RI_1=network_0_1_RI_1] & poll__networl_1_2_AskP_2=network_1_2_AskP_2] & poll__networl_2_2_RP_2=network_2_2_RP_2] & poll__networl_1_0_AnsP_0=network_1_0_AnsP_0] & poll__networl_1_1_AI_2=network_1_1_AI_2] & poll__networl_0_2_AnsP_2=network_0_2_AnsP_2] & poll__networl_0_0_AskP_1=network_0_0_AskP_1] & poll__networl_0_0_RI_2=network_0_0_RI_2] & poll__networl_1_0_AI_1=network_1_0_AI_1] & poll__networl_0_2_RI_2=network_0_2_RI_2] & poll__networl_2_1_AI_1=network_2_1_AI_1] & poll__networl_1_1_AskP_0=network_1_1_AskP_0] & poll__networl_1_0_AnnP_0=network_1_0_AnnP_0] & poll__networl_0_2_AI_1=network_0_2_AI_1] & poll__networl_1_2_AI_2=network_1_2_AI_2] & poll__networl_0_2_AskP_2=network_0_2_AskP_2] & poll__networl_0_0_RP_1=network_0_0_RP_1] & poll__networl_2_1_AI_2=network_2_1_AI_2] & poll__networl_1_1_RI_1=network_1_1_RI_1] & poll__networl_1_1_RI_2=network_1_1_RI_2] & poll__networl_0_1_RP_2=network_0_1_RP_2] & poll__networl_1_1_RP_1=network_1_1_RP_1] & poll__networl_1_0_AskP_0=network_1_0_AskP_0] & poll__networl_0_0_RP_2=network_0_0_RP_2] & poll__networl_0_2_AskP_0=network_0_2_AskP_0] & poll__networl_1_2_AskP_0=network_1_2_AskP_0] & poll__networl_0_0_RI_0=network_0_0_RI_0] & poll__networl_0_1_AnsP_2=network_0_1_AnsP_2] & poll__networl_1_0_AskP_2=network_1_0_AskP_2] & poll__networl_1_1_AnnP_0=network_1_1_AnnP_0] & poll__networl_2_1_AnnP_0=network_2_1_AnnP_0] & poll__networl_2_0_AI_0=network_2_0_AI_0] & poll__networl_1_0_AI_0=network_1_0_AI_0] & poll__networl_2_0_RP_0=network_2_0_RP_0] & poll__networl_0_1_AskP_2=network_0_1_AskP_2] & poll__networl_1_1_AskP_2=network_1_1_AskP_2] & poll__networl_2_0_AnsP_0=network_2_0_AnsP_0] & poll__networl_2_0_AnsP_2=network_2_0_AnsP_2] & poll__networl_2_1_RP_1=network_2_1_RP_1] & poll__networl_0_0_AnsP_0=network_0_0_AnsP_0] & poll__networl_2_1_RI_2=network_2_1_RI_2] & poll__networl_0_2_AnnP_0=network_0_2_AnnP_0] & poll__networl_2_2_AnsP_2=network_2_2_AnsP_2] & poll__networl_1_1_AnsP_0=network_1_1_AnsP_0] & poll__networl_2_1_AskP_0=network_2_1_AskP_0] & poll__networl_1_2_RP_2=network_1_2_RP_2] & poll__networl_2_2_RP_1=network_2_2_RP_1] & poll__networl_0_1_RI_0=network_0_1_RI_0] & poll__networl_0_2_RI_1=network_0_2_RI_1] & poll__networl_0_1_AnnP_0=network_0_1_AnnP_0] & poll__networl_0_1_AI_2=network_0_1_AI_2] & poll__networl_2_0_AnsP_1=network_2_0_AnsP_1] & poll__networl_2_1_RI_0=network_2_1_RI_0] & poll__networl_0_1_RP_1=network_0_1_RP_1] & poll__networl_0_1_AnnP_1=network_0_1_AnnP_1] & poll__networl_1_1_AnnP_2=network_1_1_AnnP_2] & poll__networl_1_2_AskP_1=network_1_2_AskP_1] & poll__networl_1_2_RP_0=network_1_2_RP_0] & poll__networl_2_2_RI_1=network_2_2_RI_1] & poll__networl_1_0_AnsP_2=network_1_0_AnsP_2] & poll__networl_2_1_AskP_1=network_2_1_AskP_1] & poll__networl_2_0_AI_2=network_2_0_AI_2] & poll__networl_0_0_AI_0=network_0_0_AI_0] & poll__networl_1_0_RI_1=network_1_0_RI_1] & poll__networl_1_1_AnsP_1=network_1_1_AnsP_1] & poll__networl_2_1_AskP_2=network_2_1_AskP_2] | [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[true & network_1_1_RP_2!=poll__networl_1_1_RP_2] & network_1_1_RP_0!=poll__networl_1_1_RP_0] & network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0] & network_1_0_AI_2!=poll__networl_1_0_AI_2] & network_0_2_RI_1!=poll__networl_0_2_RI_1] & network_0_2_RP_0!=poll__networl_0_2_RP_0] & network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0] & network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2] & network_1_0_AskP_2!=poll__networl_1_0_AskP_2] & network_2_0_AskP_1!=poll__networl_2_0_AskP_1] & network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0] & network_0_0_RI_2!=poll__networl_0_0_RI_2] & network_1_0_RI_2!=poll__networl_1_0_RI_2] & network_0_1_AskP_2!=poll__networl_0_1_AskP_2] & network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0] & network_0_0_AI_2!=poll__networl_0_0_AI_2] & network_2_2_RI_0!=poll__networl_2_2_RI_0] & network_1_0_AskP_0!=poll__networl_1_0_AskP_0] & network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1] & network_1_1_AskP_0!=poll__networl_1_1_AskP_0] & network_1_2_RP_2!=poll__networl_1_2_RP_2] & network_1_1_RI_0!=poll__networl_1_1_RI_0] & network_2_2_AI_2!=poll__networl_2_2_AI_2] & network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2] & network_0_2_AI_1!=poll__networl_0_2_AI_1] & network_2_0_AI_0!=poll__networl_2_0_AI_0] & network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2] & network_1_0_RP_0!=poll__networl_1_0_RP_0] & network_2_1_AskP_1!=poll__networl_2_1_AskP_1] & network_2_0_RP_0!=poll__networl_2_0_RP_0] & network_1_2_AI_2!=poll__networl_1_2_AI_2] & network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1] & network_2_0_AskP_0!=poll__networl_2_0_AskP_0] & network_1_2_RP_0!=poll__networl_1_2_RP_0] & network_2_1_AskP_2!=poll__networl_2_1_AskP_2] & network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2] & network_0_2_RP_1!=poll__networl_0_2_RP_1] & network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1] & network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1] & network_1_2_AI_0!=poll__networl_1_2_AI_0] & network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1] & network_1_0_AI_0!=poll__networl_1_0_AI_0] & network_1_2_RI_1!=poll__networl_1_2_RI_1] & network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0] & network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1] & network_1_1_AskP_1!=poll__networl_1_1_AskP_1] & network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0] & network_2_1_RP_2!=poll__networl_2_1_RP_2] & network_0_1_RI_2!=poll__networl_0_1_RI_2] & network_2_1_RP_1!=poll__networl_2_1_RP_1] & network_2_2_AI_1!=poll__networl_2_2_AI_1] & network_0_1_AskP_1!=poll__networl_0_1_AskP_1] & network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0] & network_0_0_AskP_1!=poll__networl_0_0_AskP_1] & network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2] & network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2] & network_2_2_RP_1!=poll__networl_2_2_RP_1] & network_0_1_AskP_0!=poll__networl_0_1_AskP_0] & network_0_2_AskP_0!=poll__networl_0_2_AskP_0] & network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1] & network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1] & network_2_1_RI_1!=poll__networl_2_1_RI_1] & network_1_2_RP_1!=poll__networl_1_2_RP_1] & network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1] & network_0_2_RI_0!=poll__networl_0_2_RI_0] & network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1] & network_1_1_AI_1!=poll__networl_1_1_AI_1] & network_0_0_AI_0!=poll__networl_0_0_AI_0] & network_1_0_AI_1!=poll__networl_1_0_AI_1] & network_1_1_RI_2!=poll__networl_1_1_RI_2] & network_2_0_RI_2!=poll__networl_2_0_RI_2] & network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1] & network_0_0_AskP_2!=poll__networl_0_0_AskP_2] & network_0_0_RI_0!=poll__networl_0_0_RI_0] & network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0] & network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2] & network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0] & network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0] & network_2_0_RP_2!=poll__networl_2_0_RP_2] & network_0_0_RI_1!=poll__networl_0_0_RI_1] & network_2_1_RI_0!=poll__networl_2_1_RI_0] & network_2_1_RI_2!=poll__networl_2_1_RI_2] & network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0] & network_1_2_AI_1!=poll__networl_1_2_AI_1] & network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2] & network_1_1_AI_2!=poll__networl_1_1_AI_2] & network_2_2_AskP_0!=poll__networl_2_2_AskP_0] & network_0_2_RP_2!=poll__networl_0_2_RP_2] & network_2_0_RP_1!=poll__networl_2_0_RP_1] & network_0_0_RP_2!=poll__networl_0_0_RP_2] & network_1_2_AskP_2!=poll__networl_1_2_AskP_2] & network_2_1_AI_0!=poll__networl_2_1_AI_0] & network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0] & network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1] & network_0_1_RP_0!=poll__networl_0_1_RP_0] & network_2_1_AI_1!=poll__networl_2_1_AI_1] & network_2_0_RI_1!=poll__networl_2_0_RI_1] & network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2] & network_0_1_AI_1!=poll__networl_0_1_AI_1] & network_0_1_AI_0!=poll__networl_0_1_AI_0] & network_0_0_RP_0!=poll__networl_0_0_RP_0] & network_0_1_RI_0!=poll__networl_0_1_RI_0] & network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1] & network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1] & network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1] & network_0_1_RP_2!=poll__networl_0_1_RP_2] & network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2] & network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2] & network_1_2_AskP_0!=poll__networl_1_2_AskP_0] & network_2_2_RI_2!=poll__networl_2_2_RI_2] & network_1_0_RI_1!=poll__networl_1_0_RI_1] & network_1_2_RI_2!=poll__networl_1_2_RI_2] & network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0] & network_1_1_AskP_2!=poll__networl_1_1_AskP_2] & network_2_0_AskP_2!=poll__networl_2_0_AskP_2] & network_2_1_AskP_0!=poll__networl_2_1_AskP_0] & network_1_2_AskP_1!=poll__networl_1_2_AskP_1] & network_2_2_AI_0!=poll__networl_2_2_AI_0] & network_2_1_AI_2!=poll__networl_2_1_AI_2] & network_2_1_RP_0!=poll__networl_2_1_RP_0] & network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0] & network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1] & network_2_0_RI_0!=poll__networl_2_0_RI_0] & network_0_2_AskP_1!=poll__networl_0_2_AskP_1] & network_2_2_RP_0!=poll__networl_2_2_RP_0] & network_0_0_AI_1!=poll__networl_0_0_AI_1] & network_2_2_RI_1!=poll__networl_2_2_RI_1] & network_2_2_AskP_2!=poll__networl_2_2_AskP_2] & network_1_1_AI_0!=poll__networl_1_1_AI_0] & network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1] & network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2] & network_1_1_RP_1!=poll__networl_1_1_RP_1] & network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1] & network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0] & network_0_0_AskP_0!=poll__networl_0_0_AskP_0] & network_1_0_AskP_1!=poll__networl_1_0_AskP_1] & network_0_1_RI_1!=poll__networl_0_1_RI_1] & network_1_0_RP_1!=poll__networl_1_0_RP_1] & network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2] & network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2] & network_0_1_RP_1!=poll__networl_0_1_RP_1] & network_0_2_AskP_2!=poll__networl_0_2_AskP_2] & network_1_0_RP_2!=poll__networl_1_0_RP_2] & network_0_0_RP_1!=poll__networl_0_0_RP_1] & network_1_1_RI_1!=poll__networl_1_1_RI_1] & network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2] & network_0_2_AI_2!=poll__networl_0_2_AI_2] & network_2_0_AI_1!=poll__networl_2_0_AI_1] & network_2_2_AskP_1!=poll__networl_2_2_AskP_1] & network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2] & network_0_2_RI_2!=poll__networl_0_2_RI_2] & network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0] & network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0] & network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0] & network_0_2_AI_0!=poll__networl_0_2_AI_0] & network_0_1_AI_2!=poll__networl_0_1_AI_2] & network_2_0_AI_2!=poll__networl_2_0_AI_2] & network_1_2_RI_0!=poll__networl_1_2_RI_0] & network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2] & network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2] & network_1_0_RI_0!=poll__networl_1_0_RI_0] & network_2_2_RP_2!=poll__networl_2_2_RP_2]]]]
normalized: EG [~ [EG [~ [[[network_2_2_RP_2!=poll__networl_2_2_RP_2 & [network_1_0_RI_0!=poll__networl_1_0_RI_0 & [network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2 & [network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2 & [network_1_2_RI_0!=poll__networl_1_2_RI_0 & [network_2_0_AI_2!=poll__networl_2_0_AI_2 & [network_0_1_AI_2!=poll__networl_0_1_AI_2 & [network_0_2_AI_0!=poll__networl_0_2_AI_0 & [network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0 & [network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0 & [network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0 & [network_0_2_RI_2!=poll__networl_0_2_RI_2 & [network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [network_2_2_AskP_1!=poll__networl_2_2_AskP_1 & [network_2_0_AI_1!=poll__networl_2_0_AI_1 & [network_0_2_AI_2!=poll__networl_0_2_AI_2 & [network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2 & [network_1_1_RI_1!=poll__networl_1_1_RI_1 & [network_0_0_RP_1!=poll__networl_0_0_RP_1 & [network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [network_0_1_RP_1!=poll__networl_0_1_RP_1 & [network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [network_0_1_RI_1!=poll__networl_0_1_RI_1 & [network_1_0_AskP_1!=poll__networl_1_0_AskP_1 & [network_0_0_AskP_0!=poll__networl_0_0_AskP_0 & [network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0 & [network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1 & [network_1_1_RP_1!=poll__networl_1_1_RP_1 & [network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [network_2_2_RI_1!=poll__networl_2_2_RI_1 & [network_0_0_AI_1!=poll__networl_0_0_AI_1 & [network_2_2_RP_0!=poll__networl_2_2_RP_0 & [network_0_2_AskP_1!=poll__networl_0_2_AskP_1 & [network_2_0_RI_0!=poll__networl_2_0_RI_0 & [network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1 & [network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0 & [network_2_1_RP_0!=poll__networl_2_1_RP_0 & [network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [network_2_0_AskP_2!=poll__networl_2_0_AskP_2 & [network_1_1_AskP_2!=poll__networl_1_1_AskP_2 & [network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0 & [network_1_2_RI_2!=poll__networl_1_2_RI_2 & [network_1_0_RI_1!=poll__networl_1_0_RI_1 & [network_2_2_RI_2!=poll__networl_2_2_RI_2 & [network_1_2_AskP_0!=poll__networl_1_2_AskP_0 & [network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2 & [network_0_1_RP_2!=poll__networl_0_1_RP_2 & [network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1 & [network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1 & [network_0_1_RI_0!=poll__networl_0_1_RI_0 & [network_0_0_RP_0!=poll__networl_0_0_RP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [network_0_1_AI_1!=poll__networl_0_1_AI_1 & [network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2 & [network_2_0_RI_1!=poll__networl_2_0_RI_1 & [network_2_1_AI_1!=poll__networl_2_1_AI_1 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1 & [network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [network_1_2_AskP_2!=poll__networl_1_2_AskP_2 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [network_1_1_AI_2!=poll__networl_1_1_AI_2 & [network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2 & [network_1_2_AI_1!=poll__networl_1_2_AI_1 & [network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2 & [network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_0_0_RI_0!=poll__networl_0_0_RI_0 & [network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_0_RI_2!=poll__networl_2_0_RI_2 & [network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_1_0_AI_1!=poll__networl_1_0_AI_1 & [network_0_0_AI_0!=poll__networl_0_0_AI_0 & [network_1_1_AI_1!=poll__networl_1_1_AI_1 & [network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_2_1_RI_1!=poll__networl_2_1_RI_1 & [network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [network_2_2_RP_1!=poll__networl_2_2_RP_1 & [network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [network_0_0_AskP_1!=poll__networl_0_0_AskP_1 & [network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0 & [network_1_2_RI_1!=poll__networl_1_2_RI_1 & [network_1_0_AI_0!=poll__networl_1_0_AI_0 & [network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [network_1_2_AI_0!=poll__networl_1_2_AI_0 & [network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1 & [network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [network_0_2_RP_1!=poll__networl_0_2_RP_1 & [network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2 & [network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [network_1_2_RP_0!=poll__networl_1_2_RP_0 & [network_2_0_AskP_0!=poll__networl_2_0_AskP_0 & [network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1 & [network_1_2_AI_2!=poll__networl_1_2_AI_2 & [network_2_0_RP_0!=poll__networl_2_0_RP_0 & [network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [network_2_0_AI_0!=poll__networl_2_0_AI_0 & [network_0_2_AI_1!=poll__networl_0_2_AI_1 & [network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [network_2_2_AI_2!=poll__networl_2_2_AI_2 & [network_1_1_RI_0!=poll__networl_1_1_RI_0 & [network_1_2_RP_2!=poll__networl_1_2_RP_2 & [network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [network_2_2_RI_0!=poll__networl_2_2_RI_0 & [network_0_0_AI_2!=poll__networl_0_0_AI_2 & [network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0 & [network_0_1_AskP_2!=poll__networl_0_1_AskP_2 & [network_1_0_RI_2!=poll__networl_1_0_RI_2 & [network_0_0_RI_2!=poll__networl_0_0_RI_2 & [network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0 & [network_2_0_AskP_1!=poll__networl_2_0_AskP_1 & [network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0 & [network_0_2_RP_0!=poll__networl_0_2_RP_0 & [network_0_2_RI_1!=poll__networl_0_2_RI_1 & [network_1_0_AI_2!=poll__networl_1_0_AI_2 & [network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0 & [network_1_1_RP_0!=poll__networl_1_1_RP_0 & [network_1_1_RP_2!=poll__networl_1_1_RP_2 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] | [poll__networl_2_1_AskP_2=network_2_1_AskP_2 & [poll__networl_1_1_AnsP_1=network_1_1_AnsP_1 & [poll__networl_1_0_RI_1=network_1_0_RI_1 & [poll__networl_0_0_AI_0=network_0_0_AI_0 & [poll__networl_2_0_AI_2=network_2_0_AI_2 & [poll__networl_2_1_AskP_1=network_2_1_AskP_1 & [poll__networl_1_0_AnsP_2=network_1_0_AnsP_2 & [poll__networl_2_2_RI_1=network_2_2_RI_1 & [poll__networl_1_2_RP_0=network_1_2_RP_0 & [poll__networl_1_2_AskP_1=network_1_2_AskP_1 & [poll__networl_1_1_AnnP_2=network_1_1_AnnP_2 & [poll__networl_0_1_AnnP_1=network_0_1_AnnP_1 & [poll__networl_0_1_RP_1=network_0_1_RP_1 & [poll__networl_2_1_RI_0=network_2_1_RI_0 & [poll__networl_2_0_AnsP_1=network_2_0_AnsP_1 & [poll__networl_0_1_AI_2=network_0_1_AI_2 & [poll__networl_0_1_AnnP_0=network_0_1_AnnP_0 & [poll__networl_0_2_RI_1=network_0_2_RI_1 & [poll__networl_0_1_RI_0=network_0_1_RI_0 & [poll__networl_2_2_RP_1=network_2_2_RP_1 & [poll__networl_1_2_RP_2=network_1_2_RP_2 & [poll__networl_2_1_AskP_0=network_2_1_AskP_0 & [poll__networl_1_1_AnsP_0=network_1_1_AnsP_0 & [poll__networl_2_2_AnsP_2=network_2_2_AnsP_2 & [poll__networl_0_2_AnnP_0=network_0_2_AnnP_0 & [poll__networl_2_1_RI_2=network_2_1_RI_2 & [poll__networl_0_0_AnsP_0=network_0_0_AnsP_0 & [poll__networl_2_1_RP_1=network_2_1_RP_1 & [poll__networl_2_0_AnsP_2=network_2_0_AnsP_2 & [poll__networl_2_0_AnsP_0=network_2_0_AnsP_0 & [poll__networl_1_1_AskP_2=network_1_1_AskP_2 & [poll__networl_0_1_AskP_2=network_0_1_AskP_2 & [poll__networl_2_0_RP_0=network_2_0_RP_0 & [poll__networl_1_0_AI_0=network_1_0_AI_0 & [poll__networl_2_0_AI_0=network_2_0_AI_0 & [poll__networl_2_1_AnnP_0=network_2_1_AnnP_0 & [poll__networl_1_1_AnnP_0=network_1_1_AnnP_0 & [poll__networl_1_0_AskP_2=network_1_0_AskP_2 & [poll__networl_0_1_AnsP_2=network_0_1_AnsP_2 & [poll__networl_0_0_RI_0=network_0_0_RI_0 & [poll__networl_1_2_AskP_0=network_1_2_AskP_0 & [poll__networl_0_2_AskP_0=network_0_2_AskP_0 & [poll__networl_0_0_RP_2=network_0_0_RP_2 & [poll__networl_1_0_AskP_0=network_1_0_AskP_0 & [poll__networl_1_1_RP_1=network_1_1_RP_1 & [poll__networl_0_1_RP_2=network_0_1_RP_2 & [poll__networl_1_1_RI_2=network_1_1_RI_2 & [poll__networl_1_1_RI_1=network_1_1_RI_1 & [poll__networl_2_1_AI_2=network_2_1_AI_2 & [poll__networl_0_0_RP_1=network_0_0_RP_1 & [poll__networl_0_2_AskP_2=network_0_2_AskP_2 & [poll__networl_1_2_AI_2=network_1_2_AI_2 & [poll__networl_0_2_AI_1=network_0_2_AI_1 & [poll__networl_1_0_AnnP_0=network_1_0_AnnP_0 & [poll__networl_1_1_AskP_0=network_1_1_AskP_0 & [poll__networl_2_1_AI_1=network_2_1_AI_1 & [poll__networl_0_2_RI_2=network_0_2_RI_2 & [poll__networl_1_0_AI_1=network_1_0_AI_1 & [poll__networl_0_0_RI_2=network_0_0_RI_2 & [poll__networl_0_0_AskP_1=network_0_0_AskP_1 & [poll__networl_0_2_AnsP_2=network_0_2_AnsP_2 & [poll__networl_1_1_AI_2=network_1_1_AI_2 & [poll__networl_1_0_AnsP_0=network_1_0_AnsP_0 & [poll__networl_2_2_RP_2=network_2_2_RP_2 & [poll__networl_1_2_AskP_2=network_1_2_AskP_2 & [poll__networl_0_1_RI_1=network_0_1_RI_1 & [poll__networl_0_1_AI_0=network_0_1_AI_0 & [poll__networl_0_1_AnsP_1=network_0_1_AnsP_1 & [poll__networl_2_2_RI_0=network_2_2_RI_0 & [poll__networl_0_0_RI_1=network_0_0_RI_1 & [poll__networl_0_0_AskP_2=network_0_0_AskP_2 & [poll__networl_1_0_RP_2=network_1_0_RP_2 & [poll__networl_1_2_AnsP_0=network_1_2_AnsP_0 & [poll__networl_2_1_AnnP_2=network_2_1_AnnP_2 & [poll__networl_0_1_RI_2=network_0_1_RI_2 & [poll__networl_0_1_AnsP_0=network_0_1_AnsP_0 & [poll__networl_0_2_RP_2=network_0_2_RP_2 & [poll__networl_2_2_AskP_2=network_2_2_AskP_2 & [poll__networl_2_1_AnsP_1=network_2_1_AnsP_1 & [poll__networl_2_2_AnsP_1=network_2_2_AnsP_1 & [poll__networl_2_0_AskP_0=network_2_0_AskP_0 & [poll__networl_2_2_AnnP_0=network_2_2_AnnP_0 & [poll__networl_2_2_AskP_1=network_2_2_AskP_1 & [poll__networl_1_1_RI_0=network_1_1_RI_0 & [poll__networl_1_1_AI_1=network_1_1_AI_1 & [poll__networl_0_2_AnsP_1=network_0_2_AnsP_1 & [poll__networl_2_0_AnnP_1=network_2_0_AnnP_1 & [poll__networl_0_0_AnnP_0=network_0_0_AnnP_0 & [poll__networl_0_2_AI_0=network_0_2_AI_0 & [poll__networl_1_2_AnnP_1=network_1_2_AnnP_1 & [poll__networl_1_0_AnnP_2=network_1_0_AnnP_2 & [poll__networl_1_2_AnsP_2=network_1_2_AnsP_2 & [poll__networl_2_0_AskP_2=network_2_0_AskP_2 & [poll__networl_2_0_RI_2=network_2_0_RI_2 & [poll__networl_0_2_AnnP_2=network_0_2_AnnP_2 & [poll__networl_0_0_RP_0=network_0_0_RP_0 & [poll__networl_1_0_RI_0=network_1_0_RI_0 & [poll__networl_2_1_AI_0=network_2_1_AI_0 & [poll__networl_0_0_AnnP_2=network_0_0_AnnP_2 & [poll__networl_2_2_RI_2=network_2_2_RI_2 & [poll__networl_1_1_AI_0=network_1_1_AI_0 & [poll__networl_1_2_RI_0=network_1_2_RI_0 & [poll__networl_2_1_RI_1=network_2_1_RI_1 & [poll__networl_2_2_AnnP_2=network_2_2_AnnP_2 & [poll__networl_2_0_AI_1=network_2_0_AI_1 & [poll__networl_0_2_RP_0=network_0_2_RP_0 & [poll__networl_1_0_AnsP_1=network_1_0_AnsP_1 & [poll__networl_0_0_AnsP_1=network_0_0_AnsP_1 & [poll__networl_2_2_AI_2=network_2_2_AI_2 & [poll__networl_0_2_AnsP_0=network_0_2_AnsP_0 & [poll__networl_2_2_RP_0=network_2_2_RP_0 & [poll__networl_1_0_AnnP_1=network_1_0_AnnP_1 & [poll__networl_2_1_AnsP_0=network_2_1_AnsP_0 & [poll__networl_1_0_RI_2=network_1_0_RI_2 & [poll__networl_2_2_AI_1=network_2_2_AI_1 & [poll__networl_2_0_AskP_1=network_2_0_AskP_1 & [poll__networl_0_2_AnnP_1=network_0_2_AnnP_1 & [poll__networl_2_2_AskP_0=network_2_2_AskP_0 & [poll__networl_2_1_RP_2=network_2_1_RP_2 & [poll__networl_2_2_AnsP_0=network_2_2_AnsP_0 & [poll__networl_0_1_RP_0=network_0_1_RP_0 & [poll__networl_1_1_RP_0=network_1_1_RP_0 & [poll__networl_2_2_AnnP_1=network_2_2_AnnP_1 & [poll__networl_0_1_AskP_0=network_0_1_AskP_0 & [poll__networl_1_0_AskP_1=network_1_0_AskP_1 & [poll__networl_1_1_AnnP_1=network_1_1_AnnP_1 & [poll__networl_1_0_RP_0=network_1_0_RP_0 & [poll__networl_1_2_AI_0=network_1_2_AI_0 & [poll__networl_2_1_RP_0=network_2_1_RP_0 & [poll__networl_0_1_AnnP_2=network_0_1_AnnP_2 & [poll__networl_0_0_AI_2=network_0_0_AI_2 & [poll__networl_2_0_RP_2=network_2_0_RP_2 & [poll__networl_1_2_AI_1=network_1_2_AI_1 & [poll__networl_2_0_RI_1=network_2_0_RI_1 & [poll__networl_2_2_AI_0=network_2_2_AI_0 & [poll__networl_0_2_AI_2=network_0_2_AI_2 & [poll__networl_1_2_RI_1=network_1_2_RI_1 & [poll__networl_0_0_AnsP_2=network_0_0_AnsP_2 & [poll__networl_2_1_AnsP_2=network_2_1_AnsP_2 & [poll__networl_1_2_RI_2=network_1_2_RI_2 & [poll__networl_2_0_RI_0=network_2_0_RI_0 & [poll__networl_0_2_RI_0=network_0_2_RI_0 & [poll__networl_1_2_RP_1=network_1_2_RP_1 & [poll__networl_0_2_AskP_1=network_0_2_AskP_1 & [poll__networl_0_0_AskP_0=network_0_0_AskP_0 & [poll__networl_0_2_RP_1=network_0_2_RP_1 & [poll__networl_1_1_RP_2=network_1_1_RP_2 & [poll__networl_2_1_AnnP_1=network_2_1_AnnP_1 & [poll__networl_0_1_AskP_1=network_0_1_AskP_1 & [poll__networl_1_2_AnnP_2=network_1_2_AnnP_2 & [poll__networl_2_0_RP_1=network_2_0_RP_1 & [poll__networl_0_0_AnnP_1=network_0_0_AnnP_1 & [poll__networl_1_0_AI_2=network_1_0_AI_2 & [poll__networl_0_1_AI_1=network_0_1_AI_1 & [poll__networl_2_0_AnnP_0=network_2_0_AnnP_0 & [poll__networl_1_2_AnsP_1=network_1_2_AnsP_1 & [poll__networl_1_1_AnsP_2=network_1_1_AnsP_2 & [poll__networl_0_0_AI_1=network_0_0_AI_1 & [poll__networl_1_2_AnnP_0=network_1_2_AnnP_0 & [poll__networl_1_1_AskP_1=network_1_1_AskP_1 & [poll__networl_2_0_AnnP_2=network_2_0_AnnP_2 & [poll__networl_1_0_RP_1=network_1_0_RP_1 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
EG iterations: 0
.
EG iterations: 1
-> the formula is FALSE
FORMULA p_1850_placecomparison_eq_x FALSE TECHNIQUES DECISION_DIAGRAMS
mc time: 0m0sec
checking: AG [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[true & network_1_1_RP_2!=poll__networl_1_1_RP_2] & network_1_1_RP_0!=poll__networl_1_1_RP_0] & network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0] & network_1_0_AI_2!=poll__networl_1_0_AI_2] & network_0_2_RI_1!=poll__networl_0_2_RI_1] & network_0_2_RP_0!=poll__networl_0_2_RP_0] & network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0] & network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2] & network_1_0_AskP_2!=poll__networl_1_0_AskP_2] & network_2_0_AskP_1!=poll__networl_2_0_AskP_1] & network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0] & network_0_0_RI_2!=poll__networl_0_0_RI_2] & network_1_0_RI_2!=poll__networl_1_0_RI_2] & network_0_1_AskP_2!=poll__networl_0_1_AskP_2] & network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0] & network_0_0_AI_2!=poll__networl_0_0_AI_2] & network_2_2_RI_0!=poll__networl_2_2_RI_0] & network_1_0_AskP_0!=poll__networl_1_0_AskP_0] & network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1] & network_1_1_AskP_0!=poll__networl_1_1_AskP_0] & network_1_2_RP_2!=poll__networl_1_2_RP_2] & network_1_1_RI_0!=poll__networl_1_1_RI_0] & network_2_2_AI_2!=poll__networl_2_2_AI_2] & network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2] & network_0_2_AI_1!=poll__networl_0_2_AI_1] & network_2_0_AI_0!=poll__networl_2_0_AI_0] & network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2] & network_1_0_RP_0!=poll__networl_1_0_RP_0] & network_2_1_AskP_1!=poll__networl_2_1_AskP_1] & network_2_0_RP_0!=poll__networl_2_0_RP_0] & network_1_2_AI_2!=poll__networl_1_2_AI_2] & network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1] & network_2_0_AskP_0!=poll__networl_2_0_AskP_0] & network_1_2_RP_0!=poll__networl_1_2_RP_0] & network_2_1_AskP_2!=poll__networl_2_1_AskP_2] & network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2] & network_0_2_RP_1!=poll__networl_0_2_RP_1] & network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1] & network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1] & network_1_2_AI_0!=poll__networl_1_2_AI_0] & network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1] & network_1_0_AI_0!=poll__networl_1_0_AI_0] & network_1_2_RI_1!=poll__networl_1_2_RI_1] & network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0] & network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1] & network_1_1_AskP_1!=poll__networl_1_1_AskP_1] & network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0] & network_2_1_RP_2!=poll__networl_2_1_RP_2] & network_0_1_RI_2!=poll__networl_0_1_RI_2] & network_2_1_RP_1!=poll__networl_2_1_RP_1] & network_2_2_AI_1!=poll__networl_2_2_AI_1] & network_0_1_AskP_1!=poll__networl_0_1_AskP_1] & network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0] & network_0_0_AskP_1!=poll__networl_0_0_AskP_1] & network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2] & network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2] & network_2_2_RP_1!=poll__networl_2_2_RP_1] & network_0_1_AskP_0!=poll__networl_0_1_AskP_0] & network_0_2_AskP_0!=poll__networl_0_2_AskP_0] & network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1] & network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1] & network_2_1_RI_1!=poll__networl_2_1_RI_1] & network_1_2_RP_1!=poll__networl_1_2_RP_1] & network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1] & network_0_2_RI_0!=poll__networl_0_2_RI_0] & network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1] & network_1_1_AI_1!=poll__networl_1_1_AI_1] & network_0_0_AI_0!=poll__networl_0_0_AI_0] & network_1_0_AI_1!=poll__networl_1_0_AI_1] & network_1_1_RI_2!=poll__networl_1_1_RI_2] & network_2_0_RI_2!=poll__networl_2_0_RI_2] & network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1] & network_0_0_AskP_2!=poll__networl_0_0_AskP_2] & network_0_0_RI_0!=poll__networl_0_0_RI_0] & network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0] & network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2] & network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0] & network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0] & network_2_0_RP_2!=poll__networl_2_0_RP_2] & network_0_0_RI_1!=poll__networl_0_0_RI_1] & network_2_1_RI_0!=poll__networl_2_1_RI_0] & network_2_1_RI_2!=poll__networl_2_1_RI_2] & network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0] & network_1_2_AI_1!=poll__networl_1_2_AI_1] & network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2] & network_1_1_AI_2!=poll__networl_1_1_AI_2] & network_2_2_AskP_0!=poll__networl_2_2_AskP_0] & network_0_2_RP_2!=poll__networl_0_2_RP_2] & network_2_0_RP_1!=poll__networl_2_0_RP_1] & network_0_0_RP_2!=poll__networl_0_0_RP_2] & network_1_2_AskP_2!=poll__networl_1_2_AskP_2] & network_2_1_AI_0!=poll__networl_2_1_AI_0] & network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0] & network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1] & network_0_1_RP_0!=poll__networl_0_1_RP_0] & network_2_1_AI_1!=poll__networl_2_1_AI_1] & network_2_0_RI_1!=poll__networl_2_0_RI_1] & network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2] & network_0_1_AI_1!=poll__networl_0_1_AI_1] & network_0_1_AI_0!=poll__networl_0_1_AI_0] & network_0_0_RP_0!=poll__networl_0_0_RP_0] & network_0_1_RI_0!=poll__networl_0_1_RI_0] & network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1] & network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1] & network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1] & network_0_1_RP_2!=poll__networl_0_1_RP_2] & network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2] & network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2] & network_1_2_AskP_0!=poll__networl_1_2_AskP_0] & network_2_2_RI_2!=poll__networl_2_2_RI_2] & network_1_0_RI_1!=poll__networl_1_0_RI_1] & network_1_2_RI_2!=poll__networl_1_2_RI_2] & network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0] & network_1_1_AskP_2!=poll__networl_1_1_AskP_2] & network_2_0_AskP_2!=poll__networl_2_0_AskP_2] & network_2_1_AskP_0!=poll__networl_2_1_AskP_0] & network_1_2_AskP_1!=poll__networl_1_2_AskP_1] & network_2_2_AI_0!=poll__networl_2_2_AI_0] & network_2_1_AI_2!=poll__networl_2_1_AI_2] & network_2_1_RP_0!=poll__networl_2_1_RP_0] & network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0] & network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1] & network_2_0_RI_0!=poll__networl_2_0_RI_0] & network_0_2_AskP_1!=poll__networl_0_2_AskP_1] & network_2_2_RP_0!=poll__networl_2_2_RP_0] & network_0_0_AI_1!=poll__networl_0_0_AI_1] & network_2_2_RI_1!=poll__networl_2_2_RI_1] & network_2_2_AskP_2!=poll__networl_2_2_AskP_2] & network_1_1_AI_0!=poll__networl_1_1_AI_0] & network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1] & network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2] & network_1_1_RP_1!=poll__networl_1_1_RP_1] & network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1] & network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0] & network_0_0_AskP_0!=poll__networl_0_0_AskP_0] & network_1_0_AskP_1!=poll__networl_1_0_AskP_1] & network_0_1_RI_1!=poll__networl_0_1_RI_1] & network_1_0_RP_1!=poll__networl_1_0_RP_1] & network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2] & network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2] & network_0_1_RP_1!=poll__networl_0_1_RP_1] & network_0_2_AskP_2!=poll__networl_0_2_AskP_2] & network_1_0_RP_2!=poll__networl_1_0_RP_2] & network_0_0_RP_1!=poll__networl_0_0_RP_1] & network_1_1_RI_1!=poll__networl_1_1_RI_1] & network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2] & network_0_2_AI_2!=poll__networl_0_2_AI_2] & network_2_0_AI_1!=poll__networl_2_0_AI_1] & network_2_2_AskP_1!=poll__networl_2_2_AskP_1] & network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2] & network_0_2_RI_2!=poll__networl_0_2_RI_2] & network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0] & network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0] & network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0] & network_0_2_AI_0!=poll__networl_0_2_AI_0] & network_0_1_AI_2!=poll__networl_0_1_AI_2] & network_2_0_AI_2!=poll__networl_2_0_AI_2] & network_1_2_RI_0!=poll__networl_1_2_RI_0] & network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2] & network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2] & network_1_0_RI_0!=poll__networl_1_0_RI_0] & network_2_2_RP_2!=poll__networl_2_2_RP_2] & [[true & [[[true & poll__pollEnd_1<=electionFailed_1] & poll__pollEnd_2<=electionFailed_2] & poll__pollEnd_0<=electionFailed_0]] & [[[[false | poll__pollEnd_1
-> the formula is FALSE
FORMULA p_1851_placecomparison_full_and FALSE TECHNIQUES DECISION_DIAGRAMS
mc time: 0m0sec
checking: AF [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[true & network_1_1_RP_2!=poll__networl_1_1_RP_2] & network_1_1_RP_0!=poll__networl_1_1_RP_0] & network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0] & network_1_0_AI_2!=poll__networl_1_0_AI_2] & network_0_2_RI_1!=poll__networl_0_2_RI_1] & network_0_2_RP_0!=poll__networl_0_2_RP_0] & network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0] & network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2] & network_1_0_AskP_2!=poll__networl_1_0_AskP_2] & network_2_0_AskP_1!=poll__networl_2_0_AskP_1] & network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0] & network_0_0_RI_2!=poll__networl_0_0_RI_2] & network_1_0_RI_2!=poll__networl_1_0_RI_2] & network_0_1_AskP_2!=poll__networl_0_1_AskP_2] & network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0] & network_0_0_AI_2!=poll__networl_0_0_AI_2] & network_2_2_RI_0!=poll__networl_2_2_RI_0] & network_1_0_AskP_0!=poll__networl_1_0_AskP_0] & network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1] & network_1_1_AskP_0!=poll__networl_1_1_AskP_0] & network_1_2_RP_2!=poll__networl_1_2_RP_2] & network_1_1_RI_0!=poll__networl_1_1_RI_0] & network_2_2_AI_2!=poll__networl_2_2_AI_2] & network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2] & network_0_2_AI_1!=poll__networl_0_2_AI_1] & network_2_0_AI_0!=poll__networl_2_0_AI_0] & network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2] & network_1_0_RP_0!=poll__networl_1_0_RP_0] & network_2_1_AskP_1!=poll__networl_2_1_AskP_1] & network_2_0_RP_0!=poll__networl_2_0_RP_0] & network_1_2_AI_2!=poll__networl_1_2_AI_2] & network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1] & network_2_0_AskP_0!=poll__networl_2_0_AskP_0] & network_1_2_RP_0!=poll__networl_1_2_RP_0] & network_2_1_AskP_2!=poll__networl_2_1_AskP_2] & network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2] & network_0_2_RP_1!=poll__networl_0_2_RP_1] & network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1] & network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1] & network_1_2_AI_0!=poll__networl_1_2_AI_0] & network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1] & network_1_0_AI_0!=poll__networl_1_0_AI_0] & network_1_2_RI_1!=poll__networl_1_2_RI_1] & network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0] & network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1] & network_1_1_AskP_1!=poll__networl_1_1_AskP_1] & network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0] & network_2_1_RP_2!=poll__networl_2_1_RP_2] & network_0_1_RI_2!=poll__networl_0_1_RI_2] & network_2_1_RP_1!=poll__networl_2_1_RP_1] & network_2_2_AI_1!=poll__networl_2_2_AI_1] & network_0_1_AskP_1!=poll__networl_0_1_AskP_1] & network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0] & network_0_0_AskP_1!=poll__networl_0_0_AskP_1] & network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2] & network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2] & network_2_2_RP_1!=poll__networl_2_2_RP_1] & network_0_1_AskP_0!=poll__networl_0_1_AskP_0] & network_0_2_AskP_0!=poll__networl_0_2_AskP_0] & network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1] & network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1] & network_2_1_RI_1!=poll__networl_2_1_RI_1] & network_1_2_RP_1!=poll__networl_1_2_RP_1] & network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1] & network_0_2_RI_0!=poll__networl_0_2_RI_0] & network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1] & network_1_1_AI_1!=poll__networl_1_1_AI_1] & network_0_0_AI_0!=poll__networl_0_0_AI_0] & network_1_0_AI_1!=poll__networl_1_0_AI_1] & network_1_1_RI_2!=poll__networl_1_1_RI_2] & network_2_0_RI_2!=poll__networl_2_0_RI_2] & network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1] & network_0_0_AskP_2!=poll__networl_0_0_AskP_2] & network_0_0_RI_0!=poll__networl_0_0_RI_0] & network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0] & network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2] & network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0] & network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0] & network_2_0_RP_2!=poll__networl_2_0_RP_2] & network_0_0_RI_1!=poll__networl_0_0_RI_1] & network_2_1_RI_0!=poll__networl_2_1_RI_0] & network_2_1_RI_2!=poll__networl_2_1_RI_2] & network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0] & network_1_2_AI_1!=poll__networl_1_2_AI_1] & network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2] & network_1_1_AI_2!=poll__networl_1_1_AI_2] & network_2_2_AskP_0!=poll__networl_2_2_AskP_0] & network_0_2_RP_2!=poll__networl_0_2_RP_2] & network_2_0_RP_1!=poll__networl_2_0_RP_1] & network_0_0_RP_2!=poll__networl_0_0_RP_2] & network_1_2_AskP_2!=poll__networl_1_2_AskP_2] & network_2_1_AI_0!=poll__networl_2_1_AI_0] & network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0] & network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1] & network_0_1_RP_0!=poll__networl_0_1_RP_0] & network_2_1_AI_1!=poll__networl_2_1_AI_1] & network_2_0_RI_1!=poll__networl_2_0_RI_1] & network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2] & network_0_1_AI_1!=poll__networl_0_1_AI_1] & network_0_1_AI_0!=poll__networl_0_1_AI_0] & network_0_0_RP_0!=poll__networl_0_0_RP_0] & network_0_1_RI_0!=poll__networl_0_1_RI_0] & network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1] & network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1] & network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1] & network_0_1_RP_2!=poll__networl_0_1_RP_2] & network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2] & network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2] & network_1_2_AskP_0!=poll__networl_1_2_AskP_0] & network_2_2_RI_2!=poll__networl_2_2_RI_2] & network_1_0_RI_1!=poll__networl_1_0_RI_1] & network_1_2_RI_2!=poll__networl_1_2_RI_2] & network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0] & network_1_1_AskP_2!=poll__networl_1_1_AskP_2] & network_2_0_AskP_2!=poll__networl_2_0_AskP_2] & network_2_1_AskP_0!=poll__networl_2_1_AskP_0] & network_1_2_AskP_1!=poll__networl_1_2_AskP_1] & network_2_2_AI_0!=poll__networl_2_2_AI_0] & network_2_1_AI_2!=poll__networl_2_1_AI_2] & network_2_1_RP_0!=poll__networl_2_1_RP_0] & network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0] & network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1] & network_2_0_RI_0!=poll__networl_2_0_RI_0] & network_0_2_AskP_1!=poll__networl_0_2_AskP_1] & network_2_2_RP_0!=poll__networl_2_2_RP_0] & network_0_0_AI_1!=poll__networl_0_0_AI_1] & network_2_2_RI_1!=poll__networl_2_2_RI_1] & network_2_2_AskP_2!=poll__networl_2_2_AskP_2] & network_1_1_AI_0!=poll__networl_1_1_AI_0] & network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1] & network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2] & network_1_1_RP_1!=poll__networl_1_1_RP_1] & network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1] & network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0] & network_0_0_AskP_0!=poll__networl_0_0_AskP_0] & network_1_0_AskP_1!=poll__networl_1_0_AskP_1] & network_0_1_RI_1!=poll__networl_0_1_RI_1] & network_1_0_RP_1!=poll__networl_1_0_RP_1] & network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2] & network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2] & network_0_1_RP_1!=poll__networl_0_1_RP_1] & network_0_2_AskP_2!=poll__networl_0_2_AskP_2] & network_1_0_RP_2!=poll__networl_1_0_RP_2] & network_0_0_RP_1!=poll__networl_0_0_RP_1] & network_1_1_RI_1!=poll__networl_1_1_RI_1] & network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2] & network_0_2_AI_2!=poll__networl_0_2_AI_2] & network_2_0_AI_1!=poll__networl_2_0_AI_1] & network_2_2_AskP_1!=poll__networl_2_2_AskP_1] & network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2] & network_0_2_RI_2!=poll__networl_0_2_RI_2] & network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0] & network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0] & network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0] & network_0_2_AI_0!=poll__networl_0_2_AI_0] & network_0_1_AI_2!=poll__networl_0_1_AI_2] & network_2_0_AI_2!=poll__networl_2_0_AI_2] & network_1_2_RI_0!=poll__networl_1_2_RI_0] & network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2] & network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2] & network_1_0_RI_0!=poll__networl_1_0_RI_0] & network_2_2_RP_2!=poll__networl_2_2_RP_2] | [[true & [[[true & poll__pollEnd_1<=electionFailed_1] & poll__pollEnd_2<=electionFailed_2] & poll__pollEnd_0<=electionFailed_0]] & [[[[false | poll__pollEnd_1
EG iterations: 0
-> the formula is FALSE
FORMULA p_1852_placecomparison_full_or FALSE TECHNIQUES DECISION_DIAGRAMS
mc time: 0m0sec
checking: AF [[~ [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[true & network_1_1_RP_2!=poll__networl_1_1_RP_2] & network_1_1_RP_0!=poll__networl_1_1_RP_0] & network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0] & network_1_0_AI_2!=poll__networl_1_0_AI_2] & network_0_2_RI_1!=poll__networl_0_2_RI_1] & network_0_2_RP_0!=poll__networl_0_2_RP_0] & network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0] & network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2] & network_1_0_AskP_2!=poll__networl_1_0_AskP_2] & network_2_0_AskP_1!=poll__networl_2_0_AskP_1] & network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0] & network_0_0_RI_2!=poll__networl_0_0_RI_2] & network_1_0_RI_2!=poll__networl_1_0_RI_2] & network_0_1_AskP_2!=poll__networl_0_1_AskP_2] & network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0] & network_0_0_AI_2!=poll__networl_0_0_AI_2] & network_2_2_RI_0!=poll__networl_2_2_RI_0] & network_1_0_AskP_0!=poll__networl_1_0_AskP_0] & network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1] & network_1_1_AskP_0!=poll__networl_1_1_AskP_0] & network_1_2_RP_2!=poll__networl_1_2_RP_2] & network_1_1_RI_0!=poll__networl_1_1_RI_0] & network_2_2_AI_2!=poll__networl_2_2_AI_2] & network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2] & network_0_2_AI_1!=poll__networl_0_2_AI_1] & network_2_0_AI_0!=poll__networl_2_0_AI_0] & network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2] & network_1_0_RP_0!=poll__networl_1_0_RP_0] & network_2_1_AskP_1!=poll__networl_2_1_AskP_1] & network_2_0_RP_0!=poll__networl_2_0_RP_0] & network_1_2_AI_2!=poll__networl_1_2_AI_2] & network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1] & network_2_0_AskP_0!=poll__networl_2_0_AskP_0] & network_1_2_RP_0!=poll__networl_1_2_RP_0] & network_2_1_AskP_2!=poll__networl_2_1_AskP_2] & network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2] & network_0_2_RP_1!=poll__networl_0_2_RP_1] & network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1] & network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1] & network_1_2_AI_0!=poll__networl_1_2_AI_0] & network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1] & network_1_0_AI_0!=poll__networl_1_0_AI_0] & network_1_2_RI_1!=poll__networl_1_2_RI_1] & network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0] & network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1] & network_1_1_AskP_1!=poll__networl_1_1_AskP_1] & network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0] & network_2_1_RP_2!=poll__networl_2_1_RP_2] & network_0_1_RI_2!=poll__networl_0_1_RI_2] & network_2_1_RP_1!=poll__networl_2_1_RP_1] & network_2_2_AI_1!=poll__networl_2_2_AI_1] & network_0_1_AskP_1!=poll__networl_0_1_AskP_1] & network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0] & network_0_0_AskP_1!=poll__networl_0_0_AskP_1] & network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2] & network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2] & network_2_2_RP_1!=poll__networl_2_2_RP_1] & network_0_1_AskP_0!=poll__networl_0_1_AskP_0] & network_0_2_AskP_0!=poll__networl_0_2_AskP_0] & network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1] & network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1] & network_2_1_RI_1!=poll__networl_2_1_RI_1] & network_1_2_RP_1!=poll__networl_1_2_RP_1] & network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1] & network_0_2_RI_0!=poll__networl_0_2_RI_0] & network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1] & network_1_1_AI_1!=poll__networl_1_1_AI_1] & network_0_0_AI_0!=poll__networl_0_0_AI_0] & network_1_0_AI_1!=poll__networl_1_0_AI_1] & network_1_1_RI_2!=poll__networl_1_1_RI_2] & network_2_0_RI_2!=poll__networl_2_0_RI_2] & network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1] & network_0_0_AskP_2!=poll__networl_0_0_AskP_2] & network_0_0_RI_0!=poll__networl_0_0_RI_0] & network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0] & network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2] & network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0] & network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0] & network_2_0_RP_2!=poll__networl_2_0_RP_2] & network_0_0_RI_1!=poll__networl_0_0_RI_1] & network_2_1_RI_0!=poll__networl_2_1_RI_0] & network_2_1_RI_2!=poll__networl_2_1_RI_2] & network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0] & network_1_2_AI_1!=poll__networl_1_2_AI_1] & network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2] & network_1_1_AI_2!=poll__networl_1_1_AI_2] & network_2_2_AskP_0!=poll__networl_2_2_AskP_0] & network_0_2_RP_2!=poll__networl_0_2_RP_2] & network_2_0_RP_1!=poll__networl_2_0_RP_1] & network_0_0_RP_2!=poll__networl_0_0_RP_2] & network_1_2_AskP_2!=poll__networl_1_2_AskP_2] & network_2_1_AI_0!=poll__networl_2_1_AI_0] & network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0] & network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1] & network_0_1_RP_0!=poll__networl_0_1_RP_0] & network_2_1_AI_1!=poll__networl_2_1_AI_1] & network_2_0_RI_1!=poll__networl_2_0_RI_1] & network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2] & network_0_1_AI_1!=poll__networl_0_1_AI_1] & network_0_1_AI_0!=poll__networl_0_1_AI_0] & network_0_0_RP_0!=poll__networl_0_0_RP_0] & network_0_1_RI_0!=poll__networl_0_1_RI_0] & network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1] & network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1] & network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1] & network_0_1_RP_2!=poll__networl_0_1_RP_2] & network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2] & network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2] & network_1_2_AskP_0!=poll__networl_1_2_AskP_0] & network_2_2_RI_2!=poll__networl_2_2_RI_2] & network_1_0_RI_1!=poll__networl_1_0_RI_1] & network_1_2_RI_2!=poll__networl_1_2_RI_2] & network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0] & network_1_1_AskP_2!=poll__networl_1_1_AskP_2] & network_2_0_AskP_2!=poll__networl_2_0_AskP_2] & network_2_1_AskP_0!=poll__networl_2_1_AskP_0] & network_1_2_AskP_1!=poll__networl_1_2_AskP_1] & network_2_2_AI_0!=poll__networl_2_2_AI_0] & network_2_1_AI_2!=poll__networl_2_1_AI_2] & network_2_1_RP_0!=poll__networl_2_1_RP_0] & network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0] & network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1] & network_2_0_RI_0!=poll__networl_2_0_RI_0] & network_0_2_AskP_1!=poll__networl_0_2_AskP_1] & network_2_2_RP_0!=poll__networl_2_2_RP_0] & network_0_0_AI_1!=poll__networl_0_0_AI_1] & network_2_2_RI_1!=poll__networl_2_2_RI_1] & network_2_2_AskP_2!=poll__networl_2_2_AskP_2] & network_1_1_AI_0!=poll__networl_1_1_AI_0] & network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1] & network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2] & network_1_1_RP_1!=poll__networl_1_1_RP_1] & network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1] & network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0] & network_0_0_AskP_0!=poll__networl_0_0_AskP_0] & network_1_0_AskP_1!=poll__networl_1_0_AskP_1] & network_0_1_RI_1!=poll__networl_0_1_RI_1] & network_1_0_RP_1!=poll__networl_1_0_RP_1] & network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2] & network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2] & network_0_1_RP_1!=poll__networl_0_1_RP_1] & network_0_2_AskP_2!=poll__networl_0_2_AskP_2] & network_1_0_RP_2!=poll__networl_1_0_RP_2] & network_0_0_RP_1!=poll__networl_0_0_RP_1] & network_1_1_RI_1!=poll__networl_1_1_RI_1] & network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2] & network_0_2_AI_2!=poll__networl_0_2_AI_2] & network_2_0_AI_1!=poll__networl_2_0_AI_1] & network_2_2_AskP_1!=poll__networl_2_2_AskP_1] & network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2] & network_0_2_RI_2!=poll__networl_0_2_RI_2] & network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0] & network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0] & network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0] & network_0_2_AI_0!=poll__networl_0_2_AI_0] & network_0_1_AI_2!=poll__networl_0_1_AI_2] & network_2_0_AI_2!=poll__networl_2_0_AI_2] & network_1_2_RI_0!=poll__networl_1_2_RI_0] & network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2] & network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2] & network_1_0_RI_0!=poll__networl_1_0_RI_0] & network_2_2_RP_2!=poll__networl_2_2_RP_2]] & [[true & [[[true & poll__pollEnd_1<=electionFailed_1] & poll__pollEnd_2<=electionFailed_2] & poll__pollEnd_0<=electionFailed_0]] & [[[[false | poll__pollEnd_1
EG iterations: 0
-> the formula is FALSE
FORMULA p_1853_placecomparison_full_and_notx FALSE TECHNIQUES DECISION_DIAGRAMS
mc time: 0m0sec
total processing time: 0m2sec
STOP 1369655054
--------------------
content from stderr:
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m0sec
1493 1806
iterations count:2309 (6), effective:32 (0)
initing FirstDep: 0m0sec
iterations count:357 (1), effective:0 (0)
--------------------
content from /tmp/BenchKit_head_log_file.1659: