fond
Model Checking Contest @ Petri Nets 2013
Milano, Italy, June 25, 2013
marcie: ReachabilityPlaceComparison on NeoElection/3 (P/T)
Last Updated
Apr. 26, 2013

Introduction

This page shows the outputs produced by the execution of marcie on NeoElection/3 (P/T). We provide:

About the Execution

Execution Summary
Memory (MB) CPU (s) End
801.03 11.64 normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

export BK_INPUT=NeoElection-PT-3
export BK_EXAMINATION=ReachabilityPlaceComparison
export BK_TOOL=marcie
export BK_RESULT_DIR=/tmp
export BK_LOG_FILE=/tmp/BenchKit_head_log_file.1662
export BIN_DIR=/home/mcc/BenchKit/bin
cd /home/mcc/BenchKit/INPUTS/NeoElection-PT-3
echo =====================================================================
echo ' Generated by BenchKit 1.0'
echo ' Executing tool marcie:'
echo ' Test is NeoElection-PT-3, examination is ReachabilityPlaceComparison'
echo =====================================================================
echo
echo --------------------
echo 'content from stdout:'
echo
bash /home/mcc/BenchKit/BenchKit_head.sh

Execution Outputs of marcie for NeoElection/3 (P/T)

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.


execution on node 26: cluster1u28.lip6.fr (runId=136959876501479_n_26)
=====================================================================
runnning marcie on NeoElection-PT-3 (ReachabilityPlaceComparison)
We got on stdout:
Probing ssh
Waiting ssh to respond
Ssh up and responding
=====================================================================
Generated by BenchKit 1.0
Executing tool marcie:
Test is NeoElection-PT-3, examination is ReachabilityPlaceComparison
=====================================================================

--------------------
content from stdout:

START 1369628878

Marcie rev. 1103M (build: rohrch on 2013-02-17)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mem=4 --mcc-file=ReachabilityPlaceComparison.txt

constant oo registered with value < INFINITY >
parse successfull!


(NrP: 972 NrTr: 1016)

net check time: 0m0sec

parse mcc successfull!

place and transition orderings generation:0m0sec

init dd package: 0m1sec


RS generation: 0m7sec


-> reachability set: #nodes 19347 (1.9e+04) #states 974,325 (5)



starting CTL model checker
--------------------------

checking: AG [[[[[[[[[[network_2_0_AI_2!=poll__networl_2_0_AI_2 & [network_0_3_AnnP_0!=poll__networl_0_3_AnnP_0 & [[network_2_3_RI_0!=poll__networl_2_3_RI_0 & [[network_2_3_AskP_3!=poll__networl_2_3_AskP_3 & [network_0_2_AI_0!=poll__networl_0_2_AI_0 & [network_3_1_AnsP_0!=poll__networl_3_1_AnsP_0 & [network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0 & [[[[[[[[[network_2_0_AskP_3!=poll__networl_2_0_AskP_3 & [[[[[network_2_2_AskP_1!=poll__networl_2_2_AskP_1 & [network_2_0_AI_1!=poll__networl_2_0_AI_1 & [[network_2_3_RP_2!=poll__networl_2_3_RP_2 & [network_0_0_AskP_3!=poll__networl_0_0_AskP_3 & [[[[[network_0_0_RP_1!=poll__networl_0_0_RP_1 & [[network_3_2_AnnP_2!=poll__networl_3_2_AnnP_2 & [[network_0_1_AnsP_3!=poll__networl_0_1_AnsP_3 & [[network_1_1_AnnP_3!=poll__networl_1_1_AnnP_3 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [[[[network_0_2_RI_3!=poll__networl_0_2_RI_3 & [network_2_1_AnnP_3!=poll__networl_2_1_AnnP_3 & [[network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_0_1_AnnP_3!=poll__networl_0_1_AnnP_3 & [network_3_3_AnnP_3!=poll__networl_3_3_AnnP_3 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [[network_2_3_AnsP_0!=poll__networl_2_3_AnsP_0 & [network_0_1_RI_1!=poll__networl_0_1_RI_1 & [network_1_0_AskP_1!=poll__networl_1_0_AskP_1 & [network_0_0_AskP_0!=poll__networl_0_0_AskP_0 & [[network_2_3_AnsP_2!=poll__networl_2_3_AnsP_2 & [network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1 & [network_1_1_RP_1!=poll__networl_1_1_RP_1 & [network_0_3_RP_2!=poll__networl_0_3_RP_2 & [[network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [[network_3_1_AskP_2!=poll__networl_3_1_AskP_2 & [network_2_3_AnnP_1!=poll__networl_2_3_AnnP_1 & [network_0_0_AI_1!=poll__networl_0_0_AI_1 & [network_0_2_AnnP_3!=poll__networl_0_2_AnnP_3 & [[network_0_2_AskP_1!=poll__networl_0_2_AskP_1 & [network_2_0_RI_0!=poll__networl_2_0_RI_0 & [network_3_0_AnsP_0!=poll__networl_3_0_AnsP_0 & [network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1 & [[network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0 & [network_2_1_RP_0!=poll__networl_2_1_RP_0 & [network_3_1_AI_2!=poll__networl_3_1_AI_2 & [network_3_1_RP_3!=poll__networl_3_1_RP_3 & [[network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [network_2_0_AskP_2!=poll__networl_2_0_AskP_2 & [network_0_3_AnsP_2!=poll__networl_0_3_AnsP_2 & [[network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0 & [network_0_0_AnsP_3!=poll__networl_0_0_AnsP_3 & [[network_0_3_AI_1!=poll__networl_0_3_AI_1 & [[network_0_3_AskP_3!=poll__networl_0_3_AskP_3 & [network_3_2_AnnP_1!=poll__networl_3_2_AnnP_1 & [network_3_0_AnnP_2!=poll__networl_3_0_AnnP_2 & [network_1_3_AnsP_1!=poll__networl_1_3_AnsP_1 & [network_0_3_RP_3!=poll__networl_0_3_RP_3 & [network_1_0_RI_1!=poll__networl_1_0_RI_1 & [[network_0_0_AnnP_3!=poll__networl_0_0_AnnP_3 & [network_2_2_RI_2!=poll__networl_2_2_RI_2 & [network_1_2_AskP_0!=poll__networl_1_2_AskP_0 & [network_2_3_AskP_0!=poll__networl_2_3_AskP_0 & [network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [[network_2_0_RP_3!=poll__networl_2_0_RP_3 & [[network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1 & [[network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1 & [network_3_0_RP_3!=poll__networl_3_0_RP_3 & [network_0_1_RI_0!=poll__networl_0_1_RI_0 & [network_2_3_RP_1!=poll__networl_2_3_RP_1 & [network_1_3_RP_3!=poll__networl_1_3_RP_3 & [network_3_0_AI_1!=poll__networl_3_0_AI_1 & [network_2_1_AskP_3!=poll__networl_2_1_AskP_3 & [network_0_0_RP_0!=poll__networl_0_0_RP_0 & [network_3_2_AnsP_0!=poll__networl_3_2_AnsP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [[network_3_0_AnsP_1!=poll__networl_3_0_AnsP_1 & [network_3_2_RI_3!=poll__networl_3_2_RI_3 & [network_0_1_AI_1!=poll__networl_0_1_AI_1 & [network_2_3_AI_1!=poll__networl_2_3_AI_1 & [network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2 & [network_2_0_RI_1!=poll__networl_2_0_RI_1 & [network_2_1_AI_1!=poll__networl_2_1_AI_1 & [network_0_3_AnsP_3!=poll__networl_0_3_AnsP_3 & [network_2_1_AI_3!=poll__networl_2_1_AI_3 & [network_3_1_AnnP_1!=poll__networl_3_1_AnnP_1 & [network_3_3_AnsP_0!=poll__networl_3_3_AnsP_0 & [network_1_3_AnnP_3!=poll__networl_1_3_AnnP_3 & [network_0_0_AI_3!=poll__networl_0_0_AI_3 & [network_3_1_RI_2!=poll__networl_3_1_RI_2 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [network_0_3_RI_3!=poll__networl_0_3_RI_3 & [network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1 & [network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_1_3_AskP_1!=poll__networl_1_3_AskP_1 & [network_0_1_AI_3!=poll__networl_0_1_AI_3 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [[network_3_0_RI_1!=poll__networl_3_0_RI_1 & [[[network_3_1_AskP_3!=poll__networl_3_1_AskP_3 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [[network_3_0_AI_0!=poll__networl_3_0_AI_0 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [[network_2_0_AI_3!=poll__networl_2_0_AI_3 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [[[[[[[[network_1_3_AnsP_3!=poll__networl_1_3_AnsP_3 & [[[network_3_1_AnnP_3!=poll__networl_3_1_AnnP_3 & [[[[[[[[[network_0_3_RI_1!=poll__networl_0_3_RI_1 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_3_AnsP_1!=poll__networl_2_3_AnsP_1 & [[[[[network_2_3_AI_0!=poll__networl_2_3_AI_0 & [[[network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [[[[network_2_0_RI_3!=poll__networl_2_0_RI_3 & [network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2 & [network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_1_1_RI_3!=poll__networl_1_1_RI_3 & [[network_0_0_RI_0!=poll__networl_0_0_RI_0 & [network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_3_2_AnsP_2!=poll__networl_3_2_AnsP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_3_AnnP_3!=poll__networl_2_3_AnnP_3 & [network_2_1_RI_3!=poll__networl_2_1_RI_3 & [network_2_0_RI_2!=poll__networl_2_0_RI_2 & [network_3_1_RP_1!=poll__networl_3_1_RP_1 & [network_3_1_AI_3!=poll__networl_3_1_AI_3 & [network_0_3_RI_2!=poll__networl_0_3_RI_2 & [network_2_3_AnnP_2!=poll__networl_2_3_AnnP_2 & [network_2_2_AI_3!=poll__networl_2_2_AI_3 & [[[[network_3_2_AI_0!=poll__networl_3_2_AI_0 & [network_3_0_AnsP_3!=poll__networl_3_0_AnsP_3 & [network_0_3_AnnP_1!=poll__networl_0_3_AnnP_1 & [[network_3_3_AI_1!=poll__networl_3_3_AI_1 & [network_1_0_AI_1!=poll__networl_1_0_AI_1 & [network_0_1_RP_3!=poll__networl_0_1_RP_3 & [network_2_2_RP_3!=poll__networl_2_2_RP_3 & [network_0_0_RI_3!=poll__networl_0_0_RI_3 & [network_3_3_RP_3!=poll__networl_3_3_RP_3 & [[network_3_0_RI_0!=poll__networl_3_0_RI_0 & [network_3_2_RP_3!=poll__networl_3_2_RP_3 & [network_1_1_AI_1!=poll__networl_1_1_AI_1 & [network_1_2_AnnP_3!=poll__networl_1_2_AnnP_3 & [network_3_3_AskP_0!=poll__networl_3_3_AskP_0 & [network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [network_3_0_AI_2!=poll__networl_3_0_AI_2 & [network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_1_2_AnsP_3!=poll__networl_1_2_AnsP_3 & [network_3_0_AskP_3!=poll__networl_3_0_AskP_3 & [network_2_1_RI_1!=poll__networl_2_1_RI_1 & [network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_3_3_AnsP_1!=poll__networl_3_3_AnsP_1 & [network_3_1_RI_1!=poll__networl_3_1_RI_1 & [network_1_2_AI_3!=poll__networl_1_2_AI_3 & [network_0_3_RI_0!=poll__networl_0_3_RI_0 & [network_3_0_AnsP_2!=poll__networl_3_0_AnsP_2 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_3_3_RP_1!=poll__networl_3_3_RP_1 & [network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [network_1_3_AI_1!=poll__networl_1_3_AI_1 & [network_0_3_AI_3!=poll__networl_0_3_AI_3 & [network_3_3_AI_2!=poll__networl_3_3_AI_2 & [network_0_3_AnsP_1!=poll__networl_0_3_AnsP_1 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [network_2_2_RP_1!=poll__networl_2_2_RP_1 & [network_3_1_RP_0!=poll__networl_3_1_RP_0 & [network_2_0_AnsP_3!=poll__networl_2_0_AnsP_3 & [network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_3_2_RP_1!=poll__networl_3_2_RP_1 & [network_3_2_RP_2!=poll__networl_3_2_RP_2 & [network_0_3_AskP_0!=poll__networl_0_3_AskP_0 & [network_3_0_RP_0!=poll__networl_3_0_RP_0 & [network_3_3_AnnP_1!=poll__networl_3_3_AnnP_1 & [network_1_0_RP_3!=poll__networl_1_0_RP_3 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [network_0_0_AskP_1!=poll__networl_0_0_AskP_1 & [network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [network_0_3_AI_0!=poll__networl_0_3_AI_0 & [network_1_3_AskP_3!=poll__networl_1_3_AskP_3 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_3_RI_1!=poll__networl_2_3_RI_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_1_2_RP_3!=poll__networl_1_2_RP_3 & [network_3_2_AI_1!=poll__networl_3_2_AI_1 & [network_1_3_RI_3!=poll__networl_1_3_RI_3 & [network_2_2_AskP_3!=poll__networl_2_2_AskP_3 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_3_AskP_2!=poll__networl_2_3_AskP_2 & [network_3_3_RI_1!=poll__networl_3_3_RI_1 & [network_3_0_RI_3!=poll__networl_3_0_RI_3 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_3_2_AnsP_1!=poll__networl_3_2_AnsP_1 & [network_2_3_AskP_1!=poll__networl_2_3_AskP_1 & [[[[[[[[network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [[network_3_2_AnnP_3!=poll__networl_3_2_AnnP_3 & [[network_3_1_RP_2!=poll__networl_3_1_RP_2 & [[network_1_0_AI_0!=poll__networl_1_0_AI_0 & [[network_1_2_AI_0!=poll__networl_1_2_AI_0 & [[network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [[network_0_2_RP_1!=poll__networl_0_2_RP_1 & [[network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [[network_1_2_RI_3!=poll__networl_1_2_RI_3 & [[network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1 & [[network_1_3_AI_2!=poll__networl_1_3_AI_2 & [[network_0_2_AI_3!=poll__networl_0_2_AI_3 & [[network_2_0_RP_0!=poll__networl_2_0_RP_0 & [[network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [[network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [[network_3_2_RI_1!=poll__networl_3_2_RI_1 & [[network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [[network_2_2_AI_2!=poll__networl_2_2_AI_2 & [[network_1_1_RI_0!=poll__networl_1_1_RI_0 & [[network_1_2_RP_2!=poll__networl_1_2_RP_2 & [[network_3_1_AnsP_2!=poll__networl_3_1_AnsP_2 & [[[network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [[[[network_2_2_RI_0!=poll__networl_2_2_RI_0 & [network_0_0_AI_2!=poll__networl_0_0_AI_2 & [[network_3_2_AskP_2!=poll__networl_3_2_AskP_2 & [network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0 & [[network_1_3_RP_1!=poll__networl_1_3_RP_1 & [network_3_3_AskP_2!=poll__networl_3_3_AskP_2 & [[[[[[[[[[[network_3_2_AnsP_3!=poll__networl_3_2_AnsP_3 & [[[network_1_3_RP_2!=poll__networl_1_3_RP_2 & [[network_1_3_AI_3!=poll__networl_1_3_AI_3 & [[network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0 & [network_0_2_RP_0!=poll__networl_0_2_RP_0 & [[network_0_2_RI_1!=poll__networl_0_2_RI_1 & [network_1_3_RI_2!=poll__networl_1_3_RI_2 & [network_0_0_RP_3!=poll__networl_0_0_RP_3 & [network_1_0_AI_2!=poll__networl_1_0_AI_2 & [network_3_0_AI_3!=poll__networl_3_0_AI_3 & [network_2_3_RI_3!=poll__networl_2_3_RI_3 & [network_3_1_AskP_1!=poll__networl_3_1_AskP_1 & [network_2_2_AnsP_3!=poll__networl_2_2_AnsP_3 & [network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0 & [network_0_2_AnsP_3!=poll__networl_0_2_AnsP_3 & [network_1_1_RP_0!=poll__networl_1_1_RP_0 & [network_1_0_AskP_3!=poll__networl_1_0_AskP_3 & [network_1_3_RI_0!=poll__networl_1_3_RI_0 & [network_3_0_RP_1!=poll__networl_3_0_RP_1 & [network_1_1_AnsP_3!=poll__networl_1_1_AnsP_3 & [network_0_3_AskP_2!=poll__networl_0_3_AskP_2 & [network_1_1_RP_2!=poll__networl_1_1_RP_2 & [network_2_3_RI_2!=poll__networl_2_3_RI_2 & true]]]]]]]]]]]]]]]]]] & network_2_0_AnnP_3!=poll__networl_2_0_AnnP_3]]]] & network_3_3_AnnP_2!=poll__networl_3_3_AnnP_2]] & network_1_0_AskP_2!=poll__networl_1_0_AskP_2]] & network_3_2_AI_3!=poll__networl_3_2_AI_3] & network_2_0_AskP_1!=poll__networl_2_0_AskP_1]] & network_3_0_AnnP_1!=poll__networl_3_0_AnnP_1] & network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0] & network_3_3_AI_0!=poll__networl_3_3_AI_0] & network_0_0_RI_2!=poll__networl_0_0_RI_2] & network_0_3_AskP_1!=poll__networl_0_3_AskP_1] & network_3_0_AskP_1!=poll__networl_3_0_AskP_1] & network_2_2_RI_3!=poll__networl_2_2_RI_3] & network_1_0_RI_2!=poll__networl_1_0_RI_2] & network_0_1_AskP_2!=poll__networl_0_1_AskP_2] & network_3_3_RP_2!=poll__networl_3_3_RP_2]]] & network_3_0_AnnP_0!=poll__networl_3_0_AnnP_0]]] & network_2_3_AI_3!=poll__networl_2_3_AI_3]]] & network_1_3_AskP_2!=poll__networl_1_3_AskP_2] & network_1_0_AskP_0!=poll__networl_1_0_AskP_0] & network_1_2_AskP_3!=poll__networl_1_2_AskP_3]] & network_1_1_AskP_0!=poll__networl_1_1_AskP_0] & network_1_3_AnnP_2!=poll__networl_1_3_AnnP_2]] & network_0_3_AnnP_2!=poll__networl_0_3_AnnP_2]] & network_0_1_RI_3!=poll__networl_0_1_RI_3]] & network_0_1_AskP_3!=poll__networl_0_1_AskP_3]] & network_3_0_RP_2!=poll__networl_3_0_RP_2]] & network_0_2_AI_1!=poll__networl_0_2_AI_1]] & network_2_0_AI_0!=poll__networl_2_0_AI_0]] & network_1_0_RP_0!=poll__networl_1_0_RP_0]] & network_3_2_RP_0!=poll__networl_3_2_RP_0]] & network_1_2_AI_2!=poll__networl_1_2_AI_2]] & network_1_3_AnsP_2!=poll__networl_1_3_AnsP_2]] & network_0_2_AskP_3!=poll__networl_0_2_AskP_3]] & network_2_0_AskP_0!=poll__networl_2_0_AskP_0]] & network_1_2_RP_0!=poll__networl_1_2_RP_0]] & network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2]] & network_1_3_AI_0!=poll__networl_1_3_AI_0]] & network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1]] & network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1]] & network_1_2_RI_1!=poll__networl_1_2_RI_1]] & network_3_3_AskP_3!=poll__networl_3_3_AskP_3]] & network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0]] & network_3_2_AskP_0!=poll__networl_3_2_AskP_0] & network_1_1_AskP_1!=poll__networl_1_1_AskP_1] & network_0_3_AnnP_3!=poll__networl_0_3_AnnP_3] & network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0] & network_2_1_AnsP_3!=poll__networl_2_1_AnsP_3] & network_3_3_AI_3!=poll__networl_3_3_AI_3] & network_3_1_AnnP_2!=poll__networl_3_1_AnnP_2]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & network_0_0_AI_0!=poll__networl_0_0_AI_0]]]]]]] & network_3_3_RI_3!=poll__networl_3_3_RI_3]]]] & network_1_1_RI_2!=poll__networl_1_1_RI_2] & network_1_0_AnnP_3!=poll__networl_1_0_AnnP_3] & network_3_0_RI_2!=poll__networl_3_0_RI_2]]]]]]]]]]]]] & network_1_0_RI_3!=poll__networl_1_0_RI_3]]]]] & network_3_3_RI_2!=poll__networl_3_3_RI_2] & network_1_1_AI_3!=poll__networl_1_1_AI_3] & network_3_3_AskP_1!=poll__networl_3_3_AskP_1]]] & network_0_3_AnsP_0!=poll__networl_0_3_AnsP_0] & network_3_2_AI_2!=poll__networl_3_2_AI_2]] & network_2_0_RP_2!=poll__networl_2_0_RP_2] & network_0_0_RI_1!=poll__networl_0_0_RI_1] & network_3_0_AnnP_3!=poll__networl_3_0_AnnP_3] & network_2_1_RI_0!=poll__networl_2_1_RI_0]]]] & network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0] & network_1_1_RP_3!=poll__networl_1_1_RP_3] & network_1_2_AI_1!=poll__networl_1_2_AI_1] & network_2_3_RP_3!=poll__networl_2_3_RP_3] & network_1_3_AnsP_0!=poll__networl_1_3_AnsP_0] & network_3_1_AnsP_3!=poll__networl_3_1_AnsP_3] & network_3_1_AI_0!=poll__networl_3_1_AI_0] & network_3_2_AskP_1!=poll__networl_3_2_AskP_1]] & network_1_0_AI_3!=poll__networl_1_0_AI_3] & network_0_3_RP_1!=poll__networl_0_3_RP_1]] & network_3_2_RI_2!=poll__networl_3_2_RI_2] & network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2] & network_1_1_AI_2!=poll__networl_1_1_AI_2] & network_2_2_AskP_0!=poll__networl_2_2_AskP_0] & network_3_0_AskP_0!=poll__networl_3_0_AskP_0] & network_2_2_AnnP_3!=poll__networl_2_2_AnnP_3] & network_0_2_RP_3!=poll__networl_0_2_RP_3]]] & network_3_1_RI_0!=poll__networl_3_1_RI_0]]] & network_1_3_RI_1!=poll__networl_1_3_RI_1]]] & network_1_2_AskP_2!=poll__networl_1_2_AskP_2] & network_2_3_AI_2!=poll__networl_2_3_AI_2]] & network_2_1_RP_3!=poll__networl_2_1_RP_3]]]]]]]]]]]]]]]]]]]]]] & network_3_3_AnnP_0!=poll__networl_3_3_AnnP_0]]]]]]]]]]]] & network_1_3_AnnP_1!=poll__networl_1_3_AnnP_1]] & network_0_1_RP_2!=poll__networl_0_1_RP_2]] & network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2]]]]]] & network_0_3_RP_0!=poll__networl_0_3_RP_0]]]]]]] & network_1_2_RI_2!=poll__networl_1_2_RI_2]] & network_1_3_RP_0!=poll__networl_1_3_RP_0]]] & network_1_1_AskP_2!=poll__networl_1_1_AskP_2]]]]]]] & network_3_3_AnsP_3!=poll__networl_3_3_AnsP_3]]]]] & network_0_3_AI_2!=poll__networl_0_3_AI_2]]]]] & network_2_2_RP_0!=poll__networl_2_2_RP_0]]]]] & network_2_2_RI_1!=poll__networl_2_2_RI_1]]]]] & network_3_2_AskP_3!=poll__networl_3_2_AskP_3]]]]] & network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0]]]]] & network_2_3_AnnP_0!=poll__networl_2_3_AnnP_0]]]]] & network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2]]] & network_3_3_RP_0!=poll__networl_3_3_RP_0] & network_3_1_AskP_0!=poll__networl_3_1_AskP_0] & network_0_1_RP_1!=poll__networl_0_1_RP_1]]] & network_3_1_AnnP_0!=poll__networl_3_1_AnnP_0]] & network_1_0_RP_2!=poll__networl_1_0_RP_2]] & network_3_2_RI_0!=poll__networl_3_2_RI_0]] & network_1_1_RI_1!=poll__networl_1_1_RI_1] & network_3_3_AnsP_2!=poll__networl_3_3_AnsP_2] & network_3_1_AnsP_1!=poll__networl_3_1_AnsP_1] & network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2]]] & network_0_2_AI_2!=poll__networl_0_2_AI_2]]] & network_1_3_AnnP_0!=poll__networl_1_3_AnnP_0] & network_1_0_AnsP_3!=poll__networl_1_0_AnsP_3] & network_3_0_AskP_2!=poll__networl_3_0_AskP_2] & network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2]] & network_3_2_AnnP_0!=poll__networl_3_2_AnnP_0] & network_3_1_RI_3!=poll__networl_3_1_RI_3] & network_3_3_RI_0!=poll__networl_3_3_RI_0] & network_0_2_RI_2!=poll__networl_0_2_RI_2] & network_1_1_AskP_3!=poll__networl_1_1_AskP_3] & network_3_1_AI_1!=poll__networl_3_1_AI_1] & network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0] & network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0]]]]] & network_2_3_AnsP_3!=poll__networl_2_3_AnsP_3]] & network_0_1_AI_2!=poll__networl_0_1_AI_2]]] & network_1_2_RI_0!=poll__networl_1_2_RI_0] & network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2] & network_2_3_RP_0!=poll__networl_2_3_RP_0] & network_1_3_AskP_0!=poll__networl_1_3_AskP_0] & network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2] & network_1_0_RI_0!=poll__networl_1_0_RI_0] & network_2_2_RP_2!=poll__networl_2_2_RP_2] & [[[[true & polling_0!=electionFailed_0] & polling_2!=electionFailed_2] & polling_3!=electionFailed_3] & polling_1!=electionFailed_1]]]
normalized: ~ [E [true U ~ [[[network_2_2_RP_2!=poll__networl_2_2_RP_2 & [network_1_0_RI_0!=poll__networl_1_0_RI_0 & [network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2 & [network_1_3_AskP_0!=poll__networl_1_3_AskP_0 & [network_2_3_RP_0!=poll__networl_2_3_RP_0 & [network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2 & [network_1_2_RI_0!=poll__networl_1_2_RI_0 & [network_2_0_AI_2!=poll__networl_2_0_AI_2 & [network_0_3_AnnP_0!=poll__networl_0_3_AnnP_0 & [network_0_1_AI_2!=poll__networl_0_1_AI_2 & [network_2_3_RI_0!=poll__networl_2_3_RI_0 & [network_2_3_AnsP_3!=poll__networl_2_3_AnsP_3 & [network_2_3_AskP_3!=poll__networl_2_3_AskP_3 & [network_0_2_AI_0!=poll__networl_0_2_AI_0 & [network_3_1_AnsP_0!=poll__networl_3_1_AnsP_0 & [network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0 & [network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0 & [network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0 & [network_3_1_AI_1!=poll__networl_3_1_AI_1 & [network_1_1_AskP_3!=poll__networl_1_1_AskP_3 & [network_0_2_RI_2!=poll__networl_0_2_RI_2 & [network_3_3_RI_0!=poll__networl_3_3_RI_0 & [network_3_1_RI_3!=poll__networl_3_1_RI_3 & [network_3_2_AnnP_0!=poll__networl_3_2_AnnP_0 & [network_2_0_AskP_3!=poll__networl_2_0_AskP_3 & [network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [network_3_0_AskP_2!=poll__networl_3_0_AskP_2 & [network_1_0_AnsP_3!=poll__networl_1_0_AnsP_3 & [network_1_3_AnnP_0!=poll__networl_1_3_AnnP_0 & [network_2_2_AskP_1!=poll__networl_2_2_AskP_1 & [network_2_0_AI_1!=poll__networl_2_0_AI_1 & [network_0_2_AI_2!=poll__networl_0_2_AI_2 & [network_2_3_RP_2!=poll__networl_2_3_RP_2 & [network_0_0_AskP_3!=poll__networl_0_0_AskP_3 & [network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2 & [network_3_1_AnsP_1!=poll__networl_3_1_AnsP_1 & [network_3_3_AnsP_2!=poll__networl_3_3_AnsP_2 & [network_1_1_RI_1!=poll__networl_1_1_RI_1 & [network_0_0_RP_1!=poll__networl_0_0_RP_1 & [network_3_2_RI_0!=poll__networl_3_2_RI_0 & [network_3_2_AnnP_2!=poll__networl_3_2_AnnP_2 & [network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_1_AnsP_3!=poll__networl_0_1_AnsP_3 & [network_3_1_AnnP_0!=poll__networl_3_1_AnnP_0 & [network_1_1_AnnP_3!=poll__networl_1_1_AnnP_3 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [network_0_1_RP_1!=poll__networl_0_1_RP_1 & [network_3_1_AskP_0!=poll__networl_3_1_AskP_0 & [network_3_3_RP_0!=poll__networl_3_3_RP_0 & [network_0_2_RI_3!=poll__networl_0_2_RI_3 & [network_2_1_AnnP_3!=poll__networl_2_1_AnnP_3 & [network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_0_1_AnnP_3!=poll__networl_0_1_AnnP_3 & [network_3_3_AnnP_3!=poll__networl_3_3_AnnP_3 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [network_2_3_AnnP_0!=poll__networl_2_3_AnnP_0 & [network_2_3_AnsP_0!=poll__networl_2_3_AnsP_0 & [network_0_1_RI_1!=poll__networl_0_1_RI_1 & [network_1_0_AskP_1!=poll__networl_1_0_AskP_1 & [network_0_0_AskP_0!=poll__networl_0_0_AskP_0 & [network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0 & [network_2_3_AnsP_2!=poll__networl_2_3_AnsP_2 & [network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1 & [network_1_1_RP_1!=poll__networl_1_1_RP_1 & [network_0_3_RP_2!=poll__networl_0_3_RP_2 & [network_3_2_AskP_3!=poll__networl_3_2_AskP_3 & [network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [network_2_2_RI_1!=poll__networl_2_2_RI_1 & [network_3_1_AskP_2!=poll__networl_3_1_AskP_2 & [network_2_3_AnnP_1!=poll__networl_2_3_AnnP_1 & [network_0_0_AI_1!=poll__networl_0_0_AI_1 & [network_0_2_AnnP_3!=poll__networl_0_2_AnnP_3 & [network_2_2_RP_0!=poll__networl_2_2_RP_0 & [network_0_2_AskP_1!=poll__networl_0_2_AskP_1 & [network_2_0_RI_0!=poll__networl_2_0_RI_0 & [network_3_0_AnsP_0!=poll__networl_3_0_AnsP_0 & [network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1 & [network_0_3_AI_2!=poll__networl_0_3_AI_2 & [network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0 & [network_2_1_RP_0!=poll__networl_2_1_RP_0 & [network_3_1_AI_2!=poll__networl_3_1_AI_2 & [network_3_1_RP_3!=poll__networl_3_1_RP_3 & [network_3_3_AnsP_3!=poll__networl_3_3_AnsP_3 & [network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [network_2_0_AskP_2!=poll__networl_2_0_AskP_2 & [network_0_3_AnsP_2!=poll__networl_0_3_AnsP_2 & [network_1_1_AskP_2!=poll__networl_1_1_AskP_2 & [network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0 & [network_0_0_AnsP_3!=poll__networl_0_0_AnsP_3 & [network_1_3_RP_0!=poll__networl_1_3_RP_0 & [network_0_3_AI_1!=poll__networl_0_3_AI_1 & [network_1_2_RI_2!=poll__networl_1_2_RI_2 & [network_0_3_AskP_3!=poll__networl_0_3_AskP_3 & [network_3_2_AnnP_1!=poll__networl_3_2_AnnP_1 & [network_3_0_AnnP_2!=poll__networl_3_0_AnnP_2 & [network_1_3_AnsP_1!=poll__networl_1_3_AnsP_1 & [network_0_3_RP_3!=poll__networl_0_3_RP_3 & [network_1_0_RI_1!=poll__networl_1_0_RI_1 & [network_0_3_RP_0!=poll__networl_0_3_RP_0 & [network_0_0_AnnP_3!=poll__networl_0_0_AnnP_3 & [network_2_2_RI_2!=poll__networl_2_2_RI_2 & [network_1_2_AskP_0!=poll__networl_1_2_AskP_0 & [network_2_3_AskP_0!=poll__networl_2_3_AskP_0 & [network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2 & [network_2_0_RP_3!=poll__networl_2_0_RP_3 & [network_0_1_RP_2!=poll__networl_0_1_RP_2 & [network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1 & [network_1_3_AnnP_1!=poll__networl_1_3_AnnP_1 & [network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1 & [network_3_0_RP_3!=poll__networl_3_0_RP_3 & [network_0_1_RI_0!=poll__networl_0_1_RI_0 & [network_2_3_RP_1!=poll__networl_2_3_RP_1 & [network_1_3_RP_3!=poll__networl_1_3_RP_3 & [network_3_0_AI_1!=poll__networl_3_0_AI_1 & [network_2_1_AskP_3!=poll__networl_2_1_AskP_3 & [network_0_0_RP_0!=poll__networl_0_0_RP_0 & [network_3_2_AnsP_0!=poll__networl_3_2_AnsP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [network_3_3_AnnP_0!=poll__networl_3_3_AnnP_0 & [network_3_0_AnsP_1!=poll__networl_3_0_AnsP_1 & [network_3_2_RI_3!=poll__networl_3_2_RI_3 & [network_0_1_AI_1!=poll__networl_0_1_AI_1 & [network_2_3_AI_1!=poll__networl_2_3_AI_1 & [network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2 & [network_2_0_RI_1!=poll__networl_2_0_RI_1 & [network_2_1_AI_1!=poll__networl_2_1_AI_1 & [network_0_3_AnsP_3!=poll__networl_0_3_AnsP_3 & [network_2_1_AI_3!=poll__networl_2_1_AI_3 & [network_3_1_AnnP_1!=poll__networl_3_1_AnnP_1 & [network_3_3_AnsP_0!=poll__networl_3_3_AnsP_0 & [network_1_3_AnnP_3!=poll__networl_1_3_AnnP_3 & [network_0_0_AI_3!=poll__networl_0_0_AI_3 & [network_3_1_RI_2!=poll__networl_3_1_RI_2 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [network_0_3_RI_3!=poll__networl_0_3_RI_3 & [network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1 & [network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_1_3_AskP_1!=poll__networl_1_3_AskP_1 & [network_0_1_AI_3!=poll__networl_0_1_AI_3 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [network_2_1_RP_3!=poll__networl_2_1_RP_3 & [network_3_0_RI_1!=poll__networl_3_0_RI_1 & [network_2_3_AI_2!=poll__networl_2_3_AI_2 & [network_1_2_AskP_2!=poll__networl_1_2_AskP_2 & [network_3_1_AskP_3!=poll__networl_3_1_AskP_3 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [network_1_3_RI_1!=poll__networl_1_3_RI_1 & [network_3_0_AI_0!=poll__networl_3_0_AI_0 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [network_3_1_RI_0!=poll__networl_3_1_RI_0 & [network_2_0_AI_3!=poll__networl_2_0_AI_3 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [network_0_2_RP_3!=poll__networl_0_2_RP_3 & [network_2_2_AnnP_3!=poll__networl_2_2_AnnP_3 & [network_3_0_AskP_0!=poll__networl_3_0_AskP_0 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [network_1_1_AI_2!=poll__networl_1_1_AI_2 & [network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2 & [network_3_2_RI_2!=poll__networl_3_2_RI_2 & [network_1_3_AnsP_3!=poll__networl_1_3_AnsP_3 & [network_0_3_RP_1!=poll__networl_0_3_RP_1 & [network_1_0_AI_3!=poll__networl_1_0_AI_3 & [network_3_1_AnnP_3!=poll__networl_3_1_AnnP_3 & [network_3_2_AskP_1!=poll__networl_3_2_AskP_1 & [network_3_1_AI_0!=poll__networl_3_1_AI_0 & [network_3_1_AnsP_3!=poll__networl_3_1_AnsP_3 & [network_1_3_AnsP_0!=poll__networl_1_3_AnsP_0 & [network_2_3_RP_3!=poll__networl_2_3_RP_3 & [network_1_2_AI_1!=poll__networl_1_2_AI_1 & [network_1_1_RP_3!=poll__networl_1_1_RP_3 & [network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0 & [network_0_3_RI_1!=poll__networl_0_3_RI_1 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_3_AnsP_1!=poll__networl_2_3_AnsP_1 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_3_0_AnnP_3!=poll__networl_3_0_AnnP_3 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_2_3_AI_0!=poll__networl_2_3_AI_0 & [network_3_2_AI_2!=poll__networl_3_2_AI_2 & [network_0_3_AnsP_0!=poll__networl_0_3_AnsP_0 & [network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [network_3_3_AskP_1!=poll__networl_3_3_AskP_1 & [network_1_1_AI_3!=poll__networl_1_1_AI_3 & [network_3_3_RI_2!=poll__networl_3_3_RI_2 & [network_2_0_RI_3!=poll__networl_2_0_RI_3 & [network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2 & [network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_1_1_RI_3!=poll__networl_1_1_RI_3 & [network_1_0_RI_3!=poll__networl_1_0_RI_3 & [network_0_0_RI_0!=poll__networl_0_0_RI_0 & [network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_3_2_AnsP_2!=poll__networl_3_2_AnsP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_3_AnnP_3!=poll__networl_2_3_AnnP_3 & [network_2_1_RI_3!=poll__networl_2_1_RI_3 & [network_2_0_RI_2!=poll__networl_2_0_RI_2 & [network_3_1_RP_1!=poll__networl_3_1_RP_1 & [network_3_1_AI_3!=poll__networl_3_1_AI_3 & [network_0_3_RI_2!=poll__networl_0_3_RI_2 & [network_2_3_AnnP_2!=poll__networl_2_3_AnnP_2 & [network_2_2_AI_3!=poll__networl_2_2_AI_3 & [network_3_0_RI_2!=poll__networl_3_0_RI_2 & [network_1_0_AnnP_3!=poll__networl_1_0_AnnP_3 & [network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_3_2_AI_0!=poll__networl_3_2_AI_0 & [network_3_0_AnsP_3!=poll__networl_3_0_AnsP_3 & [network_0_3_AnnP_1!=poll__networl_0_3_AnnP_1 & [network_3_3_RI_3!=poll__networl_3_3_RI_3 & [network_3_3_AI_1!=poll__networl_3_3_AI_1 & [network_1_0_AI_1!=poll__networl_1_0_AI_1 & [network_0_1_RP_3!=poll__networl_0_1_RP_3 & [network_2_2_RP_3!=poll__networl_2_2_RP_3 & [network_0_0_RI_3!=poll__networl_0_0_RI_3 & [network_3_3_RP_3!=poll__networl_3_3_RP_3 & [network_0_0_AI_0!=poll__networl_0_0_AI_0 & [network_3_0_RI_0!=poll__networl_3_0_RI_0 & [network_3_2_RP_3!=poll__networl_3_2_RP_3 & [network_1_1_AI_1!=poll__networl_1_1_AI_1 & [network_1_2_AnnP_3!=poll__networl_1_2_AnnP_3 & [network_3_3_AskP_0!=poll__networl_3_3_AskP_0 & [network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [network_3_0_AI_2!=poll__networl_3_0_AI_2 & [network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_1_2_AnsP_3!=poll__networl_1_2_AnsP_3 & [network_3_0_AskP_3!=poll__networl_3_0_AskP_3 & [network_2_1_RI_1!=poll__networl_2_1_RI_1 & [network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_3_3_AnsP_1!=poll__networl_3_3_AnsP_1 & [network_3_1_RI_1!=poll__networl_3_1_RI_1 & [network_1_2_AI_3!=poll__networl_1_2_AI_3 & [network_0_3_RI_0!=poll__networl_0_3_RI_0 & [network_3_0_AnsP_2!=poll__networl_3_0_AnsP_2 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_3_3_RP_1!=poll__networl_3_3_RP_1 & [network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [network_1_3_AI_1!=poll__networl_1_3_AI_1 & [network_0_3_AI_3!=poll__networl_0_3_AI_3 & [network_3_3_AI_2!=poll__networl_3_3_AI_2 & [network_0_3_AnsP_1!=poll__networl_0_3_AnsP_1 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [network_2_2_RP_1!=poll__networl_2_2_RP_1 & [network_3_1_RP_0!=poll__networl_3_1_RP_0 & [network_2_0_AnsP_3!=poll__networl_2_0_AnsP_3 & [network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_3_2_RP_1!=poll__networl_3_2_RP_1 & [network_3_2_RP_2!=poll__networl_3_2_RP_2 & [network_0_3_AskP_0!=poll__networl_0_3_AskP_0 & [network_3_0_RP_0!=poll__networl_3_0_RP_0 & [network_3_3_AnnP_1!=poll__networl_3_3_AnnP_1 & [network_1_0_RP_3!=poll__networl_1_0_RP_3 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [network_0_0_AskP_1!=poll__networl_0_0_AskP_1 & [network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [network_0_3_AI_0!=poll__networl_0_3_AI_0 & [network_1_3_AskP_3!=poll__networl_1_3_AskP_3 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_3_RI_1!=poll__networl_2_3_RI_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_1_2_RP_3!=poll__networl_1_2_RP_3 & [network_3_2_AI_1!=poll__networl_3_2_AI_1 & [network_1_3_RI_3!=poll__networl_1_3_RI_3 & [network_2_2_AskP_3!=poll__networl_2_2_AskP_3 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_3_AskP_2!=poll__networl_2_3_AskP_2 & [network_3_3_RI_1!=poll__networl_3_3_RI_1 & [network_3_0_RI_3!=poll__networl_3_0_RI_3 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_3_2_AnsP_1!=poll__networl_3_2_AnsP_1 & [network_2_3_AskP_1!=poll__networl_2_3_AskP_1 & [network_3_1_AnnP_2!=poll__networl_3_1_AnnP_2 & [network_3_3_AI_3!=poll__networl_3_3_AI_3 & [network_2_1_AnsP_3!=poll__networl_2_1_AnsP_3 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_0_3_AnnP_3!=poll__networl_0_3_AnnP_3 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_3_2_AskP_0!=poll__networl_3_2_AskP_0 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0 & [network_3_2_AnnP_3!=poll__networl_3_2_AnnP_3 & [network_3_3_AskP_3!=poll__networl_3_3_AskP_3 & [network_3_1_RP_2!=poll__networl_3_1_RP_2 & [network_1_2_RI_1!=poll__networl_1_2_RI_1 & [network_1_0_AI_0!=poll__networl_1_0_AI_0 & [network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [network_1_2_AI_0!=poll__networl_1_2_AI_0 & [network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1 & [network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [network_1_3_AI_0!=poll__networl_1_3_AI_0 & [network_0_2_RP_1!=poll__networl_0_2_RP_1 & [network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2 & [network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [network_1_2_RP_0!=poll__networl_1_2_RP_0 & [network_1_2_RI_3!=poll__networl_1_2_RI_3 & [network_2_0_AskP_0!=poll__networl_2_0_AskP_0 & [network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1 & [network_0_2_AskP_3!=poll__networl_0_2_AskP_3 & [network_1_3_AI_2!=poll__networl_1_3_AI_2 & [network_1_3_AnsP_2!=poll__networl_1_3_AnsP_2 & [network_0_2_AI_3!=poll__networl_0_2_AI_3 & [network_1_2_AI_2!=poll__networl_1_2_AI_2 & [network_2_0_RP_0!=poll__networl_2_0_RP_0 & [network_3_2_RP_0!=poll__networl_3_2_RP_0 & [network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [network_2_0_AI_0!=poll__networl_2_0_AI_0 & [network_3_2_RI_1!=poll__networl_3_2_RI_1 & [network_0_2_AI_1!=poll__networl_0_2_AI_1 & [network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [network_3_0_RP_2!=poll__networl_3_0_RP_2 & [network_2_2_AI_2!=poll__networl_2_2_AI_2 & [network_0_1_AskP_3!=poll__networl_0_1_AskP_3 & [network_1_1_RI_0!=poll__networl_1_1_RI_0 & [network_0_1_RI_3!=poll__networl_0_1_RI_3 & [network_1_2_RP_2!=poll__networl_1_2_RP_2 & [network_0_3_AnnP_2!=poll__networl_0_3_AnnP_2 & [network_3_1_AnsP_2!=poll__networl_3_1_AnsP_2 & [network_1_3_AnnP_2!=poll__networl_1_3_AnnP_2 & [network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [network_1_2_AskP_3!=poll__networl_1_2_AskP_3 & [network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [network_1_3_AskP_2!=poll__networl_1_3_AskP_2 & [network_2_2_RI_0!=poll__networl_2_2_RI_0 & [network_0_0_AI_2!=poll__networl_0_0_AI_2 & [network_2_3_AI_3!=poll__networl_2_3_AI_3 & [network_3_2_AskP_2!=poll__networl_3_2_AskP_2 & [network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0 & [network_3_0_AnnP_0!=poll__networl_3_0_AnnP_0 & [network_1_3_RP_1!=poll__networl_1_3_RP_1 & [network_3_3_AskP_2!=poll__networl_3_3_AskP_2 & [network_3_3_RP_2!=poll__networl_3_3_RP_2 & [network_0_1_AskP_2!=poll__networl_0_1_AskP_2 & [network_1_0_RI_2!=poll__networl_1_0_RI_2 & [network_2_2_RI_3!=poll__networl_2_2_RI_3 & [network_3_0_AskP_1!=poll__networl_3_0_AskP_1 & [network_0_3_AskP_1!=poll__networl_0_3_AskP_1 & [network_0_0_RI_2!=poll__networl_0_0_RI_2 & [network_3_3_AI_0!=poll__networl_3_3_AI_0 & [network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0 & [network_3_0_AnnP_1!=poll__networl_3_0_AnnP_1 & [network_3_2_AnsP_3!=poll__networl_3_2_AnsP_3 & [network_2_0_AskP_1!=poll__networl_2_0_AskP_1 & [network_3_2_AI_3!=poll__networl_3_2_AI_3 & [network_1_3_RP_2!=poll__networl_1_3_RP_2 & [network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [network_1_3_AI_3!=poll__networl_1_3_AI_3 & [network_3_3_AnnP_2!=poll__networl_3_3_AnnP_2 & [network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0 & [network_0_2_RP_0!=poll__networl_0_2_RP_0 & [network_2_0_AnnP_3!=poll__networl_2_0_AnnP_3 & [network_0_2_RI_1!=poll__networl_0_2_RI_1 & [network_1_3_RI_2!=poll__networl_1_3_RI_2 & [network_0_0_RP_3!=poll__networl_0_0_RP_3 & [network_1_0_AI_2!=poll__networl_1_0_AI_2 & [network_3_0_AI_3!=poll__networl_3_0_AI_3 & [network_2_3_RI_3!=poll__networl_2_3_RI_3 & [network_3_1_AskP_1!=poll__networl_3_1_AskP_1 & [network_2_2_AnsP_3!=poll__networl_2_2_AnsP_3 & [network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0 & [network_0_2_AnsP_3!=poll__networl_0_2_AnsP_3 & [network_1_1_RP_0!=poll__networl_1_1_RP_0 & [network_1_0_AskP_3!=poll__networl_1_0_AskP_3 & [network_1_3_RI_0!=poll__networl_1_3_RI_0 & [network_3_0_RP_1!=poll__networl_3_0_RP_1 & [network_1_1_AnsP_3!=poll__networl_1_1_AnsP_3 & [network_0_3_AskP_2!=poll__networl_0_3_AskP_2 & [network_1_1_RP_2!=poll__networl_1_1_RP_2 & [network_2_3_RI_2!=poll__networl_2_3_RI_2 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & [polling_1!=electionFailed_1 & [polling_3!=electionFailed_3 & [polling_2!=electionFailed_2 & [polling_0!=electionFailed_0 & true]]]]]]]]

-> the formula is FALSE

FORMULA p_7_placecomparison_eq_and FALSE TECHNIQUES DECISION_DIAGRAMS

mc time: 0m4sec

checking: AG [[[polling_1!=electionFailed_1 & [[polling_2!=electionFailed_2 & [polling_0!=electionFailed_0 & true]] & polling_3!=electionFailed_3]] | [network_2_2_RP_2!=poll__networl_2_2_RP_2 & [network_1_0_RI_0!=poll__networl_1_0_RI_0 & [network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2 & [network_1_3_AskP_0!=poll__networl_1_3_AskP_0 & [network_2_3_RP_0!=poll__networl_2_3_RP_0 & [network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2 & [network_1_2_RI_0!=poll__networl_1_2_RI_0 & [network_2_0_AI_2!=poll__networl_2_0_AI_2 & [network_0_3_AnnP_0!=poll__networl_0_3_AnnP_0 & [network_0_1_AI_2!=poll__networl_0_1_AI_2 & [network_2_3_RI_0!=poll__networl_2_3_RI_0 & [network_2_3_AnsP_3!=poll__networl_2_3_AnsP_3 & [network_2_3_AskP_3!=poll__networl_2_3_AskP_3 & [[network_3_1_AnsP_0!=poll__networl_3_1_AnsP_0 & [network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0 & [network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0 & [network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0 & [network_3_1_AI_1!=poll__networl_3_1_AI_1 & [network_1_1_AskP_3!=poll__networl_1_1_AskP_3 & [network_0_2_RI_2!=poll__networl_0_2_RI_2 & [network_3_3_RI_0!=poll__networl_3_3_RI_0 & [network_3_1_RI_3!=poll__networl_3_1_RI_3 & [network_3_2_AnnP_0!=poll__networl_3_2_AnnP_0 & [network_2_0_AskP_3!=poll__networl_2_0_AskP_3 & [network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [network_3_0_AskP_2!=poll__networl_3_0_AskP_2 & [network_1_0_AnsP_3!=poll__networl_1_0_AnsP_3 & [network_1_3_AnnP_0!=poll__networl_1_3_AnnP_0 & [network_2_2_AskP_1!=poll__networl_2_2_AskP_1 & [network_2_0_AI_1!=poll__networl_2_0_AI_1 & [network_0_2_AI_2!=poll__networl_0_2_AI_2 & [network_2_3_RP_2!=poll__networl_2_3_RP_2 & [network_0_0_AskP_3!=poll__networl_0_0_AskP_3 & [network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2 & [network_3_1_AnsP_1!=poll__networl_3_1_AnsP_1 & [network_3_3_AnsP_2!=poll__networl_3_3_AnsP_2 & [network_1_1_RI_1!=poll__networl_1_1_RI_1 & [network_0_0_RP_1!=poll__networl_0_0_RP_1 & [network_3_2_RI_0!=poll__networl_3_2_RI_0 & [network_3_2_AnnP_2!=poll__networl_3_2_AnnP_2 & [network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_1_AnsP_3!=poll__networl_0_1_AnsP_3 & [network_3_1_AnnP_0!=poll__networl_3_1_AnnP_0 & [network_1_1_AnnP_3!=poll__networl_1_1_AnnP_3 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [network_0_1_RP_1!=poll__networl_0_1_RP_1 & [network_3_1_AskP_0!=poll__networl_3_1_AskP_0 & [network_3_3_RP_0!=poll__networl_3_3_RP_0 & [network_0_2_RI_3!=poll__networl_0_2_RI_3 & [network_2_1_AnnP_3!=poll__networl_2_1_AnnP_3 & [network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_0_1_AnnP_3!=poll__networl_0_1_AnnP_3 & [network_3_3_AnnP_3!=poll__networl_3_3_AnnP_3 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [network_2_3_AnnP_0!=poll__networl_2_3_AnnP_0 & [network_2_3_AnsP_0!=poll__networl_2_3_AnsP_0 & [network_0_1_RI_1!=poll__networl_0_1_RI_1 & [network_1_0_AskP_1!=poll__networl_1_0_AskP_1 & [network_0_0_AskP_0!=poll__networl_0_0_AskP_0 & [network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0 & [network_2_3_AnsP_2!=poll__networl_2_3_AnsP_2 & [network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1 & [network_1_1_RP_1!=poll__networl_1_1_RP_1 & [network_0_3_RP_2!=poll__networl_0_3_RP_2 & [network_3_2_AskP_3!=poll__networl_3_2_AskP_3 & [network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [network_2_2_RI_1!=poll__networl_2_2_RI_1 & [network_3_1_AskP_2!=poll__networl_3_1_AskP_2 & [network_2_3_AnnP_1!=poll__networl_2_3_AnnP_1 & [network_0_0_AI_1!=poll__networl_0_0_AI_1 & [network_0_2_AnnP_3!=poll__networl_0_2_AnnP_3 & [network_2_2_RP_0!=poll__networl_2_2_RP_0 & [[[[[network_0_3_AI_2!=poll__networl_0_3_AI_2 & [[[[network_3_1_RP_3!=poll__networl_3_1_RP_3 & [[[[network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [[[[[[[network_1_3_RP_0!=poll__networl_1_3_RP_0 & [[[[network_3_2_AnnP_1!=poll__networl_3_2_AnnP_1 & [[[[[network_0_3_RP_0!=poll__networl_0_3_RP_0 & [network_0_0_AnnP_3!=poll__networl_0_0_AnnP_3 & [[[network_2_3_AskP_0!=poll__networl_2_3_AskP_0 & [network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [[network_2_0_RP_3!=poll__networl_2_0_RP_3 & [[[network_1_3_AnnP_1!=poll__networl_1_3_AnnP_1 & [network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1 & [network_3_0_RP_3!=poll__networl_3_0_RP_3 & [network_0_1_RI_0!=poll__networl_0_1_RI_0 & [network_2_3_RP_1!=poll__networl_2_3_RP_1 & [network_1_3_RP_3!=poll__networl_1_3_RP_3 & [network_3_0_AI_1!=poll__networl_3_0_AI_1 & [network_2_1_AskP_3!=poll__networl_2_1_AskP_3 & [network_0_0_RP_0!=poll__networl_0_0_RP_0 & [network_3_2_AnsP_0!=poll__networl_3_2_AnsP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [network_3_3_AnnP_0!=poll__networl_3_3_AnnP_0 & [network_3_0_AnsP_1!=poll__networl_3_0_AnsP_1 & [network_3_2_RI_3!=poll__networl_3_2_RI_3 & [network_0_1_AI_1!=poll__networl_0_1_AI_1 & [network_2_3_AI_1!=poll__networl_2_3_AI_1 & [network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2 & [network_2_0_RI_1!=poll__networl_2_0_RI_1 & [network_2_1_AI_1!=poll__networl_2_1_AI_1 & [network_0_3_AnsP_3!=poll__networl_0_3_AnsP_3 & [network_2_1_AI_3!=poll__networl_2_1_AI_3 & [network_3_1_AnnP_1!=poll__networl_3_1_AnnP_1 & [network_3_3_AnsP_0!=poll__networl_3_3_AnsP_0 & [network_1_3_AnnP_3!=poll__networl_1_3_AnnP_3 & [network_0_0_AI_3!=poll__networl_0_0_AI_3 & [network_3_1_RI_2!=poll__networl_3_1_RI_2 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [network_0_3_RI_3!=poll__networl_0_3_RI_3 & [network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1 & [network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_1_3_AskP_1!=poll__networl_1_3_AskP_1 & [network_0_1_AI_3!=poll__networl_0_1_AI_3 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [network_2_1_RP_3!=poll__networl_2_1_RP_3 & [network_3_0_RI_1!=poll__networl_3_0_RI_1 & [network_2_3_AI_2!=poll__networl_2_3_AI_2 & [network_1_2_AskP_2!=poll__networl_1_2_AskP_2 & [network_3_1_AskP_3!=poll__networl_3_1_AskP_3 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [network_1_3_RI_1!=poll__networl_1_3_RI_1 & [network_3_0_AI_0!=poll__networl_3_0_AI_0 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [network_3_1_RI_0!=poll__networl_3_1_RI_0 & [network_2_0_AI_3!=poll__networl_2_0_AI_3 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [network_0_2_RP_3!=poll__networl_0_2_RP_3 & [network_2_2_AnnP_3!=poll__networl_2_2_AnnP_3 & [network_3_0_AskP_0!=poll__networl_3_0_AskP_0 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [network_1_1_AI_2!=poll__networl_1_1_AI_2 & [network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2 & [network_3_2_RI_2!=poll__networl_3_2_RI_2 & [network_1_3_AnsP_3!=poll__networl_1_3_AnsP_3 & [network_0_3_RP_1!=poll__networl_0_3_RP_1 & [network_1_0_AI_3!=poll__networl_1_0_AI_3 & [network_3_1_AnnP_3!=poll__networl_3_1_AnnP_3 & [network_3_2_AskP_1!=poll__networl_3_2_AskP_1 & [network_3_1_AI_0!=poll__networl_3_1_AI_0 & [network_3_1_AnsP_3!=poll__networl_3_1_AnsP_3 & [network_1_3_AnsP_0!=poll__networl_1_3_AnsP_0 & [network_2_3_RP_3!=poll__networl_2_3_RP_3 & [network_1_2_AI_1!=poll__networl_1_2_AI_1 & [network_1_1_RP_3!=poll__networl_1_1_RP_3 & [network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0 & [network_0_3_RI_1!=poll__networl_0_3_RI_1 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_3_AnsP_1!=poll__networl_2_3_AnsP_1 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_3_0_AnnP_3!=poll__networl_3_0_AnnP_3 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_2_3_AI_0!=poll__networl_2_3_AI_0 & [network_3_2_AI_2!=poll__networl_3_2_AI_2 & [network_0_3_AnsP_0!=poll__networl_0_3_AnsP_0 & [network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [network_3_3_AskP_1!=poll__networl_3_3_AskP_1 & [network_1_1_AI_3!=poll__networl_1_1_AI_3 & [network_3_3_RI_2!=poll__networl_3_3_RI_2 & [network_2_0_RI_3!=poll__networl_2_0_RI_3 & [network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2 & [network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_1_1_RI_3!=poll__networl_1_1_RI_3 & [network_1_0_RI_3!=poll__networl_1_0_RI_3 & [network_0_0_RI_0!=poll__networl_0_0_RI_0 & [network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_3_2_AnsP_2!=poll__networl_3_2_AnsP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_3_AnnP_3!=poll__networl_2_3_AnnP_3 & [network_2_1_RI_3!=poll__networl_2_1_RI_3 & [network_2_0_RI_2!=poll__networl_2_0_RI_2 & [network_3_1_RP_1!=poll__networl_3_1_RP_1 & [network_3_1_AI_3!=poll__networl_3_1_AI_3 & [network_0_3_RI_2!=poll__networl_0_3_RI_2 & [network_2_3_AnnP_2!=poll__networl_2_3_AnnP_2 & [network_2_2_AI_3!=poll__networl_2_2_AI_3 & [network_3_0_RI_2!=poll__networl_3_0_RI_2 & [network_1_0_AnnP_3!=poll__networl_1_0_AnnP_3 & [network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_3_2_AI_0!=poll__networl_3_2_AI_0 & [network_3_0_AnsP_3!=poll__networl_3_0_AnsP_3 & [network_0_3_AnnP_1!=poll__networl_0_3_AnnP_1 & [network_3_3_RI_3!=poll__networl_3_3_RI_3 & [network_3_3_AI_1!=poll__networl_3_3_AI_1 & [network_1_0_AI_1!=poll__networl_1_0_AI_1 & [network_0_1_RP_3!=poll__networl_0_1_RP_3 & [network_2_2_RP_3!=poll__networl_2_2_RP_3 & [network_0_0_RI_3!=poll__networl_0_0_RI_3 & [network_3_3_RP_3!=poll__networl_3_3_RP_3 & [network_0_0_AI_0!=poll__networl_0_0_AI_0 & [network_3_0_RI_0!=poll__networl_3_0_RI_0 & [network_3_2_RP_3!=poll__networl_3_2_RP_3 & [network_1_1_AI_1!=poll__networl_1_1_AI_1 & [network_1_2_AnnP_3!=poll__networl_1_2_AnnP_3 & [network_3_3_AskP_0!=poll__networl_3_3_AskP_0 & [network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [network_3_0_AI_2!=poll__networl_3_0_AI_2 & [network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_1_2_AnsP_3!=poll__networl_1_2_AnsP_3 & [network_3_0_AskP_3!=poll__networl_3_0_AskP_3 & [network_2_1_RI_1!=poll__networl_2_1_RI_1 & [network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_3_3_AnsP_1!=poll__networl_3_3_AnsP_1 & [network_3_1_RI_1!=poll__networl_3_1_RI_1 & [network_1_2_AI_3!=poll__networl_1_2_AI_3 & [network_0_3_RI_0!=poll__networl_0_3_RI_0 & [network_3_0_AnsP_2!=poll__networl_3_0_AnsP_2 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_3_3_RP_1!=poll__networl_3_3_RP_1 & [network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [network_1_3_AI_1!=poll__networl_1_3_AI_1 & [network_0_3_AI_3!=poll__networl_0_3_AI_3 & [network_3_3_AI_2!=poll__networl_3_3_AI_2 & [network_0_3_AnsP_1!=poll__networl_0_3_AnsP_1 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [network_2_2_RP_1!=poll__networl_2_2_RP_1 & [network_3_1_RP_0!=poll__networl_3_1_RP_0 & [network_2_0_AnsP_3!=poll__networl_2_0_AnsP_3 & [network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_3_2_RP_1!=poll__networl_3_2_RP_1 & [network_3_2_RP_2!=poll__networl_3_2_RP_2 & [network_0_3_AskP_0!=poll__networl_0_3_AskP_0 & [network_3_0_RP_0!=poll__networl_3_0_RP_0 & [network_3_3_AnnP_1!=poll__networl_3_3_AnnP_1 & [network_1_0_RP_3!=poll__networl_1_0_RP_3 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [network_0_0_AskP_1!=poll__networl_0_0_AskP_1 & [network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [network_0_3_AI_0!=poll__networl_0_3_AI_0 & [network_1_3_AskP_3!=poll__networl_1_3_AskP_3 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_3_RI_1!=poll__networl_2_3_RI_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_1_2_RP_3!=poll__networl_1_2_RP_3 & [network_3_2_AI_1!=poll__networl_3_2_AI_1 & [network_1_3_RI_3!=poll__networl_1_3_RI_3 & [network_2_2_AskP_3!=poll__networl_2_2_AskP_3 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_3_AskP_2!=poll__networl_2_3_AskP_2 & [network_3_3_RI_1!=poll__networl_3_3_RI_1 & [network_3_0_RI_3!=poll__networl_3_0_RI_3 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_3_2_AnsP_1!=poll__networl_3_2_AnsP_1 & [network_2_3_AskP_1!=poll__networl_2_3_AskP_1 & [network_3_1_AnnP_2!=poll__networl_3_1_AnnP_2 & [network_3_3_AI_3!=poll__networl_3_3_AI_3 & [network_2_1_AnsP_3!=poll__networl_2_1_AnsP_3 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_0_3_AnnP_3!=poll__networl_0_3_AnnP_3 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_3_2_AskP_0!=poll__networl_3_2_AskP_0 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0 & [network_3_2_AnnP_3!=poll__networl_3_2_AnnP_3 & [network_3_3_AskP_3!=poll__networl_3_3_AskP_3 & [network_3_1_RP_2!=poll__networl_3_1_RP_2 & [network_1_2_RI_1!=poll__networl_1_2_RI_1 & [network_1_0_AI_0!=poll__networl_1_0_AI_0 & [network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [network_1_2_AI_0!=poll__networl_1_2_AI_0 & [network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1 & [network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [network_1_3_AI_0!=poll__networl_1_3_AI_0 & [network_0_2_RP_1!=poll__networl_0_2_RP_1 & [network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2 & [network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [network_1_2_RP_0!=poll__networl_1_2_RP_0 & [network_1_2_RI_3!=poll__networl_1_2_RI_3 & [network_2_0_AskP_0!=poll__networl_2_0_AskP_0 & [network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1 & [network_0_2_AskP_3!=poll__networl_0_2_AskP_3 & [network_1_3_AI_2!=poll__networl_1_3_AI_2 & [network_1_3_AnsP_2!=poll__networl_1_3_AnsP_2 & [network_0_2_AI_3!=poll__networl_0_2_AI_3 & [network_1_2_AI_2!=poll__networl_1_2_AI_2 & [network_2_0_RP_0!=poll__networl_2_0_RP_0 & [network_3_2_RP_0!=poll__networl_3_2_RP_0 & [network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [network_2_0_AI_0!=poll__networl_2_0_AI_0 & [network_3_2_RI_1!=poll__networl_3_2_RI_1 & [network_0_2_AI_1!=poll__networl_0_2_AI_1 & [[[[[[[[network_0_3_AnnP_2!=poll__networl_0_3_AnnP_2 & [network_3_1_AnsP_2!=poll__networl_3_1_AnsP_2 & [network_1_3_AnnP_2!=poll__networl_1_3_AnnP_2 & [network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [[network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [network_1_3_AskP_2!=poll__networl_1_3_AskP_2 & [network_2_2_RI_0!=poll__networl_2_2_RI_0 & [[[[[[[[[[[[[[[[[[[[[[[[[[network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0 & [network_0_2_RP_0!=poll__networl_0_2_RP_0 & [network_2_0_AnnP_3!=poll__networl_2_0_AnnP_3 & [[network_1_3_RI_2!=poll__networl_1_3_RI_2 & [[[[[[[network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0 & [[[[[[[[[true & network_2_3_RI_2!=poll__networl_2_3_RI_2] & network_1_1_RP_2!=poll__networl_1_1_RP_2] & network_0_3_AskP_2!=poll__networl_0_3_AskP_2] & network_1_1_AnsP_3!=poll__networl_1_1_AnsP_3] & network_3_0_RP_1!=poll__networl_3_0_RP_1] & network_1_3_RI_0!=poll__networl_1_3_RI_0] & network_1_0_AskP_3!=poll__networl_1_0_AskP_3] & network_1_1_RP_0!=poll__networl_1_1_RP_0] & network_0_2_AnsP_3!=poll__networl_0_2_AnsP_3]] & network_2_2_AnsP_3!=poll__networl_2_2_AnsP_3] & network_3_1_AskP_1!=poll__networl_3_1_AskP_1] & network_2_3_RI_3!=poll__networl_2_3_RI_3] & network_3_0_AI_3!=poll__networl_3_0_AI_3] & network_1_0_AI_2!=poll__networl_1_0_AI_2] & network_0_0_RP_3!=poll__networl_0_0_RP_3]] & network_0_2_RI_1!=poll__networl_0_2_RI_1]]]] & network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2] & network_3_3_AnnP_2!=poll__networl_3_3_AnnP_2] & network_1_3_AI_3!=poll__networl_1_3_AI_3] & network_1_0_AskP_2!=poll__networl_1_0_AskP_2] & network_1_3_RP_2!=poll__networl_1_3_RP_2] & network_3_2_AI_3!=poll__networl_3_2_AI_3] & network_2_0_AskP_1!=poll__networl_2_0_AskP_1] & network_3_2_AnsP_3!=poll__networl_3_2_AnsP_3] & network_3_0_AnnP_1!=poll__networl_3_0_AnnP_1] & network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0] & network_3_3_AI_0!=poll__networl_3_3_AI_0] & network_0_0_RI_2!=poll__networl_0_0_RI_2] & network_0_3_AskP_1!=poll__networl_0_3_AskP_1] & network_3_0_AskP_1!=poll__networl_3_0_AskP_1] & network_2_2_RI_3!=poll__networl_2_2_RI_3] & network_1_0_RI_2!=poll__networl_1_0_RI_2] & network_0_1_AskP_2!=poll__networl_0_1_AskP_2] & network_3_3_RP_2!=poll__networl_3_3_RP_2] & network_3_3_AskP_2!=poll__networl_3_3_AskP_2] & network_1_3_RP_1!=poll__networl_1_3_RP_1] & network_3_0_AnnP_0!=poll__networl_3_0_AnnP_0] & network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0] & network_3_2_AskP_2!=poll__networl_3_2_AskP_2] & network_2_3_AI_3!=poll__networl_2_3_AI_3] & network_0_0_AI_2!=poll__networl_0_0_AI_2]]]] & network_1_2_AskP_3!=poll__networl_1_2_AskP_3]]]]]] & network_1_2_RP_2!=poll__networl_1_2_RP_2] & network_0_1_RI_3!=poll__networl_0_1_RI_3] & network_1_1_RI_0!=poll__networl_1_1_RI_0] & network_0_1_AskP_3!=poll__networl_0_1_AskP_3] & network_2_2_AI_2!=poll__networl_2_2_AI_2] & network_3_0_RP_2!=poll__networl_3_0_RP_2] & network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1] & network_0_1_RP_2!=poll__networl_0_1_RP_2]] & network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2]]] & network_1_2_AskP_0!=poll__networl_1_2_AskP_0] & network_2_2_RI_2!=poll__networl_2_2_RI_2]]] & network_1_0_RI_1!=poll__networl_1_0_RI_1] & network_0_3_RP_3!=poll__networl_0_3_RP_3] & network_1_3_AnsP_1!=poll__networl_1_3_AnsP_1] & network_3_0_AnnP_2!=poll__networl_3_0_AnnP_2]] & network_0_3_AskP_3!=poll__networl_0_3_AskP_3] & network_1_2_RI_2!=poll__networl_1_2_RI_2] & network_0_3_AI_1!=poll__networl_0_3_AI_1]] & network_0_0_AnsP_3!=poll__networl_0_0_AnsP_3] & network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0] & network_1_1_AskP_2!=poll__networl_1_1_AskP_2] & network_0_3_AnsP_2!=poll__networl_0_3_AnsP_2] & network_2_0_AskP_2!=poll__networl_2_0_AskP_2] & network_2_1_AskP_0!=poll__networl_2_1_AskP_0]] & network_2_2_AI_0!=poll__networl_2_2_AI_0] & network_2_1_AI_2!=poll__networl_2_1_AI_2] & network_3_3_AnsP_3!=poll__networl_3_3_AnsP_3]] & network_3_1_AI_2!=poll__networl_3_1_AI_2] & network_2_1_RP_0!=poll__networl_2_1_RP_0] & network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0]] & network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1] & network_3_0_AnsP_0!=poll__networl_3_0_AnsP_0] & network_2_0_RI_0!=poll__networl_2_0_RI_0] & network_0_2_AskP_1!=poll__networl_0_2_AskP_1]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & network_0_2_AI_0!=poll__networl_0_2_AI_0]]]]]]]]]]]]]]]]
normalized: ~ [E [true U ~ [[[polling_1!=electionFailed_1 & [polling_3!=electionFailed_3 & [polling_2!=electionFailed_2 & [polling_0!=electionFailed_0 & true]]]] | [network_2_2_RP_2!=poll__networl_2_2_RP_2 & [network_1_0_RI_0!=poll__networl_1_0_RI_0 & [network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2 & [network_1_3_AskP_0!=poll__networl_1_3_AskP_0 & [network_2_3_RP_0!=poll__networl_2_3_RP_0 & [network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2 & [network_1_2_RI_0!=poll__networl_1_2_RI_0 & [network_2_0_AI_2!=poll__networl_2_0_AI_2 & [network_0_3_AnnP_0!=poll__networl_0_3_AnnP_0 & [network_0_1_AI_2!=poll__networl_0_1_AI_2 & [network_2_3_RI_0!=poll__networl_2_3_RI_0 & [network_2_3_AnsP_3!=poll__networl_2_3_AnsP_3 & [network_2_3_AskP_3!=poll__networl_2_3_AskP_3 & [network_0_2_AI_0!=poll__networl_0_2_AI_0 & [network_3_1_AnsP_0!=poll__networl_3_1_AnsP_0 & [network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0 & [network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0 & [network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0 & [network_3_1_AI_1!=poll__networl_3_1_AI_1 & [network_1_1_AskP_3!=poll__networl_1_1_AskP_3 & [network_0_2_RI_2!=poll__networl_0_2_RI_2 & [network_3_3_RI_0!=poll__networl_3_3_RI_0 & [network_3_1_RI_3!=poll__networl_3_1_RI_3 & [network_3_2_AnnP_0!=poll__networl_3_2_AnnP_0 & [network_2_0_AskP_3!=poll__networl_2_0_AskP_3 & [network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [network_3_0_AskP_2!=poll__networl_3_0_AskP_2 & [network_1_0_AnsP_3!=poll__networl_1_0_AnsP_3 & [network_1_3_AnnP_0!=poll__networl_1_3_AnnP_0 & [network_2_2_AskP_1!=poll__networl_2_2_AskP_1 & [network_2_0_AI_1!=poll__networl_2_0_AI_1 & [network_0_2_AI_2!=poll__networl_0_2_AI_2 & [network_2_3_RP_2!=poll__networl_2_3_RP_2 & [network_0_0_AskP_3!=poll__networl_0_0_AskP_3 & [network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2 & [network_3_1_AnsP_1!=poll__networl_3_1_AnsP_1 & [network_3_3_AnsP_2!=poll__networl_3_3_AnsP_2 & [network_1_1_RI_1!=poll__networl_1_1_RI_1 & [network_0_0_RP_1!=poll__networl_0_0_RP_1 & [network_3_2_RI_0!=poll__networl_3_2_RI_0 & [network_3_2_AnnP_2!=poll__networl_3_2_AnnP_2 & [network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_1_AnsP_3!=poll__networl_0_1_AnsP_3 & [network_3_1_AnnP_0!=poll__networl_3_1_AnnP_0 & [network_1_1_AnnP_3!=poll__networl_1_1_AnnP_3 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [network_0_1_RP_1!=poll__networl_0_1_RP_1 & [network_3_1_AskP_0!=poll__networl_3_1_AskP_0 & [network_3_3_RP_0!=poll__networl_3_3_RP_0 & [network_0_2_RI_3!=poll__networl_0_2_RI_3 & [network_2_1_AnnP_3!=poll__networl_2_1_AnnP_3 & [network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_0_1_AnnP_3!=poll__networl_0_1_AnnP_3 & [network_3_3_AnnP_3!=poll__networl_3_3_AnnP_3 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [network_2_3_AnnP_0!=poll__networl_2_3_AnnP_0 & [network_2_3_AnsP_0!=poll__networl_2_3_AnsP_0 & [network_0_1_RI_1!=poll__networl_0_1_RI_1 & [network_1_0_AskP_1!=poll__networl_1_0_AskP_1 & [network_0_0_AskP_0!=poll__networl_0_0_AskP_0 & [network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0 & [network_2_3_AnsP_2!=poll__networl_2_3_AnsP_2 & [network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1 & [network_1_1_RP_1!=poll__networl_1_1_RP_1 & [network_0_3_RP_2!=poll__networl_0_3_RP_2 & [network_3_2_AskP_3!=poll__networl_3_2_AskP_3 & [network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [network_2_2_RI_1!=poll__networl_2_2_RI_1 & [network_3_1_AskP_2!=poll__networl_3_1_AskP_2 & [network_2_3_AnnP_1!=poll__networl_2_3_AnnP_1 & [network_0_0_AI_1!=poll__networl_0_0_AI_1 & [network_0_2_AnnP_3!=poll__networl_0_2_AnnP_3 & [network_2_2_RP_0!=poll__networl_2_2_RP_0 & [network_0_2_AskP_1!=poll__networl_0_2_AskP_1 & [network_2_0_RI_0!=poll__networl_2_0_RI_0 & [network_3_0_AnsP_0!=poll__networl_3_0_AnsP_0 & [network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1 & [network_0_3_AI_2!=poll__networl_0_3_AI_2 & [network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0 & [network_2_1_RP_0!=poll__networl_2_1_RP_0 & [network_3_1_AI_2!=poll__networl_3_1_AI_2 & [network_3_1_RP_3!=poll__networl_3_1_RP_3 & [network_3_3_AnsP_3!=poll__networl_3_3_AnsP_3 & [network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [network_2_0_AskP_2!=poll__networl_2_0_AskP_2 & [network_0_3_AnsP_2!=poll__networl_0_3_AnsP_2 & [network_1_1_AskP_2!=poll__networl_1_1_AskP_2 & [network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0 & [network_0_0_AnsP_3!=poll__networl_0_0_AnsP_3 & [network_1_3_RP_0!=poll__networl_1_3_RP_0 & [network_0_3_AI_1!=poll__networl_0_3_AI_1 & [network_1_2_RI_2!=poll__networl_1_2_RI_2 & [network_0_3_AskP_3!=poll__networl_0_3_AskP_3 & [network_3_2_AnnP_1!=poll__networl_3_2_AnnP_1 & [network_3_0_AnnP_2!=poll__networl_3_0_AnnP_2 & [network_1_3_AnsP_1!=poll__networl_1_3_AnsP_1 & [network_0_3_RP_3!=poll__networl_0_3_RP_3 & [network_1_0_RI_1!=poll__networl_1_0_RI_1 & [network_0_3_RP_0!=poll__networl_0_3_RP_0 & [network_0_0_AnnP_3!=poll__networl_0_0_AnnP_3 & [network_2_2_RI_2!=poll__networl_2_2_RI_2 & [network_1_2_AskP_0!=poll__networl_1_2_AskP_0 & [network_2_3_AskP_0!=poll__networl_2_3_AskP_0 & [network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2 & [network_2_0_RP_3!=poll__networl_2_0_RP_3 & [network_0_1_RP_2!=poll__networl_0_1_RP_2 & [network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1 & [network_1_3_AnnP_1!=poll__networl_1_3_AnnP_1 & [network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1 & [network_3_0_RP_3!=poll__networl_3_0_RP_3 & [network_0_1_RI_0!=poll__networl_0_1_RI_0 & [network_2_3_RP_1!=poll__networl_2_3_RP_1 & [network_1_3_RP_3!=poll__networl_1_3_RP_3 & [network_3_0_AI_1!=poll__networl_3_0_AI_1 & [network_2_1_AskP_3!=poll__networl_2_1_AskP_3 & [network_0_0_RP_0!=poll__networl_0_0_RP_0 & [network_3_2_AnsP_0!=poll__networl_3_2_AnsP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [network_3_3_AnnP_0!=poll__networl_3_3_AnnP_0 & [network_3_0_AnsP_1!=poll__networl_3_0_AnsP_1 & [network_3_2_RI_3!=poll__networl_3_2_RI_3 & [network_0_1_AI_1!=poll__networl_0_1_AI_1 & [network_2_3_AI_1!=poll__networl_2_3_AI_1 & [network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2 & [network_2_0_RI_1!=poll__networl_2_0_RI_1 & [network_2_1_AI_1!=poll__networl_2_1_AI_1 & [network_0_3_AnsP_3!=poll__networl_0_3_AnsP_3 & [network_2_1_AI_3!=poll__networl_2_1_AI_3 & [network_3_1_AnnP_1!=poll__networl_3_1_AnnP_1 & [network_3_3_AnsP_0!=poll__networl_3_3_AnsP_0 & [network_1_3_AnnP_3!=poll__networl_1_3_AnnP_3 & [network_0_0_AI_3!=poll__networl_0_0_AI_3 & [network_3_1_RI_2!=poll__networl_3_1_RI_2 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [network_0_3_RI_3!=poll__networl_0_3_RI_3 & [network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1 & [network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_1_3_AskP_1!=poll__networl_1_3_AskP_1 & [network_0_1_AI_3!=poll__networl_0_1_AI_3 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [network_2_1_RP_3!=poll__networl_2_1_RP_3 & [network_3_0_RI_1!=poll__networl_3_0_RI_1 & [network_2_3_AI_2!=poll__networl_2_3_AI_2 & [network_1_2_AskP_2!=poll__networl_1_2_AskP_2 & [network_3_1_AskP_3!=poll__networl_3_1_AskP_3 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [network_1_3_RI_1!=poll__networl_1_3_RI_1 & [network_3_0_AI_0!=poll__networl_3_0_AI_0 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [network_3_1_RI_0!=poll__networl_3_1_RI_0 & [network_2_0_AI_3!=poll__networl_2_0_AI_3 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [network_0_2_RP_3!=poll__networl_0_2_RP_3 & [network_2_2_AnnP_3!=poll__networl_2_2_AnnP_3 & [network_3_0_AskP_0!=poll__networl_3_0_AskP_0 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [network_1_1_AI_2!=poll__networl_1_1_AI_2 & [network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2 & [network_3_2_RI_2!=poll__networl_3_2_RI_2 & [network_1_3_AnsP_3!=poll__networl_1_3_AnsP_3 & [network_0_3_RP_1!=poll__networl_0_3_RP_1 & [network_1_0_AI_3!=poll__networl_1_0_AI_3 & [network_3_1_AnnP_3!=poll__networl_3_1_AnnP_3 & [network_3_2_AskP_1!=poll__networl_3_2_AskP_1 & [network_3_1_AI_0!=poll__networl_3_1_AI_0 & [network_3_1_AnsP_3!=poll__networl_3_1_AnsP_3 & [network_1_3_AnsP_0!=poll__networl_1_3_AnsP_0 & [network_2_3_RP_3!=poll__networl_2_3_RP_3 & [network_1_2_AI_1!=poll__networl_1_2_AI_1 & [network_1_1_RP_3!=poll__networl_1_1_RP_3 & [network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0 & [network_0_3_RI_1!=poll__networl_0_3_RI_1 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_3_AnsP_1!=poll__networl_2_3_AnsP_1 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_3_0_AnnP_3!=poll__networl_3_0_AnnP_3 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_2_3_AI_0!=poll__networl_2_3_AI_0 & [network_3_2_AI_2!=poll__networl_3_2_AI_2 & [network_0_3_AnsP_0!=poll__networl_0_3_AnsP_0 & [network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [network_3_3_AskP_1!=poll__networl_3_3_AskP_1 & [network_1_1_AI_3!=poll__networl_1_1_AI_3 & [network_3_3_RI_2!=poll__networl_3_3_RI_2 & [network_2_0_RI_3!=poll__networl_2_0_RI_3 & [network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2 & [network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_1_1_RI_3!=poll__networl_1_1_RI_3 & [network_1_0_RI_3!=poll__networl_1_0_RI_3 & [network_0_0_RI_0!=poll__networl_0_0_RI_0 & [network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_3_2_AnsP_2!=poll__networl_3_2_AnsP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_3_AnnP_3!=poll__networl_2_3_AnnP_3 & [network_2_1_RI_3!=poll__networl_2_1_RI_3 & [network_2_0_RI_2!=poll__networl_2_0_RI_2 & [network_3_1_RP_1!=poll__networl_3_1_RP_1 & [network_3_1_AI_3!=poll__networl_3_1_AI_3 & [network_0_3_RI_2!=poll__networl_0_3_RI_2 & [network_2_3_AnnP_2!=poll__networl_2_3_AnnP_2 & [network_2_2_AI_3!=poll__networl_2_2_AI_3 & [network_3_0_RI_2!=poll__networl_3_0_RI_2 & [network_1_0_AnnP_3!=poll__networl_1_0_AnnP_3 & [network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_3_2_AI_0!=poll__networl_3_2_AI_0 & [network_3_0_AnsP_3!=poll__networl_3_0_AnsP_3 & [network_0_3_AnnP_1!=poll__networl_0_3_AnnP_1 & [network_3_3_RI_3!=poll__networl_3_3_RI_3 & [network_3_3_AI_1!=poll__networl_3_3_AI_1 & [network_1_0_AI_1!=poll__networl_1_0_AI_1 & [network_0_1_RP_3!=poll__networl_0_1_RP_3 & [network_2_2_RP_3!=poll__networl_2_2_RP_3 & [network_0_0_RI_3!=poll__networl_0_0_RI_3 & [network_3_3_RP_3!=poll__networl_3_3_RP_3 & [network_0_0_AI_0!=poll__networl_0_0_AI_0 & [network_3_0_RI_0!=poll__networl_3_0_RI_0 & [network_3_2_RP_3!=poll__networl_3_2_RP_3 & [network_1_1_AI_1!=poll__networl_1_1_AI_1 & [network_1_2_AnnP_3!=poll__networl_1_2_AnnP_3 & [network_3_3_AskP_0!=poll__networl_3_3_AskP_0 & [network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [network_3_0_AI_2!=poll__networl_3_0_AI_2 & [network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_1_2_AnsP_3!=poll__networl_1_2_AnsP_3 & [network_3_0_AskP_3!=poll__networl_3_0_AskP_3 & [network_2_1_RI_1!=poll__networl_2_1_RI_1 & [network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_3_3_AnsP_1!=poll__networl_3_3_AnsP_1 & [network_3_1_RI_1!=poll__networl_3_1_RI_1 & [network_1_2_AI_3!=poll__networl_1_2_AI_3 & [network_0_3_RI_0!=poll__networl_0_3_RI_0 & [network_3_0_AnsP_2!=poll__networl_3_0_AnsP_2 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_3_3_RP_1!=poll__networl_3_3_RP_1 & [network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [network_1_3_AI_1!=poll__networl_1_3_AI_1 & [network_0_3_AI_3!=poll__networl_0_3_AI_3 & [network_3_3_AI_2!=poll__networl_3_3_AI_2 & [network_0_3_AnsP_1!=poll__networl_0_3_AnsP_1 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [network_2_2_RP_1!=poll__networl_2_2_RP_1 & [network_3_1_RP_0!=poll__networl_3_1_RP_0 & [network_2_0_AnsP_3!=poll__networl_2_0_AnsP_3 & [network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_3_2_RP_1!=poll__networl_3_2_RP_1 & [network_3_2_RP_2!=poll__networl_3_2_RP_2 & [network_0_3_AskP_0!=poll__networl_0_3_AskP_0 & [network_3_0_RP_0!=poll__networl_3_0_RP_0 & [network_3_3_AnnP_1!=poll__networl_3_3_AnnP_1 & [network_1_0_RP_3!=poll__networl_1_0_RP_3 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [network_0_0_AskP_1!=poll__networl_0_0_AskP_1 & [network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [network_0_3_AI_0!=poll__networl_0_3_AI_0 & [network_1_3_AskP_3!=poll__networl_1_3_AskP_3 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_3_RI_1!=poll__networl_2_3_RI_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_1_2_RP_3!=poll__networl_1_2_RP_3 & [network_3_2_AI_1!=poll__networl_3_2_AI_1 & [network_1_3_RI_3!=poll__networl_1_3_RI_3 & [network_2_2_AskP_3!=poll__networl_2_2_AskP_3 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_3_AskP_2!=poll__networl_2_3_AskP_2 & [network_3_3_RI_1!=poll__networl_3_3_RI_1 & [network_3_0_RI_3!=poll__networl_3_0_RI_3 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_3_2_AnsP_1!=poll__networl_3_2_AnsP_1 & [network_2_3_AskP_1!=poll__networl_2_3_AskP_1 & [network_3_1_AnnP_2!=poll__networl_3_1_AnnP_2 & [network_3_3_AI_3!=poll__networl_3_3_AI_3 & [network_2_1_AnsP_3!=poll__networl_2_1_AnsP_3 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_0_3_AnnP_3!=poll__networl_0_3_AnnP_3 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_3_2_AskP_0!=poll__networl_3_2_AskP_0 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0 & [network_3_2_AnnP_3!=poll__networl_3_2_AnnP_3 & [network_3_3_AskP_3!=poll__networl_3_3_AskP_3 & [network_3_1_RP_2!=poll__networl_3_1_RP_2 & [network_1_2_RI_1!=poll__networl_1_2_RI_1 & [network_1_0_AI_0!=poll__networl_1_0_AI_0 & [network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [network_1_2_AI_0!=poll__networl_1_2_AI_0 & [network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1 & [network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [network_1_3_AI_0!=poll__networl_1_3_AI_0 & [network_0_2_RP_1!=poll__networl_0_2_RP_1 & [network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2 & [network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [network_1_2_RP_0!=poll__networl_1_2_RP_0 & [network_1_2_RI_3!=poll__networl_1_2_RI_3 & [network_2_0_AskP_0!=poll__networl_2_0_AskP_0 & [network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1 & [network_0_2_AskP_3!=poll__networl_0_2_AskP_3 & [network_1_3_AI_2!=poll__networl_1_3_AI_2 & [network_1_3_AnsP_2!=poll__networl_1_3_AnsP_2 & [network_0_2_AI_3!=poll__networl_0_2_AI_3 & [network_1_2_AI_2!=poll__networl_1_2_AI_2 & [network_2_0_RP_0!=poll__networl_2_0_RP_0 & [network_3_2_RP_0!=poll__networl_3_2_RP_0 & [network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [network_2_0_AI_0!=poll__networl_2_0_AI_0 & [network_3_2_RI_1!=poll__networl_3_2_RI_1 & [network_0_2_AI_1!=poll__networl_0_2_AI_1 & [network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [network_3_0_RP_2!=poll__networl_3_0_RP_2 & [network_2_2_AI_2!=poll__networl_2_2_AI_2 & [network_0_1_AskP_3!=poll__networl_0_1_AskP_3 & [network_1_1_RI_0!=poll__networl_1_1_RI_0 & [network_0_1_RI_3!=poll__networl_0_1_RI_3 & [network_1_2_RP_2!=poll__networl_1_2_RP_2 & [network_0_3_AnnP_2!=poll__networl_0_3_AnnP_2 & [network_3_1_AnsP_2!=poll__networl_3_1_AnsP_2 & [network_1_3_AnnP_2!=poll__networl_1_3_AnnP_2 & [network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [network_1_2_AskP_3!=poll__networl_1_2_AskP_3 & [network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [network_1_3_AskP_2!=poll__networl_1_3_AskP_2 & [network_2_2_RI_0!=poll__networl_2_2_RI_0 & [network_0_0_AI_2!=poll__networl_0_0_AI_2 & [network_2_3_AI_3!=poll__networl_2_3_AI_3 & [network_3_2_AskP_2!=poll__networl_3_2_AskP_2 & [network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0 & [network_3_0_AnnP_0!=poll__networl_3_0_AnnP_0 & [network_1_3_RP_1!=poll__networl_1_3_RP_1 & [network_3_3_AskP_2!=poll__networl_3_3_AskP_2 & [network_3_3_RP_2!=poll__networl_3_3_RP_2 & [network_0_1_AskP_2!=poll__networl_0_1_AskP_2 & [network_1_0_RI_2!=poll__networl_1_0_RI_2 & [network_2_2_RI_3!=poll__networl_2_2_RI_3 & [network_3_0_AskP_1!=poll__networl_3_0_AskP_1 & [network_0_3_AskP_1!=poll__networl_0_3_AskP_1 & [network_0_0_RI_2!=poll__networl_0_0_RI_2 & [network_3_3_AI_0!=poll__networl_3_3_AI_0 & [network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0 & [network_3_0_AnnP_1!=poll__networl_3_0_AnnP_1 & [network_3_2_AnsP_3!=poll__networl_3_2_AnsP_3 & [network_2_0_AskP_1!=poll__networl_2_0_AskP_1 & [network_3_2_AI_3!=poll__networl_3_2_AI_3 & [network_1_3_RP_2!=poll__networl_1_3_RP_2 & [network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [network_1_3_AI_3!=poll__networl_1_3_AI_3 & [network_3_3_AnnP_2!=poll__networl_3_3_AnnP_2 & [network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0 & [network_0_2_RP_0!=poll__networl_0_2_RP_0 & [network_2_0_AnnP_3!=poll__networl_2_0_AnnP_3 & [network_0_2_RI_1!=poll__networl_0_2_RI_1 & [network_1_3_RI_2!=poll__networl_1_3_RI_2 & [network_0_0_RP_3!=poll__networl_0_0_RP_3 & [network_1_0_AI_2!=poll__networl_1_0_AI_2 & [network_3_0_AI_3!=poll__networl_3_0_AI_3 & [network_2_3_RI_3!=poll__networl_2_3_RI_3 & [network_3_1_AskP_1!=poll__networl_3_1_AskP_1 & [network_2_2_AnsP_3!=poll__networl_2_2_AnsP_3 & [network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0 & [network_0_2_AnsP_3!=poll__networl_0_2_AnsP_3 & [network_1_1_RP_0!=poll__networl_1_1_RP_0 & [network_1_0_AskP_3!=poll__networl_1_0_AskP_3 & [network_1_3_RI_0!=poll__networl_1_3_RI_0 & [network_3_0_RP_1!=poll__networl_3_0_RP_1 & [network_1_1_AnsP_3!=poll__networl_1_1_AnsP_3 & [network_0_3_AskP_2!=poll__networl_0_3_AskP_2 & [network_1_1_RP_2!=poll__networl_1_1_RP_2 & [network_2_3_RI_2!=poll__networl_2_3_RI_2 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

-> the formula is FALSE

FORMULA p_8_placecomparison_eq_or FALSE TECHNIQUES DECISION_DIAGRAMS

mc time: 0m0sec

checking: AG [[~ [[[network_1_0_RI_0!=poll__networl_1_0_RI_0 & [[network_1_3_AskP_0!=poll__networl_1_3_AskP_0 & [network_2_3_RP_0!=poll__networl_2_3_RP_0 & [network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2 & [[network_2_0_AI_2!=poll__networl_2_0_AI_2 & [network_0_3_AnnP_0!=poll__networl_0_3_AnnP_0 & [network_0_1_AI_2!=poll__networl_0_1_AI_2 & [network_2_3_RI_0!=poll__networl_2_3_RI_0 & [network_2_3_AnsP_3!=poll__networl_2_3_AnsP_3 & [[[network_3_1_AnsP_0!=poll__networl_3_1_AnsP_0 & [[[[[[[[[[[network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [[[[network_2_2_AskP_1!=poll__networl_2_2_AskP_1 & [[[[[[[[[[[[[[[network_1_1_AnnP_3!=poll__networl_1_1_AnnP_3 & [[[network_3_1_AskP_0!=poll__networl_3_1_AskP_0 & [[network_0_2_RI_3!=poll__networl_0_2_RI_3 & [[[[[[[[[[[[network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0 & [[[network_1_1_RP_1!=poll__networl_1_1_RP_1 & [[[[[[[network_2_2_RI_1!=poll__networl_2_2_RI_1 & [[[[[[network_0_2_AskP_1!=poll__networl_0_2_AskP_1 & [network_2_0_RI_0!=poll__networl_2_0_RI_0 & [[[[[[[[[[[[[[network_0_3_AnsP_2!=poll__networl_0_3_AnsP_2 & [[[[[[[[[[[[[[network_0_0_AnnP_3!=poll__networl_0_0_AnnP_3 & [network_2_2_RI_2!=poll__networl_2_2_RI_2 & [network_1_2_AskP_0!=poll__networl_1_2_AskP_0 & [[[[[[[[network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [[[[[[[[[network_3_2_AnsP_0!=poll__networl_3_2_AnsP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [[[[[[[[network_2_1_AI_1!=poll__networl_2_1_AI_1 & [[[[network_3_3_AnsP_0!=poll__networl_3_3_AnsP_0 & [[network_0_0_AI_3!=poll__networl_0_0_AI_3 & [network_3_1_RI_2!=poll__networl_3_1_RI_2 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [[[network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [[[network_2_1_AI_0!=poll__networl_2_1_AI_0 & [[[[[[[network_1_3_RI_1!=poll__networl_1_3_RI_1 & [[[network_3_1_RI_0!=poll__networl_3_1_RI_0 & [[network_0_2_RP_2!=poll__networl_0_2_RP_2 & [[[network_3_0_AskP_0!=poll__networl_3_0_AskP_0 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [network_1_1_AI_2!=poll__networl_1_1_AI_2 & [network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2 & [network_3_2_RI_2!=poll__networl_3_2_RI_2 & [network_1_3_AnsP_3!=poll__networl_1_3_AnsP_3 & [[network_1_0_AI_3!=poll__networl_1_0_AI_3 & [network_3_1_AnnP_3!=poll__networl_3_1_AnnP_3 & [[network_3_1_AI_0!=poll__networl_3_1_AI_0 & [[[network_2_3_RP_3!=poll__networl_2_3_RP_3 & [[network_1_1_RP_3!=poll__networl_1_1_RP_3 & [[network_0_3_RI_1!=poll__networl_0_3_RI_1 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [[[network_3_0_AnnP_3!=poll__networl_3_0_AnnP_3 & [[[[network_3_2_AI_2!=poll__networl_3_2_AI_2 & [[network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [[[[network_2_0_RI_3!=poll__networl_2_0_RI_3 & [[[[network_1_0_RI_3!=poll__networl_1_0_RI_3 & [[network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_3_2_AnsP_2!=poll__networl_3_2_AnsP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_3_AnnP_3!=poll__networl_2_3_AnnP_3 & [network_2_1_RI_3!=poll__networl_2_1_RI_3 & [[network_3_1_RP_1!=poll__networl_3_1_RP_1 & [[[network_2_3_AnnP_2!=poll__networl_2_3_AnnP_2 & [[[network_1_0_AnnP_3!=poll__networl_1_0_AnnP_3 & [network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_3_2_AI_0!=poll__networl_3_2_AI_0 & [[[[[[[[[[[[network_3_2_RP_3!=poll__networl_3_2_RP_3 & [[[[[[network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [[[[[[network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_3_3_AnsP_1!=poll__networl_3_3_AnsP_1 & [[[[[[[network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [[network_0_3_AI_3!=poll__networl_0_3_AI_3 & [[network_0_3_AnsP_1!=poll__networl_0_3_AnsP_1 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [[network_3_1_RP_0!=poll__networl_3_1_RP_0 & [[network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_3_2_RP_1!=poll__networl_3_2_RP_1 & [[network_0_3_AskP_0!=poll__networl_0_3_AskP_0 & [[[network_1_0_RP_3!=poll__networl_1_0_RP_3 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [[[network_0_3_AI_0!=poll__networl_0_3_AI_0 & [network_1_3_AskP_3!=poll__networl_1_3_AskP_3 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_3_RI_1!=poll__networl_2_3_RI_1 & [[network_1_2_RP_3!=poll__networl_1_2_RP_3 & [network_3_2_AI_1!=poll__networl_3_2_AI_1 & [[[[[[[network_3_0_RI_3!=poll__networl_3_0_RI_3 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [[network_2_3_AskP_1!=poll__networl_2_3_AskP_1 & [network_3_1_AnnP_2!=poll__networl_3_1_AnnP_2 & [[network_2_1_AnsP_3!=poll__networl_2_1_AnsP_3 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_0_3_AnnP_3!=poll__networl_0_3_AnnP_3 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_3_2_AskP_0!=poll__networl_3_2_AskP_0 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [[network_3_2_AnnP_3!=poll__networl_3_2_AnnP_3 & [[[[[network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [[[[[[[[[[[[[[[[[[[network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [network_2_0_AI_0!=poll__networl_2_0_AI_0 & [network_3_2_RI_1!=poll__networl_3_2_RI_1 & [network_0_2_AI_1!=poll__networl_0_2_AI_1 & [network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [network_3_0_RP_2!=poll__networl_3_0_RP_2 & [network_2_2_AI_2!=poll__networl_2_2_AI_2 & [[[network_0_1_RI_3!=poll__networl_0_1_RI_3 & [network_1_2_RP_2!=poll__networl_1_2_RP_2 & [network_0_3_AnnP_2!=poll__networl_0_3_AnnP_2 & [network_3_1_AnsP_2!=poll__networl_3_1_AnsP_2 & [network_1_3_AnnP_2!=poll__networl_1_3_AnnP_2 & [network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [network_1_2_AskP_3!=poll__networl_1_2_AskP_3 & [network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [[network_2_2_RI_0!=poll__networl_2_2_RI_0 & [network_0_0_AI_2!=poll__networl_0_0_AI_2 & [network_2_3_AI_3!=poll__networl_2_3_AI_3 & [network_3_2_AskP_2!=poll__networl_3_2_AskP_2 & [[[[[[network_0_1_AskP_2!=poll__networl_0_1_AskP_2 & [network_1_0_RI_2!=poll__networl_1_0_RI_2 & [[[[[network_3_3_AI_0!=poll__networl_3_3_AI_0 & [[[network_3_2_AnsP_3!=poll__networl_3_2_AnsP_3 & [[[[network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [[[network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [[[network_2_0_AnnP_3!=poll__networl_2_0_AnnP_3 & [[[network_0_0_RP_3!=poll__networl_0_0_RP_3 & [network_1_0_AI_2!=poll__networl_1_0_AI_2 & [[[network_3_1_AskP_1!=poll__networl_3_1_AskP_1 & [[network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0 & [network_0_2_AnsP_3!=poll__networl_0_2_AnsP_3 & [network_1_1_RP_0!=poll__networl_1_1_RP_0 & [network_1_0_AskP_3!=poll__networl_1_0_AskP_3 & [[network_3_0_RP_1!=poll__networl_3_0_RP_1 & [network_1_1_AnsP_3!=poll__networl_1_1_AnsP_3 & [network_0_3_AskP_2!=poll__networl_0_3_AskP_2 & [network_1_1_RP_2!=poll__networl_1_1_RP_2 & [true & network_2_3_RI_2!=poll__networl_2_3_RI_2]]]]] & network_1_3_RI_0!=poll__networl_1_3_RI_0]]]]] & network_2_2_AnsP_3!=poll__networl_2_2_AnsP_3]] & network_2_3_RI_3!=poll__networl_2_3_RI_3] & network_3_0_AI_3!=poll__networl_3_0_AI_3]]] & network_1_3_RI_2!=poll__networl_1_3_RI_2] & network_0_2_RI_1!=poll__networl_0_2_RI_1]] & network_0_2_RP_0!=poll__networl_0_2_RP_0] & network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0]] & network_3_3_AnnP_2!=poll__networl_3_3_AnnP_2] & network_1_3_AI_3!=poll__networl_1_3_AI_3]] & network_1_3_RP_2!=poll__networl_1_3_RP_2] & network_3_2_AI_3!=poll__networl_3_2_AI_3] & network_2_0_AskP_1!=poll__networl_2_0_AskP_1]] & network_3_0_AnnP_1!=poll__networl_3_0_AnnP_1] & network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0]] & network_0_0_RI_2!=poll__networl_0_0_RI_2] & network_0_3_AskP_1!=poll__networl_0_3_AskP_1] & network_3_0_AskP_1!=poll__networl_3_0_AskP_1] & network_2_2_RI_3!=poll__networl_2_2_RI_3]]] & network_3_3_RP_2!=poll__networl_3_3_RP_2] & network_3_3_AskP_2!=poll__networl_3_3_AskP_2] & network_1_3_RP_1!=poll__networl_1_3_RP_1] & network_3_0_AnnP_0!=poll__networl_3_0_AnnP_0] & network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0]]]]] & network_1_3_AskP_2!=poll__networl_1_3_AskP_2]]]]]]]]]] & network_1_1_RI_0!=poll__networl_1_1_RI_0] & network_0_1_AskP_3!=poll__networl_0_1_AskP_3]]]]]]]]]] & network_3_2_RP_0!=poll__networl_3_2_RP_0] & network_2_0_RP_0!=poll__networl_2_0_RP_0] & network_1_2_AI_2!=poll__networl_1_2_AI_2] & network_0_2_AI_3!=poll__networl_0_2_AI_3] & network_1_3_AnsP_2!=poll__networl_1_3_AnsP_2] & network_1_3_AI_2!=poll__networl_1_3_AI_2] & network_0_2_AskP_3!=poll__networl_0_2_AskP_3] & network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1] & network_2_0_AskP_0!=poll__networl_2_0_AskP_0] & network_1_2_RI_3!=poll__networl_1_2_RI_3] & network_1_2_RP_0!=poll__networl_1_2_RP_0] & network_2_1_AskP_2!=poll__networl_2_1_AskP_2] & network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2] & network_0_2_RP_1!=poll__networl_0_2_RP_1] & network_1_3_AI_0!=poll__networl_1_3_AI_0] & network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1] & network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1] & network_1_2_AI_0!=poll__networl_1_2_AI_0]] & network_1_0_AI_0!=poll__networl_1_0_AI_0] & network_1_2_RI_1!=poll__networl_1_2_RI_1] & network_3_1_RP_2!=poll__networl_3_1_RP_2] & network_3_3_AskP_3!=poll__networl_3_3_AskP_3]] & network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0]]]]]]] & network_3_3_AI_3!=poll__networl_3_3_AI_3]]] & network_3_2_AnsP_1!=poll__networl_3_2_AnsP_1]]] & network_3_3_RI_1!=poll__networl_3_3_RI_1] & network_2_3_AskP_2!=poll__networl_2_3_AskP_2] & network_0_1_RI_2!=poll__networl_0_1_RI_2] & network_2_1_RP_1!=poll__networl_2_1_RP_1] & network_2_2_AskP_3!=poll__networl_2_2_AskP_3] & network_1_3_RI_3!=poll__networl_1_3_RI_3]]] & network_2_2_AI_1!=poll__networl_2_2_AI_1]]]]] & network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0] & network_0_0_AskP_1!=poll__networl_0_0_AskP_1]]] & network_3_3_AnnP_1!=poll__networl_3_3_AnnP_1] & network_3_0_RP_0!=poll__networl_3_0_RP_0]] & network_3_2_RP_2!=poll__networl_3_2_RP_2]]] & network_2_0_AnsP_3!=poll__networl_2_0_AnsP_3]] & network_2_2_RP_1!=poll__networl_2_2_RP_1]]] & network_3_3_AI_2!=poll__networl_3_3_AI_2]] & network_1_3_AI_1!=poll__networl_1_3_AI_1]] & network_3_3_RP_1!=poll__networl_3_3_RP_1] & network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1] & network_3_0_AnsP_2!=poll__networl_3_0_AnsP_2] & network_0_3_RI_0!=poll__networl_0_3_RI_0] & network_1_2_AI_3!=poll__networl_1_2_AI_3] & network_3_1_RI_1!=poll__networl_3_1_RI_1]]] & network_2_1_RI_1!=poll__networl_2_1_RI_1] & network_3_0_AskP_3!=poll__networl_3_0_AskP_3] & network_1_2_AnsP_3!=poll__networl_1_2_AnsP_3] & network_1_2_RP_1!=poll__networl_1_2_RP_1] & network_3_0_AI_2!=poll__networl_3_0_AI_2]] & network_0_2_RI_0!=poll__networl_0_2_RI_0] & network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1] & network_3_3_AskP_0!=poll__networl_3_3_AskP_0] & network_1_2_AnnP_3!=poll__networl_1_2_AnnP_3] & network_1_1_AI_1!=poll__networl_1_1_AI_1]] & network_3_0_RI_0!=poll__networl_3_0_RI_0] & network_0_0_AI_0!=poll__networl_0_0_AI_0] & network_3_3_RP_3!=poll__networl_3_3_RP_3] & network_0_0_RI_3!=poll__networl_0_0_RI_3] & network_2_2_RP_3!=poll__networl_2_2_RP_3] & network_0_1_RP_3!=poll__networl_0_1_RP_3] & network_1_0_AI_1!=poll__networl_1_0_AI_1] & network_3_3_AI_1!=poll__networl_3_3_AI_1] & network_3_3_RI_3!=poll__networl_3_3_RI_3] & network_0_3_AnnP_1!=poll__networl_0_3_AnnP_1] & network_3_0_AnsP_3!=poll__networl_3_0_AnsP_3]]]] & network_3_0_RI_2!=poll__networl_3_0_RI_2] & network_2_2_AI_3!=poll__networl_2_2_AI_3]] & network_0_3_RI_2!=poll__networl_0_3_RI_2] & network_3_1_AI_3!=poll__networl_3_1_AI_3]] & network_2_0_RI_2!=poll__networl_2_0_RI_2]]]]]] & network_0_0_RI_0!=poll__networl_0_0_RI_0]] & network_1_1_RI_3!=poll__networl_1_1_RI_3] & network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0] & network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2]] & network_3_3_RI_2!=poll__networl_3_3_RI_2] & network_1_1_AI_3!=poll__networl_1_1_AI_3] & network_3_3_AskP_1!=poll__networl_3_3_AskP_1]]] & network_0_3_AnsP_0!=poll__networl_0_3_AnsP_0]] & network_2_3_AI_0!=poll__networl_2_3_AI_0] & network_2_0_RP_2!=poll__networl_2_0_RP_2] & network_0_0_RI_1!=poll__networl_0_0_RI_1]] & network_2_1_RI_0!=poll__networl_2_1_RI_0] & network_2_3_AnsP_1!=poll__networl_2_3_AnsP_1]]] & network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0]] & network_1_2_AI_1!=poll__networl_1_2_AI_1]] & network_1_3_AnsP_0!=poll__networl_1_3_AnsP_0] & network_3_1_AnsP_3!=poll__networl_3_1_AnsP_3]] & network_3_2_AskP_1!=poll__networl_3_2_AskP_1]]] & network_0_3_RP_1!=poll__networl_0_3_RP_1]]]]]]] & network_2_2_AnnP_3!=poll__networl_2_2_AnnP_3] & network_0_2_RP_3!=poll__networl_0_2_RP_3]] & network_2_0_AI_3!=poll__networl_2_0_AI_3]] & network_2_0_RP_1!=poll__networl_2_0_RP_1] & network_3_0_AI_0!=poll__networl_3_0_AI_0]] & network_0_0_RP_2!=poll__networl_0_0_RP_2] & network_3_1_AskP_3!=poll__networl_3_1_AskP_3] & network_1_2_AskP_2!=poll__networl_1_2_AskP_2] & network_2_3_AI_2!=poll__networl_2_3_AI_2] & network_3_0_RI_1!=poll__networl_3_0_RI_1] & network_2_1_RP_3!=poll__networl_2_1_RP_3]] & network_0_1_AI_3!=poll__networl_0_1_AI_3] & network_1_3_AskP_1!=poll__networl_1_3_AskP_1]] & network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1] & network_0_3_RI_3!=poll__networl_0_3_RI_3]]]] & network_1_3_AnnP_3!=poll__networl_1_3_AnnP_3]] & network_3_1_AnnP_1!=poll__networl_3_1_AnnP_1] & network_2_1_AI_3!=poll__networl_2_1_AI_3] & network_0_3_AnsP_3!=poll__networl_0_3_AnsP_3]] & network_2_0_RI_1!=poll__networl_2_0_RI_1] & network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2] & network_2_3_AI_1!=poll__networl_2_3_AI_1] & network_0_1_AI_1!=poll__networl_0_1_AI_1] & network_3_2_RI_3!=poll__networl_3_2_RI_3] & network_3_0_AnsP_1!=poll__networl_3_0_AnsP_1] & network_3_3_AnnP_0!=poll__networl_3_3_AnnP_0]]] & network_0_0_RP_0!=poll__networl_0_0_RP_0] & network_2_1_AskP_3!=poll__networl_2_1_AskP_3] & network_3_0_AI_1!=poll__networl_3_0_AI_1] & network_1_3_RP_3!=poll__networl_1_3_RP_3] & network_2_3_RP_1!=poll__networl_2_3_RP_1] & network_0_1_RI_0!=poll__networl_0_1_RI_0] & network_3_0_RP_3!=poll__networl_3_0_RP_3] & network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1]] & network_1_3_AnnP_1!=poll__networl_1_3_AnnP_1] & network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1] & network_0_1_RP_2!=poll__networl_0_1_RP_2] & network_2_0_RP_3!=poll__networl_2_0_RP_3] & network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2] & network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2] & network_2_3_AskP_0!=poll__networl_2_3_AskP_0]]]] & network_0_3_RP_0!=poll__networl_0_3_RP_0] & network_1_0_RI_1!=poll__networl_1_0_RI_1] & network_0_3_RP_3!=poll__networl_0_3_RP_3] & network_1_3_AnsP_1!=poll__networl_1_3_AnsP_1] & network_3_0_AnnP_2!=poll__networl_3_0_AnnP_2] & network_3_2_AnnP_1!=poll__networl_3_2_AnnP_1] & network_0_3_AskP_3!=poll__networl_0_3_AskP_3] & network_1_2_RI_2!=poll__networl_1_2_RI_2] & network_0_3_AI_1!=poll__networl_0_3_AI_1] & network_1_3_RP_0!=poll__networl_1_3_RP_0] & network_0_0_AnsP_3!=poll__networl_0_0_AnsP_3] & network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0] & network_1_1_AskP_2!=poll__networl_1_1_AskP_2]] & network_2_0_AskP_2!=poll__networl_2_0_AskP_2] & network_2_1_AskP_0!=poll__networl_2_1_AskP_0] & network_1_2_AskP_1!=poll__networl_1_2_AskP_1] & network_2_2_AI_0!=poll__networl_2_2_AI_0] & network_2_1_AI_2!=poll__networl_2_1_AI_2] & network_3_3_AnsP_3!=poll__networl_3_3_AnsP_3] & network_3_1_RP_3!=poll__networl_3_1_RP_3] & network_3_1_AI_2!=poll__networl_3_1_AI_2] & network_2_1_RP_0!=poll__networl_2_1_RP_0] & network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0] & network_0_3_AI_2!=poll__networl_0_3_AI_2] & network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1] & network_3_0_AnsP_0!=poll__networl_3_0_AnsP_0]]] & network_2_2_RP_0!=poll__networl_2_2_RP_0] & network_0_2_AnnP_3!=poll__networl_0_2_AnnP_3] & network_0_0_AI_1!=poll__networl_0_0_AI_1] & network_2_3_AnnP_1!=poll__networl_2_3_AnnP_1] & network_3_1_AskP_2!=poll__networl_3_1_AskP_2]] & network_2_2_AskP_2!=poll__networl_2_2_AskP_2] & network_1_1_AI_0!=poll__networl_1_1_AI_0] & network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1] & network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2] & network_3_2_AskP_3!=poll__networl_3_2_AskP_3] & network_0_3_RP_2!=poll__networl_0_3_RP_2]] & network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1] & network_2_3_AnsP_2!=poll__networl_2_3_AnsP_2]] & network_0_0_AskP_0!=poll__networl_0_0_AskP_0] & network_1_0_AskP_1!=poll__networl_1_0_AskP_1] & network_0_1_RI_1!=poll__networl_0_1_RI_1] & network_2_3_AnsP_0!=poll__networl_2_3_AnsP_0] & network_2_3_AnnP_0!=poll__networl_2_3_AnnP_0] & network_1_0_RP_1!=poll__networl_1_0_RP_1] & network_3_3_AnnP_3!=poll__networl_3_3_AnnP_3] & network_0_1_AnnP_3!=poll__networl_0_1_AnnP_3] & network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2] & network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2] & network_2_1_AnnP_3!=poll__networl_2_1_AnnP_3]] & network_3_3_RP_0!=poll__networl_3_3_RP_0]] & network_0_1_RP_1!=poll__networl_0_1_RP_1] & network_0_2_AskP_2!=poll__networl_0_2_AskP_2]] & network_3_1_AnnP_0!=poll__networl_3_1_AnnP_0] & network_0_1_AnsP_3!=poll__networl_0_1_AnsP_3] & network_1_0_RP_2!=poll__networl_1_0_RP_2] & network_3_2_AnnP_2!=poll__networl_3_2_AnnP_2] & network_3_2_RI_0!=poll__networl_3_2_RI_0] & network_0_0_RP_1!=poll__networl_0_0_RP_1] & network_1_1_RI_1!=poll__networl_1_1_RI_1] & network_3_3_AnsP_2!=poll__networl_3_3_AnsP_2] & network_3_1_AnsP_1!=poll__networl_3_1_AnsP_1] & network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2] & network_0_0_AskP_3!=poll__networl_0_0_AskP_3] & network_2_3_RP_2!=poll__networl_2_3_RP_2] & network_0_2_AI_2!=poll__networl_0_2_AI_2] & network_2_0_AI_1!=poll__networl_2_0_AI_1]] & network_1_3_AnnP_0!=poll__networl_1_3_AnnP_0] & network_1_0_AnsP_3!=poll__networl_1_0_AnsP_3] & network_3_0_AskP_2!=poll__networl_3_0_AskP_2]] & network_2_0_AskP_3!=poll__networl_2_0_AskP_3] & network_3_2_AnnP_0!=poll__networl_3_2_AnnP_0] & network_3_1_RI_3!=poll__networl_3_1_RI_3] & network_3_3_RI_0!=poll__networl_3_3_RI_0] & network_0_2_RI_2!=poll__networl_0_2_RI_2] & network_1_1_AskP_3!=poll__networl_1_1_AskP_3] & network_3_1_AI_1!=poll__networl_3_1_AI_1] & network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0] & network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0] & network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0]] & network_0_2_AI_0!=poll__networl_0_2_AI_0] & network_2_3_AskP_3!=poll__networl_2_3_AskP_3]]]]]] & network_1_2_RI_0!=poll__networl_1_2_RI_0]]]] & network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2]] & network_2_2_RP_2!=poll__networl_2_2_RP_2]] & [polling_1!=electionFailed_1 & [[[true & polling_0!=electionFailed_0] & polling_2!=electionFailed_2] & polling_3!=electionFailed_3]]]]
normalized: ~ [E [true U ~ [[~ [[network_2_2_RP_2!=poll__networl_2_2_RP_2 & [network_1_0_RI_0!=poll__networl_1_0_RI_0 & [network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2 & [network_1_3_AskP_0!=poll__networl_1_3_AskP_0 & [network_2_3_RP_0!=poll__networl_2_3_RP_0 & [network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2 & [network_1_2_RI_0!=poll__networl_1_2_RI_0 & [network_2_0_AI_2!=poll__networl_2_0_AI_2 & [network_0_3_AnnP_0!=poll__networl_0_3_AnnP_0 & [network_0_1_AI_2!=poll__networl_0_1_AI_2 & [network_2_3_RI_0!=poll__networl_2_3_RI_0 & [network_2_3_AnsP_3!=poll__networl_2_3_AnsP_3 & [network_2_3_AskP_3!=poll__networl_2_3_AskP_3 & [network_0_2_AI_0!=poll__networl_0_2_AI_0 & [network_3_1_AnsP_0!=poll__networl_3_1_AnsP_0 & [network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0 & [network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0 & [network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0 & [network_3_1_AI_1!=poll__networl_3_1_AI_1 & [network_1_1_AskP_3!=poll__networl_1_1_AskP_3 & [network_0_2_RI_2!=poll__networl_0_2_RI_2 & [network_3_3_RI_0!=poll__networl_3_3_RI_0 & [network_3_1_RI_3!=poll__networl_3_1_RI_3 & [network_3_2_AnnP_0!=poll__networl_3_2_AnnP_0 & [network_2_0_AskP_3!=poll__networl_2_0_AskP_3 & [network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [network_3_0_AskP_2!=poll__networl_3_0_AskP_2 & [network_1_0_AnsP_3!=poll__networl_1_0_AnsP_3 & [network_1_3_AnnP_0!=poll__networl_1_3_AnnP_0 & [network_2_2_AskP_1!=poll__networl_2_2_AskP_1 & [network_2_0_AI_1!=poll__networl_2_0_AI_1 & [network_0_2_AI_2!=poll__networl_0_2_AI_2 & [network_2_3_RP_2!=poll__networl_2_3_RP_2 & [network_0_0_AskP_3!=poll__networl_0_0_AskP_3 & [network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2 & [network_3_1_AnsP_1!=poll__networl_3_1_AnsP_1 & [network_3_3_AnsP_2!=poll__networl_3_3_AnsP_2 & [network_1_1_RI_1!=poll__networl_1_1_RI_1 & [network_0_0_RP_1!=poll__networl_0_0_RP_1 & [network_3_2_RI_0!=poll__networl_3_2_RI_0 & [network_3_2_AnnP_2!=poll__networl_3_2_AnnP_2 & [network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_1_AnsP_3!=poll__networl_0_1_AnsP_3 & [network_3_1_AnnP_0!=poll__networl_3_1_AnnP_0 & [network_1_1_AnnP_3!=poll__networl_1_1_AnnP_3 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [network_0_1_RP_1!=poll__networl_0_1_RP_1 & [network_3_1_AskP_0!=poll__networl_3_1_AskP_0 & [network_3_3_RP_0!=poll__networl_3_3_RP_0 & [network_0_2_RI_3!=poll__networl_0_2_RI_3 & [network_2_1_AnnP_3!=poll__networl_2_1_AnnP_3 & [network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_0_1_AnnP_3!=poll__networl_0_1_AnnP_3 & [network_3_3_AnnP_3!=poll__networl_3_3_AnnP_3 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [network_2_3_AnnP_0!=poll__networl_2_3_AnnP_0 & [network_2_3_AnsP_0!=poll__networl_2_3_AnsP_0 & [network_0_1_RI_1!=poll__networl_0_1_RI_1 & [network_1_0_AskP_1!=poll__networl_1_0_AskP_1 & [network_0_0_AskP_0!=poll__networl_0_0_AskP_0 & [network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0 & [network_2_3_AnsP_2!=poll__networl_2_3_AnsP_2 & [network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1 & [network_1_1_RP_1!=poll__networl_1_1_RP_1 & [network_0_3_RP_2!=poll__networl_0_3_RP_2 & [network_3_2_AskP_3!=poll__networl_3_2_AskP_3 & [network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [network_2_2_RI_1!=poll__networl_2_2_RI_1 & [network_3_1_AskP_2!=poll__networl_3_1_AskP_2 & [network_2_3_AnnP_1!=poll__networl_2_3_AnnP_1 & [network_0_0_AI_1!=poll__networl_0_0_AI_1 & [network_0_2_AnnP_3!=poll__networl_0_2_AnnP_3 & [network_2_2_RP_0!=poll__networl_2_2_RP_0 & [network_0_2_AskP_1!=poll__networl_0_2_AskP_1 & [network_2_0_RI_0!=poll__networl_2_0_RI_0 & [network_3_0_AnsP_0!=poll__networl_3_0_AnsP_0 & [network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1 & [network_0_3_AI_2!=poll__networl_0_3_AI_2 & [network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0 & [network_2_1_RP_0!=poll__networl_2_1_RP_0 & [network_3_1_AI_2!=poll__networl_3_1_AI_2 & [network_3_1_RP_3!=poll__networl_3_1_RP_3 & [network_3_3_AnsP_3!=poll__networl_3_3_AnsP_3 & [network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [network_2_0_AskP_2!=poll__networl_2_0_AskP_2 & [network_0_3_AnsP_2!=poll__networl_0_3_AnsP_2 & [network_1_1_AskP_2!=poll__networl_1_1_AskP_2 & [network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0 & [network_0_0_AnsP_3!=poll__networl_0_0_AnsP_3 & [network_1_3_RP_0!=poll__networl_1_3_RP_0 & [network_0_3_AI_1!=poll__networl_0_3_AI_1 & [network_1_2_RI_2!=poll__networl_1_2_RI_2 & [network_0_3_AskP_3!=poll__networl_0_3_AskP_3 & [network_3_2_AnnP_1!=poll__networl_3_2_AnnP_1 & [network_3_0_AnnP_2!=poll__networl_3_0_AnnP_2 & [network_1_3_AnsP_1!=poll__networl_1_3_AnsP_1 & [network_0_3_RP_3!=poll__networl_0_3_RP_3 & [network_1_0_RI_1!=poll__networl_1_0_RI_1 & [network_0_3_RP_0!=poll__networl_0_3_RP_0 & [network_0_0_AnnP_3!=poll__networl_0_0_AnnP_3 & [network_2_2_RI_2!=poll__networl_2_2_RI_2 & [network_1_2_AskP_0!=poll__networl_1_2_AskP_0 & [network_2_3_AskP_0!=poll__networl_2_3_AskP_0 & [network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2 & [network_2_0_RP_3!=poll__networl_2_0_RP_3 & [network_0_1_RP_2!=poll__networl_0_1_RP_2 & [network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1 & [network_1_3_AnnP_1!=poll__networl_1_3_AnnP_1 & [network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1 & [network_3_0_RP_3!=poll__networl_3_0_RP_3 & [network_0_1_RI_0!=poll__networl_0_1_RI_0 & [network_2_3_RP_1!=poll__networl_2_3_RP_1 & [network_1_3_RP_3!=poll__networl_1_3_RP_3 & [network_3_0_AI_1!=poll__networl_3_0_AI_1 & [network_2_1_AskP_3!=poll__networl_2_1_AskP_3 & [network_0_0_RP_0!=poll__networl_0_0_RP_0 & [network_3_2_AnsP_0!=poll__networl_3_2_AnsP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [network_3_3_AnnP_0!=poll__networl_3_3_AnnP_0 & [network_3_0_AnsP_1!=poll__networl_3_0_AnsP_1 & [network_3_2_RI_3!=poll__networl_3_2_RI_3 & [network_0_1_AI_1!=poll__networl_0_1_AI_1 & [network_2_3_AI_1!=poll__networl_2_3_AI_1 & [network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2 & [network_2_0_RI_1!=poll__networl_2_0_RI_1 & [network_2_1_AI_1!=poll__networl_2_1_AI_1 & [network_0_3_AnsP_3!=poll__networl_0_3_AnsP_3 & [network_2_1_AI_3!=poll__networl_2_1_AI_3 & [network_3_1_AnnP_1!=poll__networl_3_1_AnnP_1 & [network_3_3_AnsP_0!=poll__networl_3_3_AnsP_0 & [network_1_3_AnnP_3!=poll__networl_1_3_AnnP_3 & [network_0_0_AI_3!=poll__networl_0_0_AI_3 & [network_3_1_RI_2!=poll__networl_3_1_RI_2 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [network_0_3_RI_3!=poll__networl_0_3_RI_3 & [network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1 & [network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_1_3_AskP_1!=poll__networl_1_3_AskP_1 & [network_0_1_AI_3!=poll__networl_0_1_AI_3 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [network_2_1_RP_3!=poll__networl_2_1_RP_3 & [network_3_0_RI_1!=poll__networl_3_0_RI_1 & [network_2_3_AI_2!=poll__networl_2_3_AI_2 & [network_1_2_AskP_2!=poll__networl_1_2_AskP_2 & [network_3_1_AskP_3!=poll__networl_3_1_AskP_3 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [network_1_3_RI_1!=poll__networl_1_3_RI_1 & [network_3_0_AI_0!=poll__networl_3_0_AI_0 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [network_3_1_RI_0!=poll__networl_3_1_RI_0 & [network_2_0_AI_3!=poll__networl_2_0_AI_3 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [network_0_2_RP_3!=poll__networl_0_2_RP_3 & [network_2_2_AnnP_3!=poll__networl_2_2_AnnP_3 & [network_3_0_AskP_0!=poll__networl_3_0_AskP_0 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [network_1_1_AI_2!=poll__networl_1_1_AI_2 & [network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2 & [network_3_2_RI_2!=poll__networl_3_2_RI_2 & [network_1_3_AnsP_3!=poll__networl_1_3_AnsP_3 & [network_0_3_RP_1!=poll__networl_0_3_RP_1 & [network_1_0_AI_3!=poll__networl_1_0_AI_3 & [network_3_1_AnnP_3!=poll__networl_3_1_AnnP_3 & [network_3_2_AskP_1!=poll__networl_3_2_AskP_1 & [network_3_1_AI_0!=poll__networl_3_1_AI_0 & [network_3_1_AnsP_3!=poll__networl_3_1_AnsP_3 & [network_1_3_AnsP_0!=poll__networl_1_3_AnsP_0 & [network_2_3_RP_3!=poll__networl_2_3_RP_3 & [network_1_2_AI_1!=poll__networl_1_2_AI_1 & [network_1_1_RP_3!=poll__networl_1_1_RP_3 & [network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0 & [network_0_3_RI_1!=poll__networl_0_3_RI_1 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_3_AnsP_1!=poll__networl_2_3_AnsP_1 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_3_0_AnnP_3!=poll__networl_3_0_AnnP_3 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_2_3_AI_0!=poll__networl_2_3_AI_0 & [network_3_2_AI_2!=poll__networl_3_2_AI_2 & [network_0_3_AnsP_0!=poll__networl_0_3_AnsP_0 & [network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [network_3_3_AskP_1!=poll__networl_3_3_AskP_1 & [network_1_1_AI_3!=poll__networl_1_1_AI_3 & [network_3_3_RI_2!=poll__networl_3_3_RI_2 & [network_2_0_RI_3!=poll__networl_2_0_RI_3 & [network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2 & [network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_1_1_RI_3!=poll__networl_1_1_RI_3 & [network_1_0_RI_3!=poll__networl_1_0_RI_3 & [network_0_0_RI_0!=poll__networl_0_0_RI_0 & [network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_3_2_AnsP_2!=poll__networl_3_2_AnsP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_3_AnnP_3!=poll__networl_2_3_AnnP_3 & [network_2_1_RI_3!=poll__networl_2_1_RI_3 & [network_2_0_RI_2!=poll__networl_2_0_RI_2 & [network_3_1_RP_1!=poll__networl_3_1_RP_1 & [network_3_1_AI_3!=poll__networl_3_1_AI_3 & [network_0_3_RI_2!=poll__networl_0_3_RI_2 & [network_2_3_AnnP_2!=poll__networl_2_3_AnnP_2 & [network_2_2_AI_3!=poll__networl_2_2_AI_3 & [network_3_0_RI_2!=poll__networl_3_0_RI_2 & [network_1_0_AnnP_3!=poll__networl_1_0_AnnP_3 & [network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_3_2_AI_0!=poll__networl_3_2_AI_0 & [network_3_0_AnsP_3!=poll__networl_3_0_AnsP_3 & [network_0_3_AnnP_1!=poll__networl_0_3_AnnP_1 & [network_3_3_RI_3!=poll__networl_3_3_RI_3 & [network_3_3_AI_1!=poll__networl_3_3_AI_1 & [network_1_0_AI_1!=poll__networl_1_0_AI_1 & [network_0_1_RP_3!=poll__networl_0_1_RP_3 & [network_2_2_RP_3!=poll__networl_2_2_RP_3 & [network_0_0_RI_3!=poll__networl_0_0_RI_3 & [network_3_3_RP_3!=poll__networl_3_3_RP_3 & [network_0_0_AI_0!=poll__networl_0_0_AI_0 & [network_3_0_RI_0!=poll__networl_3_0_RI_0 & [network_3_2_RP_3!=poll__networl_3_2_RP_3 & [network_1_1_AI_1!=poll__networl_1_1_AI_1 & [network_1_2_AnnP_3!=poll__networl_1_2_AnnP_3 & [network_3_3_AskP_0!=poll__networl_3_3_AskP_0 & [network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [network_3_0_AI_2!=poll__networl_3_0_AI_2 & [network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_1_2_AnsP_3!=poll__networl_1_2_AnsP_3 & [network_3_0_AskP_3!=poll__networl_3_0_AskP_3 & [network_2_1_RI_1!=poll__networl_2_1_RI_1 & [network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_3_3_AnsP_1!=poll__networl_3_3_AnsP_1 & [network_3_1_RI_1!=poll__networl_3_1_RI_1 & [network_1_2_AI_3!=poll__networl_1_2_AI_3 & [network_0_3_RI_0!=poll__networl_0_3_RI_0 & [network_3_0_AnsP_2!=poll__networl_3_0_AnsP_2 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_3_3_RP_1!=poll__networl_3_3_RP_1 & [network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [network_1_3_AI_1!=poll__networl_1_3_AI_1 & [network_0_3_AI_3!=poll__networl_0_3_AI_3 & [network_3_3_AI_2!=poll__networl_3_3_AI_2 & [network_0_3_AnsP_1!=poll__networl_0_3_AnsP_1 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [network_2_2_RP_1!=poll__networl_2_2_RP_1 & [network_3_1_RP_0!=poll__networl_3_1_RP_0 & [network_2_0_AnsP_3!=poll__networl_2_0_AnsP_3 & [network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_3_2_RP_1!=poll__networl_3_2_RP_1 & [network_3_2_RP_2!=poll__networl_3_2_RP_2 & [network_0_3_AskP_0!=poll__networl_0_3_AskP_0 & [network_3_0_RP_0!=poll__networl_3_0_RP_0 & [network_3_3_AnnP_1!=poll__networl_3_3_AnnP_1 & [network_1_0_RP_3!=poll__networl_1_0_RP_3 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [network_0_0_AskP_1!=poll__networl_0_0_AskP_1 & [network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [network_0_3_AI_0!=poll__networl_0_3_AI_0 & [network_1_3_AskP_3!=poll__networl_1_3_AskP_3 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_3_RI_1!=poll__networl_2_3_RI_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_1_2_RP_3!=poll__networl_1_2_RP_3 & [network_3_2_AI_1!=poll__networl_3_2_AI_1 & [network_1_3_RI_3!=poll__networl_1_3_RI_3 & [network_2_2_AskP_3!=poll__networl_2_2_AskP_3 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_3_AskP_2!=poll__networl_2_3_AskP_2 & [network_3_3_RI_1!=poll__networl_3_3_RI_1 & [network_3_0_RI_3!=poll__networl_3_0_RI_3 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_3_2_AnsP_1!=poll__networl_3_2_AnsP_1 & [network_2_3_AskP_1!=poll__networl_2_3_AskP_1 & [network_3_1_AnnP_2!=poll__networl_3_1_AnnP_2 & [network_3_3_AI_3!=poll__networl_3_3_AI_3 & [network_2_1_AnsP_3!=poll__networl_2_1_AnsP_3 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_0_3_AnnP_3!=poll__networl_0_3_AnnP_3 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_3_2_AskP_0!=poll__networl_3_2_AskP_0 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0 & [network_3_2_AnnP_3!=poll__networl_3_2_AnnP_3 & [network_3_3_AskP_3!=poll__networl_3_3_AskP_3 & [network_3_1_RP_2!=poll__networl_3_1_RP_2 & [network_1_2_RI_1!=poll__networl_1_2_RI_1 & [network_1_0_AI_0!=poll__networl_1_0_AI_0 & [network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [network_1_2_AI_0!=poll__networl_1_2_AI_0 & [network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1 & [network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [network_1_3_AI_0!=poll__networl_1_3_AI_0 & [network_0_2_RP_1!=poll__networl_0_2_RP_1 & [network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2 & [network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [network_1_2_RP_0!=poll__networl_1_2_RP_0 & [network_1_2_RI_3!=poll__networl_1_2_RI_3 & [network_2_0_AskP_0!=poll__networl_2_0_AskP_0 & [network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1 & [network_0_2_AskP_3!=poll__networl_0_2_AskP_3 & [network_1_3_AI_2!=poll__networl_1_3_AI_2 & [network_1_3_AnsP_2!=poll__networl_1_3_AnsP_2 & [network_0_2_AI_3!=poll__networl_0_2_AI_3 & [network_1_2_AI_2!=poll__networl_1_2_AI_2 & [network_2_0_RP_0!=poll__networl_2_0_RP_0 & [network_3_2_RP_0!=poll__networl_3_2_RP_0 & [network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [network_2_0_AI_0!=poll__networl_2_0_AI_0 & [network_3_2_RI_1!=poll__networl_3_2_RI_1 & [network_0_2_AI_1!=poll__networl_0_2_AI_1 & [network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [network_3_0_RP_2!=poll__networl_3_0_RP_2 & [network_2_2_AI_2!=poll__networl_2_2_AI_2 & [network_0_1_AskP_3!=poll__networl_0_1_AskP_3 & [network_1_1_RI_0!=poll__networl_1_1_RI_0 & [network_0_1_RI_3!=poll__networl_0_1_RI_3 & [network_1_2_RP_2!=poll__networl_1_2_RP_2 & [network_0_3_AnnP_2!=poll__networl_0_3_AnnP_2 & [network_3_1_AnsP_2!=poll__networl_3_1_AnsP_2 & [network_1_3_AnnP_2!=poll__networl_1_3_AnnP_2 & [network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [network_1_2_AskP_3!=poll__networl_1_2_AskP_3 & [network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [network_1_3_AskP_2!=poll__networl_1_3_AskP_2 & [network_2_2_RI_0!=poll__networl_2_2_RI_0 & [network_0_0_AI_2!=poll__networl_0_0_AI_2 & [network_2_3_AI_3!=poll__networl_2_3_AI_3 & [network_3_2_AskP_2!=poll__networl_3_2_AskP_2 & [network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0 & [network_3_0_AnnP_0!=poll__networl_3_0_AnnP_0 & [network_1_3_RP_1!=poll__networl_1_3_RP_1 & [network_3_3_AskP_2!=poll__networl_3_3_AskP_2 & [network_3_3_RP_2!=poll__networl_3_3_RP_2 & [network_0_1_AskP_2!=poll__networl_0_1_AskP_2 & [network_1_0_RI_2!=poll__networl_1_0_RI_2 & [network_2_2_RI_3!=poll__networl_2_2_RI_3 & [network_3_0_AskP_1!=poll__networl_3_0_AskP_1 & [network_0_3_AskP_1!=poll__networl_0_3_AskP_1 & [network_0_0_RI_2!=poll__networl_0_0_RI_2 & [network_3_3_AI_0!=poll__networl_3_3_AI_0 & [network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0 & [network_3_0_AnnP_1!=poll__networl_3_0_AnnP_1 & [network_3_2_AnsP_3!=poll__networl_3_2_AnsP_3 & [network_2_0_AskP_1!=poll__networl_2_0_AskP_1 & [network_3_2_AI_3!=poll__networl_3_2_AI_3 & [network_1_3_RP_2!=poll__networl_1_3_RP_2 & [network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [network_1_3_AI_3!=poll__networl_1_3_AI_3 & [network_3_3_AnnP_2!=poll__networl_3_3_AnnP_2 & [network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0 & [network_0_2_RP_0!=poll__networl_0_2_RP_0 & [network_2_0_AnnP_3!=poll__networl_2_0_AnnP_3 & [network_0_2_RI_1!=poll__networl_0_2_RI_1 & [network_1_3_RI_2!=poll__networl_1_3_RI_2 & [network_0_0_RP_3!=poll__networl_0_0_RP_3 & [network_1_0_AI_2!=poll__networl_1_0_AI_2 & [network_3_0_AI_3!=poll__networl_3_0_AI_3 & [network_2_3_RI_3!=poll__networl_2_3_RI_3 & [network_3_1_AskP_1!=poll__networl_3_1_AskP_1 & [network_2_2_AnsP_3!=poll__networl_2_2_AnsP_3 & [network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0 & [network_0_2_AnsP_3!=poll__networl_0_2_AnsP_3 & [network_1_1_RP_0!=poll__networl_1_1_RP_0 & [network_1_0_AskP_3!=poll__networl_1_0_AskP_3 & [network_1_3_RI_0!=poll__networl_1_3_RI_0 & [network_3_0_RP_1!=poll__networl_3_0_RP_1 & [network_1_1_AnsP_3!=poll__networl_1_1_AnsP_3 & [network_0_3_AskP_2!=poll__networl_0_3_AskP_2 & [network_1_1_RP_2!=poll__networl_1_1_RP_2 & [network_2_3_RI_2!=poll__networl_2_3_RI_2 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & [polling_1!=electionFailed_1 & [polling_3!=electionFailed_3 & [polling_2!=electionFailed_2 & [polling_0!=electionFailed_0 & true]]]]]]]]

-> the formula is FALSE

FORMULA p_9_placecomparison_eq_and_notx FALSE TECHNIQUES DECISION_DIAGRAMS

mc time: 0m0sec

checking: AG [[[polling_1!=electionFailed_1 & [[polling_2!=electionFailed_2 & [true & polling_0!=electionFailed_0]] & polling_3!=electionFailed_3]] | ~ [[[[network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2 & [network_1_3_AskP_0!=poll__networl_1_3_AskP_0 & [network_2_3_RP_0!=poll__networl_2_3_RP_0 & [[network_1_2_RI_0!=poll__networl_1_2_RI_0 & [[network_0_3_AnnP_0!=poll__networl_0_3_AnnP_0 & [[[network_2_3_AnsP_3!=poll__networl_2_3_AnsP_3 & [network_2_3_AskP_3!=poll__networl_2_3_AskP_3 & [network_0_2_AI_0!=poll__networl_0_2_AI_0 & [network_3_1_AnsP_0!=poll__networl_3_1_AnsP_0 & [network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0 & [network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0 & [network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0 & [network_3_1_AI_1!=poll__networl_3_1_AI_1 & [network_1_1_AskP_3!=poll__networl_1_1_AskP_3 & [network_0_2_RI_2!=poll__networl_0_2_RI_2 & [network_3_3_RI_0!=poll__networl_3_3_RI_0 & [network_3_1_RI_3!=poll__networl_3_1_RI_3 & [network_3_2_AnnP_0!=poll__networl_3_2_AnnP_0 & [network_2_0_AskP_3!=poll__networl_2_0_AskP_3 & [network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [network_3_0_AskP_2!=poll__networl_3_0_AskP_2 & [network_1_0_AnsP_3!=poll__networl_1_0_AnsP_3 & [network_1_3_AnnP_0!=poll__networl_1_3_AnnP_0 & [network_2_2_AskP_1!=poll__networl_2_2_AskP_1 & [network_2_0_AI_1!=poll__networl_2_0_AI_1 & [network_0_2_AI_2!=poll__networl_0_2_AI_2 & [network_2_3_RP_2!=poll__networl_2_3_RP_2 & [network_0_0_AskP_3!=poll__networl_0_0_AskP_3 & [network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2 & [network_3_1_AnsP_1!=poll__networl_3_1_AnsP_1 & [network_3_3_AnsP_2!=poll__networl_3_3_AnsP_2 & [network_1_1_RI_1!=poll__networl_1_1_RI_1 & [network_0_0_RP_1!=poll__networl_0_0_RP_1 & [network_3_2_RI_0!=poll__networl_3_2_RI_0 & [network_3_2_AnnP_2!=poll__networl_3_2_AnnP_2 & [network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_1_AnsP_3!=poll__networl_0_1_AnsP_3 & [network_3_1_AnnP_0!=poll__networl_3_1_AnnP_0 & [network_1_1_AnnP_3!=poll__networl_1_1_AnnP_3 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [[network_3_1_AskP_0!=poll__networl_3_1_AskP_0 & [network_3_3_RP_0!=poll__networl_3_3_RP_0 & [network_0_2_RI_3!=poll__networl_0_2_RI_3 & [network_2_1_AnnP_3!=poll__networl_2_1_AnnP_3 & [network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_0_1_AnnP_3!=poll__networl_0_1_AnnP_3 & [network_3_3_AnnP_3!=poll__networl_3_3_AnnP_3 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [network_2_3_AnnP_0!=poll__networl_2_3_AnnP_0 & [network_2_3_AnsP_0!=poll__networl_2_3_AnsP_0 & [network_0_1_RI_1!=poll__networl_0_1_RI_1 & [network_1_0_AskP_1!=poll__networl_1_0_AskP_1 & [network_0_0_AskP_0!=poll__networl_0_0_AskP_0 & [network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0 & [network_2_3_AnsP_2!=poll__networl_2_3_AnsP_2 & [network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1 & [network_1_1_RP_1!=poll__networl_1_1_RP_1 & [network_0_3_RP_2!=poll__networl_0_3_RP_2 & [network_3_2_AskP_3!=poll__networl_3_2_AskP_3 & [network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [network_2_2_RI_1!=poll__networl_2_2_RI_1 & [network_3_1_AskP_2!=poll__networl_3_1_AskP_2 & [network_2_3_AnnP_1!=poll__networl_2_3_AnnP_1 & [network_0_0_AI_1!=poll__networl_0_0_AI_1 & [network_0_2_AnnP_3!=poll__networl_0_2_AnnP_3 & [network_2_2_RP_0!=poll__networl_2_2_RP_0 & [[network_2_0_RI_0!=poll__networl_2_0_RI_0 & [network_3_0_AnsP_0!=poll__networl_3_0_AnsP_0 & [network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1 & [network_0_3_AI_2!=poll__networl_0_3_AI_2 & [network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0 & [network_2_1_RP_0!=poll__networl_2_1_RP_0 & [network_3_1_AI_2!=poll__networl_3_1_AI_2 & [network_3_1_RP_3!=poll__networl_3_1_RP_3 & [network_3_3_AnsP_3!=poll__networl_3_3_AnsP_3 & [network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [network_2_0_AskP_2!=poll__networl_2_0_AskP_2 & [network_0_3_AnsP_2!=poll__networl_0_3_AnsP_2 & [network_1_1_AskP_2!=poll__networl_1_1_AskP_2 & [network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0 & [network_0_0_AnsP_3!=poll__networl_0_0_AnsP_3 & [network_1_3_RP_0!=poll__networl_1_3_RP_0 & [network_0_3_AI_1!=poll__networl_0_3_AI_1 & [network_1_2_RI_2!=poll__networl_1_2_RI_2 & [network_0_3_AskP_3!=poll__networl_0_3_AskP_3 & [network_3_2_AnnP_1!=poll__networl_3_2_AnnP_1 & [network_3_0_AnnP_2!=poll__networl_3_0_AnnP_2 & [network_1_3_AnsP_1!=poll__networl_1_3_AnsP_1 & [network_0_3_RP_3!=poll__networl_0_3_RP_3 & [network_1_0_RI_1!=poll__networl_1_0_RI_1 & [network_0_3_RP_0!=poll__networl_0_3_RP_0 & [network_0_0_AnnP_3!=poll__networl_0_0_AnnP_3 & [network_2_2_RI_2!=poll__networl_2_2_RI_2 & [network_1_2_AskP_0!=poll__networl_1_2_AskP_0 & [network_2_3_AskP_0!=poll__networl_2_3_AskP_0 & [network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2 & [network_2_0_RP_3!=poll__networl_2_0_RP_3 & [network_0_1_RP_2!=poll__networl_0_1_RP_2 & [network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1 & [network_1_3_AnnP_1!=poll__networl_1_3_AnnP_1 & [network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1 & [network_3_0_RP_3!=poll__networl_3_0_RP_3 & [network_0_1_RI_0!=poll__networl_0_1_RI_0 & [network_2_3_RP_1!=poll__networl_2_3_RP_1 & [network_1_3_RP_3!=poll__networl_1_3_RP_3 & [network_3_0_AI_1!=poll__networl_3_0_AI_1 & [network_2_1_AskP_3!=poll__networl_2_1_AskP_3 & [network_0_0_RP_0!=poll__networl_0_0_RP_0 & [network_3_2_AnsP_0!=poll__networl_3_2_AnsP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [network_3_3_AnnP_0!=poll__networl_3_3_AnnP_0 & [network_3_0_AnsP_1!=poll__networl_3_0_AnsP_1 & [network_3_2_RI_3!=poll__networl_3_2_RI_3 & [network_0_1_AI_1!=poll__networl_0_1_AI_1 & [network_2_3_AI_1!=poll__networl_2_3_AI_1 & [network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2 & [network_2_0_RI_1!=poll__networl_2_0_RI_1 & [network_2_1_AI_1!=poll__networl_2_1_AI_1 & [network_0_3_AnsP_3!=poll__networl_0_3_AnsP_3 & [network_2_1_AI_3!=poll__networl_2_1_AI_3 & [network_3_1_AnnP_1!=poll__networl_3_1_AnnP_1 & [network_3_3_AnsP_0!=poll__networl_3_3_AnsP_0 & [[network_0_0_AI_3!=poll__networl_0_0_AI_3 & [network_3_1_RI_2!=poll__networl_3_1_RI_2 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [network_0_3_RI_3!=poll__networl_0_3_RI_3 & [network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1 & [network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_1_3_AskP_1!=poll__networl_1_3_AskP_1 & [network_0_1_AI_3!=poll__networl_0_1_AI_3 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [network_2_1_RP_3!=poll__networl_2_1_RP_3 & [network_3_0_RI_1!=poll__networl_3_0_RI_1 & [network_2_3_AI_2!=poll__networl_2_3_AI_2 & [network_1_2_AskP_2!=poll__networl_1_2_AskP_2 & [network_3_1_AskP_3!=poll__networl_3_1_AskP_3 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [network_1_3_RI_1!=poll__networl_1_3_RI_1 & [network_3_0_AI_0!=poll__networl_3_0_AI_0 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [network_3_1_RI_0!=poll__networl_3_1_RI_0 & [network_2_0_AI_3!=poll__networl_2_0_AI_3 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [network_0_2_RP_3!=poll__networl_0_2_RP_3 & [network_2_2_AnnP_3!=poll__networl_2_2_AnnP_3 & [network_3_0_AskP_0!=poll__networl_3_0_AskP_0 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [network_1_1_AI_2!=poll__networl_1_1_AI_2 & [network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2 & [network_3_2_RI_2!=poll__networl_3_2_RI_2 & [network_1_3_AnsP_3!=poll__networl_1_3_AnsP_3 & [network_0_3_RP_1!=poll__networl_0_3_RP_1 & [network_1_0_AI_3!=poll__networl_1_0_AI_3 & [network_3_1_AnnP_3!=poll__networl_3_1_AnnP_3 & [network_3_2_AskP_1!=poll__networl_3_2_AskP_1 & [network_3_1_AI_0!=poll__networl_3_1_AI_0 & [network_3_1_AnsP_3!=poll__networl_3_1_AnsP_3 & [network_1_3_AnsP_0!=poll__networl_1_3_AnsP_0 & [network_2_3_RP_3!=poll__networl_2_3_RP_3 & [network_1_2_AI_1!=poll__networl_1_2_AI_1 & [network_1_1_RP_3!=poll__networl_1_1_RP_3 & [network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0 & [network_0_3_RI_1!=poll__networl_0_3_RI_1 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_3_AnsP_1!=poll__networl_2_3_AnsP_1 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_3_0_AnnP_3!=poll__networl_3_0_AnnP_3 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_2_3_AI_0!=poll__networl_2_3_AI_0 & [network_3_2_AI_2!=poll__networl_3_2_AI_2 & [network_0_3_AnsP_0!=poll__networl_0_3_AnsP_0 & [network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [network_3_3_AskP_1!=poll__networl_3_3_AskP_1 & [network_1_1_AI_3!=poll__networl_1_1_AI_3 & [network_3_3_RI_2!=poll__networl_3_3_RI_2 & [network_2_0_RI_3!=poll__networl_2_0_RI_3 & [network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2 & [network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_1_1_RI_3!=poll__networl_1_1_RI_3 & [network_1_0_RI_3!=poll__networl_1_0_RI_3 & [network_0_0_RI_0!=poll__networl_0_0_RI_0 & [network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_3_2_AnsP_2!=poll__networl_3_2_AnsP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_3_AnnP_3!=poll__networl_2_3_AnnP_3 & [network_2_1_RI_3!=poll__networl_2_1_RI_3 & [[[[[network_2_3_AnnP_2!=poll__networl_2_3_AnnP_2 & [network_2_2_AI_3!=poll__networl_2_2_AI_3 & [network_3_0_RI_2!=poll__networl_3_0_RI_2 & [[[network_3_2_AI_0!=poll__networl_3_2_AI_0 & [[[[[[[network_2_2_RP_3!=poll__networl_2_2_RP_3 & [[[[[[[[[network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [[[[[[[[[[[[network_3_0_AnsP_2!=poll__networl_3_0_AnsP_2 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [[[[network_0_3_AI_3!=poll__networl_0_3_AI_3 & [network_3_3_AI_2!=poll__networl_3_3_AI_2 & [[[[[[[[[network_0_3_AskP_0!=poll__networl_0_3_AskP_0 & [[network_3_3_AnnP_1!=poll__networl_3_3_AnnP_1 & [network_1_0_RP_3!=poll__networl_1_0_RP_3 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [[[[[[[network_2_2_AI_1!=poll__networl_2_2_AI_1 & [[[[network_2_2_AskP_3!=poll__networl_2_2_AskP_3 & [[network_0_1_RI_2!=poll__networl_0_1_RI_2 & [[[[[[[[[[[[[[[[[[[[[[[[network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [network_1_3_AI_0!=poll__networl_1_3_AI_0 & [[[network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [network_1_2_RP_0!=poll__networl_1_2_RP_0 & [[[[network_0_2_AskP_3!=poll__networl_0_2_AskP_3 & [[[[[[[network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [[network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [[[[network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [[[[[[[[[[[[[[[[network_0_0_AI_2!=poll__networl_0_0_AI_2 & [network_2_3_AI_3!=poll__networl_2_3_AI_3 & [[network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0 & [[network_1_3_RP_1!=poll__networl_1_3_RP_1 & [[[[[[[[[[network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0 & [network_3_0_AnnP_1!=poll__networl_3_0_AnnP_1 & [network_3_2_AnsP_3!=poll__networl_3_2_AnsP_3 & [network_2_0_AskP_1!=poll__networl_2_0_AskP_1 & [network_3_2_AI_3!=poll__networl_3_2_AI_3 & [network_1_3_RP_2!=poll__networl_1_3_RP_2 & [network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [network_1_3_AI_3!=poll__networl_1_3_AI_3 & [network_3_3_AnnP_2!=poll__networl_3_3_AnnP_2 & [network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0 & [[network_2_0_AnnP_3!=poll__networl_2_0_AnnP_3 & [[network_1_3_RI_2!=poll__networl_1_3_RI_2 & [network_0_0_RP_3!=poll__networl_0_0_RP_3 & [network_1_0_AI_2!=poll__networl_1_0_AI_2 & [network_3_0_AI_3!=poll__networl_3_0_AI_3 & [network_2_3_RI_3!=poll__networl_2_3_RI_3 & [network_3_1_AskP_1!=poll__networl_3_1_AskP_1 & [[[network_0_2_AnsP_3!=poll__networl_0_2_AnsP_3 & [[network_1_0_AskP_3!=poll__networl_1_0_AskP_3 & [[[network_1_1_AnsP_3!=poll__networl_1_1_AnsP_3 & [[network_1_1_RP_2!=poll__networl_1_1_RP_2 & [true & network_2_3_RI_2!=poll__networl_2_3_RI_2]] & network_0_3_AskP_2!=poll__networl_0_3_AskP_2]] & network_3_0_RP_1!=poll__networl_3_0_RP_1] & network_1_3_RI_0!=poll__networl_1_3_RI_0]] & network_1_1_RP_0!=poll__networl_1_1_RP_0]] & network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0] & network_2_2_AnsP_3!=poll__networl_2_2_AnsP_3]]]]]]] & network_0_2_RI_1!=poll__networl_0_2_RI_1]] & network_0_2_RP_0!=poll__networl_0_2_RP_0]]]]]]]]]]]] & network_3_3_AI_0!=poll__networl_3_3_AI_0] & network_0_0_RI_2!=poll__networl_0_0_RI_2] & network_0_3_AskP_1!=poll__networl_0_3_AskP_1] & network_3_0_AskP_1!=poll__networl_3_0_AskP_1] & network_2_2_RI_3!=poll__networl_2_2_RI_3] & network_1_0_RI_2!=poll__networl_1_0_RI_2] & network_0_1_AskP_2!=poll__networl_0_1_AskP_2] & network_3_3_RP_2!=poll__networl_3_3_RP_2] & network_3_3_AskP_2!=poll__networl_3_3_AskP_2]] & network_3_0_AnnP_0!=poll__networl_3_0_AnnP_0]] & network_3_2_AskP_2!=poll__networl_3_2_AskP_2]]] & network_2_2_RI_0!=poll__networl_2_2_RI_0] & network_1_3_AskP_2!=poll__networl_1_3_AskP_2] & network_1_0_AskP_0!=poll__networl_1_0_AskP_0] & network_1_2_AskP_3!=poll__networl_1_2_AskP_3] & network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1] & network_1_1_AskP_0!=poll__networl_1_1_AskP_0] & network_1_3_AnnP_2!=poll__networl_1_3_AnnP_2] & network_3_1_AnsP_2!=poll__networl_3_1_AnsP_2] & network_0_3_AnnP_2!=poll__networl_0_3_AnnP_2] & network_1_2_RP_2!=poll__networl_1_2_RP_2] & network_0_1_RI_3!=poll__networl_0_1_RI_3] & network_1_1_RI_0!=poll__networl_1_1_RI_0] & network_0_1_AskP_3!=poll__networl_0_1_AskP_3] & network_2_2_AI_2!=poll__networl_2_2_AI_2] & network_3_0_RP_2!=poll__networl_3_0_RP_2]] & network_0_2_AI_1!=poll__networl_0_2_AI_1] & network_3_2_RI_1!=poll__networl_3_2_RI_1] & network_2_0_AI_0!=poll__networl_2_0_AI_0]] & network_1_0_RP_0!=poll__networl_1_0_RP_0]] & network_3_2_RP_0!=poll__networl_3_2_RP_0] & network_2_0_RP_0!=poll__networl_2_0_RP_0] & network_1_2_AI_2!=poll__networl_1_2_AI_2] & network_0_2_AI_3!=poll__networl_0_2_AI_3] & network_1_3_AnsP_2!=poll__networl_1_3_AnsP_2] & network_1_3_AI_2!=poll__networl_1_3_AI_2]] & network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1] & network_2_0_AskP_0!=poll__networl_2_0_AskP_0] & network_1_2_RI_3!=poll__networl_1_2_RI_3]]] & network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2] & network_0_2_RP_1!=poll__networl_0_2_RP_1]]] & network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1] & network_1_2_AI_0!=poll__networl_1_2_AI_0] & network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1] & network_1_0_AI_0!=poll__networl_1_0_AI_0] & network_1_2_RI_1!=poll__networl_1_2_RI_1] & network_3_1_RP_2!=poll__networl_3_1_RP_2] & network_3_3_AskP_3!=poll__networl_3_3_AskP_3] & network_3_2_AnnP_3!=poll__networl_3_2_AnnP_3] & network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0] & network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1] & network_3_2_AskP_0!=poll__networl_3_2_AskP_0] & network_1_1_AskP_1!=poll__networl_1_1_AskP_1] & network_0_3_AnnP_3!=poll__networl_0_3_AnnP_3] & network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0] & network_2_1_AnsP_3!=poll__networl_2_1_AnsP_3] & network_3_3_AI_3!=poll__networl_3_3_AI_3] & network_3_1_AnnP_2!=poll__networl_3_1_AnnP_2] & network_2_3_AskP_1!=poll__networl_2_3_AskP_1] & network_3_2_AnsP_1!=poll__networl_3_2_AnsP_1] & network_2_1_RP_2!=poll__networl_2_1_RP_2] & network_3_0_RI_3!=poll__networl_3_0_RI_3] & network_3_3_RI_1!=poll__networl_3_3_RI_1] & network_2_3_AskP_2!=poll__networl_2_3_AskP_2]] & network_2_1_RP_1!=poll__networl_2_1_RP_1]] & network_1_3_RI_3!=poll__networl_1_3_RI_3] & network_3_2_AI_1!=poll__networl_3_2_AI_1] & network_1_2_RP_3!=poll__networl_1_2_RP_3]] & network_2_3_RI_1!=poll__networl_2_3_RI_1] & network_0_1_AskP_1!=poll__networl_0_1_AskP_1] & network_1_3_AskP_3!=poll__networl_1_3_AskP_3] & network_0_3_AI_0!=poll__networl_0_3_AI_0] & network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0] & network_0_0_AskP_1!=poll__networl_0_0_AskP_1]]]] & network_3_0_RP_0!=poll__networl_3_0_RP_0]] & network_3_2_RP_2!=poll__networl_3_2_RP_2] & network_3_2_RP_1!=poll__networl_3_2_RP_1] & network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2] & network_2_0_AnsP_3!=poll__networl_2_0_AnsP_3] & network_3_1_RP_0!=poll__networl_3_1_RP_0] & network_2_2_RP_1!=poll__networl_2_2_RP_1] & network_0_1_AskP_0!=poll__networl_0_1_AskP_0] & network_0_3_AnsP_1!=poll__networl_0_3_AnsP_1]]] & network_1_3_AI_1!=poll__networl_1_3_AI_1] & network_0_2_AskP_0!=poll__networl_0_2_AskP_0] & network_3_3_RP_1!=poll__networl_3_3_RP_1]]] & network_0_3_RI_0!=poll__networl_0_3_RI_0] & network_1_2_AI_3!=poll__networl_1_2_AI_3] & network_3_1_RI_1!=poll__networl_3_1_RI_1] & network_3_3_AnsP_1!=poll__networl_3_3_AnsP_1] & network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1] & network_2_1_RI_1!=poll__networl_2_1_RI_1] & network_3_0_AskP_3!=poll__networl_3_0_AskP_3] & network_1_2_AnsP_3!=poll__networl_1_2_AnsP_3] & network_1_2_RP_1!=poll__networl_1_2_RP_1] & network_3_0_AI_2!=poll__networl_3_0_AI_2] & network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1]]] & network_3_3_AskP_0!=poll__networl_3_3_AskP_0] & network_1_2_AnnP_3!=poll__networl_1_2_AnnP_3] & network_1_1_AI_1!=poll__networl_1_1_AI_1] & network_3_2_RP_3!=poll__networl_3_2_RP_3] & network_3_0_RI_0!=poll__networl_3_0_RI_0] & network_0_0_AI_0!=poll__networl_0_0_AI_0] & network_3_3_RP_3!=poll__networl_3_3_RP_3] & network_0_0_RI_3!=poll__networl_0_0_RI_3]] & network_0_1_RP_3!=poll__networl_0_1_RP_3] & network_1_0_AI_1!=poll__networl_1_0_AI_1] & network_3_3_AI_1!=poll__networl_3_3_AI_1] & network_3_3_RI_3!=poll__networl_3_3_RI_3] & network_0_3_AnnP_1!=poll__networl_0_3_AnnP_1] & network_3_0_AnsP_3!=poll__networl_3_0_AnsP_3]] & network_1_1_RI_2!=poll__networl_1_1_RI_2] & network_1_0_AnnP_3!=poll__networl_1_0_AnnP_3]]]] & network_0_3_RI_2!=poll__networl_0_3_RI_2] & network_3_1_AI_3!=poll__networl_3_1_AI_3] & network_3_1_RP_1!=poll__networl_3_1_RP_1] & network_2_0_RI_2!=poll__networl_2_0_RI_2]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & network_1_3_AnnP_3!=poll__networl_1_3_AnnP_3]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & network_0_2_AskP_1!=poll__networl_0_2_AskP_1]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & network_0_1_RP_1!=poll__networl_0_1_RP_1]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & network_2_3_RI_0!=poll__networl_2_3_RI_0] & network_0_1_AI_2!=poll__networl_0_1_AI_2]] & network_2_0_AI_2!=poll__networl_2_0_AI_2]] & network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2]]]] & network_1_0_RI_0!=poll__networl_1_0_RI_0] & network_2_2_RP_2!=poll__networl_2_2_RP_2]]]]
normalized: ~ [E [true U ~ [[~ [[network_2_2_RP_2!=poll__networl_2_2_RP_2 & [network_1_0_RI_0!=poll__networl_1_0_RI_0 & [network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2 & [network_1_3_AskP_0!=poll__networl_1_3_AskP_0 & [network_2_3_RP_0!=poll__networl_2_3_RP_0 & [network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2 & [network_1_2_RI_0!=poll__networl_1_2_RI_0 & [network_2_0_AI_2!=poll__networl_2_0_AI_2 & [network_0_3_AnnP_0!=poll__networl_0_3_AnnP_0 & [network_0_1_AI_2!=poll__networl_0_1_AI_2 & [network_2_3_RI_0!=poll__networl_2_3_RI_0 & [network_2_3_AnsP_3!=poll__networl_2_3_AnsP_3 & [network_2_3_AskP_3!=poll__networl_2_3_AskP_3 & [network_0_2_AI_0!=poll__networl_0_2_AI_0 & [network_3_1_AnsP_0!=poll__networl_3_1_AnsP_0 & [network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0 & [network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0 & [network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0 & [network_3_1_AI_1!=poll__networl_3_1_AI_1 & [network_1_1_AskP_3!=poll__networl_1_1_AskP_3 & [network_0_2_RI_2!=poll__networl_0_2_RI_2 & [network_3_3_RI_0!=poll__networl_3_3_RI_0 & [network_3_1_RI_3!=poll__networl_3_1_RI_3 & [network_3_2_AnnP_0!=poll__networl_3_2_AnnP_0 & [network_2_0_AskP_3!=poll__networl_2_0_AskP_3 & [network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [network_3_0_AskP_2!=poll__networl_3_0_AskP_2 & [network_1_0_AnsP_3!=poll__networl_1_0_AnsP_3 & [network_1_3_AnnP_0!=poll__networl_1_3_AnnP_0 & [network_2_2_AskP_1!=poll__networl_2_2_AskP_1 & [network_2_0_AI_1!=poll__networl_2_0_AI_1 & [network_0_2_AI_2!=poll__networl_0_2_AI_2 & [network_2_3_RP_2!=poll__networl_2_3_RP_2 & [network_0_0_AskP_3!=poll__networl_0_0_AskP_3 & [network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2 & [network_3_1_AnsP_1!=poll__networl_3_1_AnsP_1 & [network_3_3_AnsP_2!=poll__networl_3_3_AnsP_2 & [network_1_1_RI_1!=poll__networl_1_1_RI_1 & [network_0_0_RP_1!=poll__networl_0_0_RP_1 & [network_3_2_RI_0!=poll__networl_3_2_RI_0 & [network_3_2_AnnP_2!=poll__networl_3_2_AnnP_2 & [network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_1_AnsP_3!=poll__networl_0_1_AnsP_3 & [network_3_1_AnnP_0!=poll__networl_3_1_AnnP_0 & [network_1_1_AnnP_3!=poll__networl_1_1_AnnP_3 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [network_0_1_RP_1!=poll__networl_0_1_RP_1 & [network_3_1_AskP_0!=poll__networl_3_1_AskP_0 & [network_3_3_RP_0!=poll__networl_3_3_RP_0 & [network_0_2_RI_3!=poll__networl_0_2_RI_3 & [network_2_1_AnnP_3!=poll__networl_2_1_AnnP_3 & [network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_0_1_AnnP_3!=poll__networl_0_1_AnnP_3 & [network_3_3_AnnP_3!=poll__networl_3_3_AnnP_3 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [network_2_3_AnnP_0!=poll__networl_2_3_AnnP_0 & [network_2_3_AnsP_0!=poll__networl_2_3_AnsP_0 & [network_0_1_RI_1!=poll__networl_0_1_RI_1 & [network_1_0_AskP_1!=poll__networl_1_0_AskP_1 & [network_0_0_AskP_0!=poll__networl_0_0_AskP_0 & [network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0 & [network_2_3_AnsP_2!=poll__networl_2_3_AnsP_2 & [network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1 & [network_1_1_RP_1!=poll__networl_1_1_RP_1 & [network_0_3_RP_2!=poll__networl_0_3_RP_2 & [network_3_2_AskP_3!=poll__networl_3_2_AskP_3 & [network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [network_2_2_RI_1!=poll__networl_2_2_RI_1 & [network_3_1_AskP_2!=poll__networl_3_1_AskP_2 & [network_2_3_AnnP_1!=poll__networl_2_3_AnnP_1 & [network_0_0_AI_1!=poll__networl_0_0_AI_1 & [network_0_2_AnnP_3!=poll__networl_0_2_AnnP_3 & [network_2_2_RP_0!=poll__networl_2_2_RP_0 & [network_0_2_AskP_1!=poll__networl_0_2_AskP_1 & [network_2_0_RI_0!=poll__networl_2_0_RI_0 & [network_3_0_AnsP_0!=poll__networl_3_0_AnsP_0 & [network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1 & [network_0_3_AI_2!=poll__networl_0_3_AI_2 & [network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0 & [network_2_1_RP_0!=poll__networl_2_1_RP_0 & [network_3_1_AI_2!=poll__networl_3_1_AI_2 & [network_3_1_RP_3!=poll__networl_3_1_RP_3 & [network_3_3_AnsP_3!=poll__networl_3_3_AnsP_3 & [network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [network_2_0_AskP_2!=poll__networl_2_0_AskP_2 & [network_0_3_AnsP_2!=poll__networl_0_3_AnsP_2 & [network_1_1_AskP_2!=poll__networl_1_1_AskP_2 & [network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0 & [network_0_0_AnsP_3!=poll__networl_0_0_AnsP_3 & [network_1_3_RP_0!=poll__networl_1_3_RP_0 & [network_0_3_AI_1!=poll__networl_0_3_AI_1 & [network_1_2_RI_2!=poll__networl_1_2_RI_2 & [network_0_3_AskP_3!=poll__networl_0_3_AskP_3 & [network_3_2_AnnP_1!=poll__networl_3_2_AnnP_1 & [network_3_0_AnnP_2!=poll__networl_3_0_AnnP_2 & [network_1_3_AnsP_1!=poll__networl_1_3_AnsP_1 & [network_0_3_RP_3!=poll__networl_0_3_RP_3 & [network_1_0_RI_1!=poll__networl_1_0_RI_1 & [network_0_3_RP_0!=poll__networl_0_3_RP_0 & [network_0_0_AnnP_3!=poll__networl_0_0_AnnP_3 & [network_2_2_RI_2!=poll__networl_2_2_RI_2 & [network_1_2_AskP_0!=poll__networl_1_2_AskP_0 & [network_2_3_AskP_0!=poll__networl_2_3_AskP_0 & [network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2 & [network_2_0_RP_3!=poll__networl_2_0_RP_3 & [network_0_1_RP_2!=poll__networl_0_1_RP_2 & [network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1 & [network_1_3_AnnP_1!=poll__networl_1_3_AnnP_1 & [network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1 & [network_3_0_RP_3!=poll__networl_3_0_RP_3 & [network_0_1_RI_0!=poll__networl_0_1_RI_0 & [network_2_3_RP_1!=poll__networl_2_3_RP_1 & [network_1_3_RP_3!=poll__networl_1_3_RP_3 & [network_3_0_AI_1!=poll__networl_3_0_AI_1 & [network_2_1_AskP_3!=poll__networl_2_1_AskP_3 & [network_0_0_RP_0!=poll__networl_0_0_RP_0 & [network_3_2_AnsP_0!=poll__networl_3_2_AnsP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [network_3_3_AnnP_0!=poll__networl_3_3_AnnP_0 & [network_3_0_AnsP_1!=poll__networl_3_0_AnsP_1 & [network_3_2_RI_3!=poll__networl_3_2_RI_3 & [network_0_1_AI_1!=poll__networl_0_1_AI_1 & [network_2_3_AI_1!=poll__networl_2_3_AI_1 & [network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2 & [network_2_0_RI_1!=poll__networl_2_0_RI_1 & [network_2_1_AI_1!=poll__networl_2_1_AI_1 & [network_0_3_AnsP_3!=poll__networl_0_3_AnsP_3 & [network_2_1_AI_3!=poll__networl_2_1_AI_3 & [network_3_1_AnnP_1!=poll__networl_3_1_AnnP_1 & [network_3_3_AnsP_0!=poll__networl_3_3_AnsP_0 & [network_1_3_AnnP_3!=poll__networl_1_3_AnnP_3 & [network_0_0_AI_3!=poll__networl_0_0_AI_3 & [network_3_1_RI_2!=poll__networl_3_1_RI_2 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [network_0_3_RI_3!=poll__networl_0_3_RI_3 & [network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1 & [network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_1_3_AskP_1!=poll__networl_1_3_AskP_1 & [network_0_1_AI_3!=poll__networl_0_1_AI_3 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [network_2_1_RP_3!=poll__networl_2_1_RP_3 & [network_3_0_RI_1!=poll__networl_3_0_RI_1 & [network_2_3_AI_2!=poll__networl_2_3_AI_2 & [network_1_2_AskP_2!=poll__networl_1_2_AskP_2 & [network_3_1_AskP_3!=poll__networl_3_1_AskP_3 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [network_1_3_RI_1!=poll__networl_1_3_RI_1 & [network_3_0_AI_0!=poll__networl_3_0_AI_0 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [network_3_1_RI_0!=poll__networl_3_1_RI_0 & [network_2_0_AI_3!=poll__networl_2_0_AI_3 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [network_0_2_RP_3!=poll__networl_0_2_RP_3 & [network_2_2_AnnP_3!=poll__networl_2_2_AnnP_3 & [network_3_0_AskP_0!=poll__networl_3_0_AskP_0 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [network_1_1_AI_2!=poll__networl_1_1_AI_2 & [network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2 & [network_3_2_RI_2!=poll__networl_3_2_RI_2 & [network_1_3_AnsP_3!=poll__networl_1_3_AnsP_3 & [network_0_3_RP_1!=poll__networl_0_3_RP_1 & [network_1_0_AI_3!=poll__networl_1_0_AI_3 & [network_3_1_AnnP_3!=poll__networl_3_1_AnnP_3 & [network_3_2_AskP_1!=poll__networl_3_2_AskP_1 & [network_3_1_AI_0!=poll__networl_3_1_AI_0 & [network_3_1_AnsP_3!=poll__networl_3_1_AnsP_3 & [network_1_3_AnsP_0!=poll__networl_1_3_AnsP_0 & [network_2_3_RP_3!=poll__networl_2_3_RP_3 & [network_1_2_AI_1!=poll__networl_1_2_AI_1 & [network_1_1_RP_3!=poll__networl_1_1_RP_3 & [network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0 & [network_0_3_RI_1!=poll__networl_0_3_RI_1 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_3_AnsP_1!=poll__networl_2_3_AnsP_1 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_3_0_AnnP_3!=poll__networl_3_0_AnnP_3 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_2_3_AI_0!=poll__networl_2_3_AI_0 & [network_3_2_AI_2!=poll__networl_3_2_AI_2 & [network_0_3_AnsP_0!=poll__networl_0_3_AnsP_0 & [network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [network_3_3_AskP_1!=poll__networl_3_3_AskP_1 & [network_1_1_AI_3!=poll__networl_1_1_AI_3 & [network_3_3_RI_2!=poll__networl_3_3_RI_2 & [network_2_0_RI_3!=poll__networl_2_0_RI_3 & [network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2 & [network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_1_1_RI_3!=poll__networl_1_1_RI_3 & [network_1_0_RI_3!=poll__networl_1_0_RI_3 & [network_0_0_RI_0!=poll__networl_0_0_RI_0 & [network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_3_2_AnsP_2!=poll__networl_3_2_AnsP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_3_AnnP_3!=poll__networl_2_3_AnnP_3 & [network_2_1_RI_3!=poll__networl_2_1_RI_3 & [network_2_0_RI_2!=poll__networl_2_0_RI_2 & [network_3_1_RP_1!=poll__networl_3_1_RP_1 & [network_3_1_AI_3!=poll__networl_3_1_AI_3 & [network_0_3_RI_2!=poll__networl_0_3_RI_2 & [network_2_3_AnnP_2!=poll__networl_2_3_AnnP_2 & [network_2_2_AI_3!=poll__networl_2_2_AI_3 & [network_3_0_RI_2!=poll__networl_3_0_RI_2 & [network_1_0_AnnP_3!=poll__networl_1_0_AnnP_3 & [network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_3_2_AI_0!=poll__networl_3_2_AI_0 & [network_3_0_AnsP_3!=poll__networl_3_0_AnsP_3 & [network_0_3_AnnP_1!=poll__networl_0_3_AnnP_1 & [network_3_3_RI_3!=poll__networl_3_3_RI_3 & [network_3_3_AI_1!=poll__networl_3_3_AI_1 & [network_1_0_AI_1!=poll__networl_1_0_AI_1 & [network_0_1_RP_3!=poll__networl_0_1_RP_3 & [network_2_2_RP_3!=poll__networl_2_2_RP_3 & [network_0_0_RI_3!=poll__networl_0_0_RI_3 & [network_3_3_RP_3!=poll__networl_3_3_RP_3 & [network_0_0_AI_0!=poll__networl_0_0_AI_0 & [network_3_0_RI_0!=poll__networl_3_0_RI_0 & [network_3_2_RP_3!=poll__networl_3_2_RP_3 & [network_1_1_AI_1!=poll__networl_1_1_AI_1 & [network_1_2_AnnP_3!=poll__networl_1_2_AnnP_3 & [network_3_3_AskP_0!=poll__networl_3_3_AskP_0 & [network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [network_3_0_AI_2!=poll__networl_3_0_AI_2 & [network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_1_2_AnsP_3!=poll__networl_1_2_AnsP_3 & [network_3_0_AskP_3!=poll__networl_3_0_AskP_3 & [network_2_1_RI_1!=poll__networl_2_1_RI_1 & [network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_3_3_AnsP_1!=poll__networl_3_3_AnsP_1 & [network_3_1_RI_1!=poll__networl_3_1_RI_1 & [network_1_2_AI_3!=poll__networl_1_2_AI_3 & [network_0_3_RI_0!=poll__networl_0_3_RI_0 & [network_3_0_AnsP_2!=poll__networl_3_0_AnsP_2 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_3_3_RP_1!=poll__networl_3_3_RP_1 & [network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [network_1_3_AI_1!=poll__networl_1_3_AI_1 & [network_0_3_AI_3!=poll__networl_0_3_AI_3 & [network_3_3_AI_2!=poll__networl_3_3_AI_2 & [network_0_3_AnsP_1!=poll__networl_0_3_AnsP_1 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [network_2_2_RP_1!=poll__networl_2_2_RP_1 & [network_3_1_RP_0!=poll__networl_3_1_RP_0 & [network_2_0_AnsP_3!=poll__networl_2_0_AnsP_3 & [network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_3_2_RP_1!=poll__networl_3_2_RP_1 & [network_3_2_RP_2!=poll__networl_3_2_RP_2 & [network_0_3_AskP_0!=poll__networl_0_3_AskP_0 & [network_3_0_RP_0!=poll__networl_3_0_RP_0 & [network_3_3_AnnP_1!=poll__networl_3_3_AnnP_1 & [network_1_0_RP_3!=poll__networl_1_0_RP_3 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [network_0_0_AskP_1!=poll__networl_0_0_AskP_1 & [network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [network_0_3_AI_0!=poll__networl_0_3_AI_0 & [network_1_3_AskP_3!=poll__networl_1_3_AskP_3 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_3_RI_1!=poll__networl_2_3_RI_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_1_2_RP_3!=poll__networl_1_2_RP_3 & [network_3_2_AI_1!=poll__networl_3_2_AI_1 & [network_1_3_RI_3!=poll__networl_1_3_RI_3 & [network_2_2_AskP_3!=poll__networl_2_2_AskP_3 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_3_AskP_2!=poll__networl_2_3_AskP_2 & [network_3_3_RI_1!=poll__networl_3_3_RI_1 & [network_3_0_RI_3!=poll__networl_3_0_RI_3 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_3_2_AnsP_1!=poll__networl_3_2_AnsP_1 & [network_2_3_AskP_1!=poll__networl_2_3_AskP_1 & [network_3_1_AnnP_2!=poll__networl_3_1_AnnP_2 & [network_3_3_AI_3!=poll__networl_3_3_AI_3 & [network_2_1_AnsP_3!=poll__networl_2_1_AnsP_3 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_0_3_AnnP_3!=poll__networl_0_3_AnnP_3 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_3_2_AskP_0!=poll__networl_3_2_AskP_0 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0 & [network_3_2_AnnP_3!=poll__networl_3_2_AnnP_3 & [network_3_3_AskP_3!=poll__networl_3_3_AskP_3 & [network_3_1_RP_2!=poll__networl_3_1_RP_2 & [network_1_2_RI_1!=poll__networl_1_2_RI_1 & [network_1_0_AI_0!=poll__networl_1_0_AI_0 & [network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [network_1_2_AI_0!=poll__networl_1_2_AI_0 & [network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1 & [network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [network_1_3_AI_0!=poll__networl_1_3_AI_0 & [network_0_2_RP_1!=poll__networl_0_2_RP_1 & [network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2 & [network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [network_1_2_RP_0!=poll__networl_1_2_RP_0 & [network_1_2_RI_3!=poll__networl_1_2_RI_3 & [network_2_0_AskP_0!=poll__networl_2_0_AskP_0 & [network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1 & [network_0_2_AskP_3!=poll__networl_0_2_AskP_3 & [network_1_3_AI_2!=poll__networl_1_3_AI_2 & [network_1_3_AnsP_2!=poll__networl_1_3_AnsP_2 & [network_0_2_AI_3!=poll__networl_0_2_AI_3 & [network_1_2_AI_2!=poll__networl_1_2_AI_2 & [network_2_0_RP_0!=poll__networl_2_0_RP_0 & [network_3_2_RP_0!=poll__networl_3_2_RP_0 & [network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [network_2_0_AI_0!=poll__networl_2_0_AI_0 & [network_3_2_RI_1!=poll__networl_3_2_RI_1 & [network_0_2_AI_1!=poll__networl_0_2_AI_1 & [network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [network_3_0_RP_2!=poll__networl_3_0_RP_2 & [network_2_2_AI_2!=poll__networl_2_2_AI_2 & [network_0_1_AskP_3!=poll__networl_0_1_AskP_3 & [network_1_1_RI_0!=poll__networl_1_1_RI_0 & [network_0_1_RI_3!=poll__networl_0_1_RI_3 & [network_1_2_RP_2!=poll__networl_1_2_RP_2 & [network_0_3_AnnP_2!=poll__networl_0_3_AnnP_2 & [network_3_1_AnsP_2!=poll__networl_3_1_AnsP_2 & [network_1_3_AnnP_2!=poll__networl_1_3_AnnP_2 & [network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [network_1_2_AskP_3!=poll__networl_1_2_AskP_3 & [network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [network_1_3_AskP_2!=poll__networl_1_3_AskP_2 & [network_2_2_RI_0!=poll__networl_2_2_RI_0 & [network_0_0_AI_2!=poll__networl_0_0_AI_2 & [network_2_3_AI_3!=poll__networl_2_3_AI_3 & [network_3_2_AskP_2!=poll__networl_3_2_AskP_2 & [network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0 & [network_3_0_AnnP_0!=poll__networl_3_0_AnnP_0 & [network_1_3_RP_1!=poll__networl_1_3_RP_1 & [network_3_3_AskP_2!=poll__networl_3_3_AskP_2 & [network_3_3_RP_2!=poll__networl_3_3_RP_2 & [network_0_1_AskP_2!=poll__networl_0_1_AskP_2 & [network_1_0_RI_2!=poll__networl_1_0_RI_2 & [network_2_2_RI_3!=poll__networl_2_2_RI_3 & [network_3_0_AskP_1!=poll__networl_3_0_AskP_1 & [network_0_3_AskP_1!=poll__networl_0_3_AskP_1 & [network_0_0_RI_2!=poll__networl_0_0_RI_2 & [network_3_3_AI_0!=poll__networl_3_3_AI_0 & [network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0 & [network_3_0_AnnP_1!=poll__networl_3_0_AnnP_1 & [network_3_2_AnsP_3!=poll__networl_3_2_AnsP_3 & [network_2_0_AskP_1!=poll__networl_2_0_AskP_1 & [network_3_2_AI_3!=poll__networl_3_2_AI_3 & [network_1_3_RP_2!=poll__networl_1_3_RP_2 & [network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [network_1_3_AI_3!=poll__networl_1_3_AI_3 & [network_3_3_AnnP_2!=poll__networl_3_3_AnnP_2 & [network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0 & [network_0_2_RP_0!=poll__networl_0_2_RP_0 & [network_2_0_AnnP_3!=poll__networl_2_0_AnnP_3 & [network_0_2_RI_1!=poll__networl_0_2_RI_1 & [network_1_3_RI_2!=poll__networl_1_3_RI_2 & [network_0_0_RP_3!=poll__networl_0_0_RP_3 & [network_1_0_AI_2!=poll__networl_1_0_AI_2 & [network_3_0_AI_3!=poll__networl_3_0_AI_3 & [network_2_3_RI_3!=poll__networl_2_3_RI_3 & [network_3_1_AskP_1!=poll__networl_3_1_AskP_1 & [network_2_2_AnsP_3!=poll__networl_2_2_AnsP_3 & [network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0 & [network_0_2_AnsP_3!=poll__networl_0_2_AnsP_3 & [network_1_1_RP_0!=poll__networl_1_1_RP_0 & [network_1_0_AskP_3!=poll__networl_1_0_AskP_3 & [network_1_3_RI_0!=poll__networl_1_3_RI_0 & [network_3_0_RP_1!=poll__networl_3_0_RP_1 & [network_1_1_AnsP_3!=poll__networl_1_1_AnsP_3 & [network_0_3_AskP_2!=poll__networl_0_3_AskP_2 & [network_1_1_RP_2!=poll__networl_1_1_RP_2 & [network_2_3_RI_2!=poll__networl_2_3_RI_2 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] | [polling_1!=electionFailed_1 & [polling_3!=electionFailed_3 & [polling_2!=electionFailed_2 & [polling_0!=electionFailed_0 & true]]]]]]]]

-> the formula is TRUE

FORMULA p_10_placecomparison_eq_or_notx TRUE TECHNIQUES DECISION_DIAGRAMS

mc time: 0m0sec

checking: AG [[[network_2_2_RP_2!=poll__networl_2_2_RP_2 & [[[[[[[[[[[[network_2_3_AskP_3!=poll__networl_2_3_AskP_3 & [[[[[[[[[[[[[[[[[[[[[network_0_0_AskP_3!=poll__networl_0_0_AskP_3 & [[[[[[[[network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_1_AnsP_3!=poll__networl_0_1_AnsP_3 & [[[[[[[[network_2_1_AnnP_3!=poll__networl_2_1_AnnP_3 & [network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [[[[[[network_2_3_AnsP_0!=poll__networl_2_3_AnsP_0 & [[[[[[[[network_0_3_RP_2!=poll__networl_0_3_RP_2 & [network_3_2_AskP_3!=poll__networl_3_2_AskP_3 & [network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [[[[[network_0_2_AnnP_3!=poll__networl_0_2_AnnP_3 & [[[network_2_0_RI_0!=poll__networl_2_0_RI_0 & [network_3_0_AnsP_0!=poll__networl_3_0_AnsP_0 & [[[network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0 & [network_2_1_RP_0!=poll__networl_2_1_RP_0 & [[network_3_1_RP_3!=poll__networl_3_1_RP_3 & [[network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [network_2_0_AskP_2!=poll__networl_2_0_AskP_2 & [network_0_3_AnsP_2!=poll__networl_0_3_AnsP_2 & [[[[[[[[[[network_1_3_AnsP_1!=poll__networl_1_3_AnsP_1 & [[[[[[[[[[[[[[[[network_3_0_RP_3!=poll__networl_3_0_RP_3 & [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[network_1_3_RI_1!=poll__networl_1_3_RI_1 & [[network_2_0_RP_1!=poll__networl_2_0_RP_1 & [[[[network_0_2_RP_3!=poll__networl_0_2_RP_3 & [network_2_2_AnnP_3!=poll__networl_2_2_AnnP_3 & [network_3_0_AskP_0!=poll__networl_3_0_AskP_0 & [[network_1_1_AI_2!=poll__networl_1_1_AI_2 & [[network_3_2_RI_2!=poll__networl_3_2_RI_2 & [[network_0_3_RP_1!=poll__networl_0_3_RP_1 & [[[[[[[[[network_1_1_RP_3!=poll__networl_1_1_RP_3 & [network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0 & [[network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_3_AnsP_1!=poll__networl_2_3_AnsP_1 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_3_0_AnnP_3!=poll__networl_3_0_AnnP_3 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_2_3_AI_0!=poll__networl_2_3_AI_0 & [[[[[[[network_3_3_RI_2!=poll__networl_3_3_RI_2 & [network_2_0_RI_3!=poll__networl_2_0_RI_3 & [[network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_1_1_RI_3!=poll__networl_1_1_RI_3 & [network_1_0_RI_3!=poll__networl_1_0_RI_3 & [[network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_3_2_AnsP_2!=poll__networl_3_2_AnsP_2 & [[[network_2_1_RI_3!=poll__networl_2_1_RI_3 & [[network_3_1_RP_1!=poll__networl_3_1_RP_1 & [[network_0_3_RI_2!=poll__networl_0_3_RI_2 & [[network_2_2_AI_3!=poll__networl_2_2_AI_3 & [network_3_0_RI_2!=poll__networl_3_0_RI_2 & [[network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_3_2_AI_0!=poll__networl_3_2_AI_0 & [network_3_0_AnsP_3!=poll__networl_3_0_AnsP_3 & [[[network_3_3_AI_1!=poll__networl_3_3_AI_1 & [[[network_2_2_RP_3!=poll__networl_2_2_RP_3 & [network_0_0_RI_3!=poll__networl_0_0_RI_3 & [network_3_3_RP_3!=poll__networl_3_3_RP_3 & [network_0_0_AI_0!=poll__networl_0_0_AI_0 & [network_3_0_RI_0!=poll__networl_3_0_RI_0 & [network_3_2_RP_3!=poll__networl_3_2_RP_3 & [network_1_1_AI_1!=poll__networl_1_1_AI_1 & [network_1_2_AnnP_3!=poll__networl_1_2_AnnP_3 & [network_3_3_AskP_0!=poll__networl_3_3_AskP_0 & [[network_0_2_RI_0!=poll__networl_0_2_RI_0 & [[[network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_1_2_AnsP_3!=poll__networl_1_2_AnsP_3 & [network_3_0_AskP_3!=poll__networl_3_0_AskP_3 & [[network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_3_3_AnsP_1!=poll__networl_3_3_AnsP_1 & [network_3_1_RI_1!=poll__networl_3_1_RI_1 & [network_1_2_AI_3!=poll__networl_1_2_AI_3 & [network_0_3_RI_0!=poll__networl_0_3_RI_0 & [network_3_0_AnsP_2!=poll__networl_3_0_AnsP_2 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_3_3_RP_1!=poll__networl_3_3_RP_1 & [[network_1_3_AI_1!=poll__networl_1_3_AI_1 & [[[network_0_3_AnsP_1!=poll__networl_0_3_AnsP_1 & [[[network_3_1_RP_0!=poll__networl_3_1_RP_0 & [network_2_0_AnsP_3!=poll__networl_2_0_AnsP_3 & [[network_3_2_RP_1!=poll__networl_3_2_RP_1 & [[[network_3_0_RP_0!=poll__networl_3_0_RP_0 & [[[[[network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [[network_1_3_AskP_3!=poll__networl_1_3_AskP_3 & [[network_2_3_RI_1!=poll__networl_2_3_RI_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_1_2_RP_3!=poll__networl_1_2_RP_3 & [network_3_2_AI_1!=poll__networl_3_2_AI_1 & [network_1_3_RI_3!=poll__networl_1_3_RI_3 & [network_2_2_AskP_3!=poll__networl_2_2_AskP_3 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_3_AskP_2!=poll__networl_2_3_AskP_2 & [network_3_3_RI_1!=poll__networl_3_3_RI_1 & [network_3_0_RI_3!=poll__networl_3_0_RI_3 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_3_2_AnsP_1!=poll__networl_3_2_AnsP_1 & [network_2_3_AskP_1!=poll__networl_2_3_AskP_1 & [network_3_1_AnnP_2!=poll__networl_3_1_AnnP_2 & [network_3_3_AI_3!=poll__networl_3_3_AI_3 & [network_2_1_AnsP_3!=poll__networl_2_1_AnsP_3 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_0_3_AnnP_3!=poll__networl_0_3_AnnP_3 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_3_2_AskP_0!=poll__networl_3_2_AskP_0 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0 & [network_3_2_AnnP_3!=poll__networl_3_2_AnnP_3 & [network_3_3_AskP_3!=poll__networl_3_3_AskP_3 & [network_3_1_RP_2!=poll__networl_3_1_RP_2 & [network_1_2_RI_1!=poll__networl_1_2_RI_1 & [network_1_0_AI_0!=poll__networl_1_0_AI_0 & [network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [network_1_2_AI_0!=poll__networl_1_2_AI_0 & [network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1 & [network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [network_1_3_AI_0!=poll__networl_1_3_AI_0 & [network_0_2_RP_1!=poll__networl_0_2_RP_1 & [network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2 & [network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [network_1_2_RP_0!=poll__networl_1_2_RP_0 & [network_1_2_RI_3!=poll__networl_1_2_RI_3 & [network_2_0_AskP_0!=poll__networl_2_0_AskP_0 & [network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1 & [network_0_2_AskP_3!=poll__networl_0_2_AskP_3 & [network_1_3_AI_2!=poll__networl_1_3_AI_2 & [network_1_3_AnsP_2!=poll__networl_1_3_AnsP_2 & [network_0_2_AI_3!=poll__networl_0_2_AI_3 & [network_1_2_AI_2!=poll__networl_1_2_AI_2 & [network_2_0_RP_0!=poll__networl_2_0_RP_0 & [network_3_2_RP_0!=poll__networl_3_2_RP_0 & [network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [network_2_0_AI_0!=poll__networl_2_0_AI_0 & [network_3_2_RI_1!=poll__networl_3_2_RI_1 & [network_0_2_AI_1!=poll__networl_0_2_AI_1 & [network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [network_3_0_RP_2!=poll__networl_3_0_RP_2 & [network_2_2_AI_2!=poll__networl_2_2_AI_2 & [network_0_1_AskP_3!=poll__networl_0_1_AskP_3 & [network_1_1_RI_0!=poll__networl_1_1_RI_0 & [network_0_1_RI_3!=poll__networl_0_1_RI_3 & [network_1_2_RP_2!=poll__networl_1_2_RP_2 & [network_0_3_AnnP_2!=poll__networl_0_3_AnnP_2 & [network_3_1_AnsP_2!=poll__networl_3_1_AnsP_2 & [network_1_3_AnnP_2!=poll__networl_1_3_AnnP_2 & [network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [network_1_2_AskP_3!=poll__networl_1_2_AskP_3 & [network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [network_1_3_AskP_2!=poll__networl_1_3_AskP_2 & [network_2_2_RI_0!=poll__networl_2_2_RI_0 & [network_0_0_AI_2!=poll__networl_0_0_AI_2 & [network_2_3_AI_3!=poll__networl_2_3_AI_3 & [network_3_2_AskP_2!=poll__networl_3_2_AskP_2 & [network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0 & [network_3_0_AnnP_0!=poll__networl_3_0_AnnP_0 & [network_1_3_RP_1!=poll__networl_1_3_RP_1 & [network_3_3_AskP_2!=poll__networl_3_3_AskP_2 & [network_3_3_RP_2!=poll__networl_3_3_RP_2 & [network_0_1_AskP_2!=poll__networl_0_1_AskP_2 & [network_1_0_RI_2!=poll__networl_1_0_RI_2 & [network_2_2_RI_3!=poll__networl_2_2_RI_3 & [network_3_0_AskP_1!=poll__networl_3_0_AskP_1 & [network_0_3_AskP_1!=poll__networl_0_3_AskP_1 & [network_0_0_RI_2!=poll__networl_0_0_RI_2 & [network_3_3_AI_0!=poll__networl_3_3_AI_0 & [network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0 & [network_3_0_AnnP_1!=poll__networl_3_0_AnnP_1 & [network_3_2_AnsP_3!=poll__networl_3_2_AnsP_3 & [network_2_0_AskP_1!=poll__networl_2_0_AskP_1 & [network_3_2_AI_3!=poll__networl_3_2_AI_3 & [network_1_3_RP_2!=poll__networl_1_3_RP_2 & [network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [network_1_3_AI_3!=poll__networl_1_3_AI_3 & [network_3_3_AnnP_2!=poll__networl_3_3_AnnP_2 & [[[[[[network_1_3_RI_2!=poll__networl_1_3_RI_2 & [network_0_0_RP_3!=poll__networl_0_0_RP_3 & [[[[[[network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0 & [[network_1_1_RP_0!=poll__networl_1_1_RP_0 & [[network_1_3_RI_0!=poll__networl_1_3_RI_0 & [[network_1_1_AnsP_3!=poll__networl_1_1_AnsP_3 & [[[true & network_2_3_RI_2!=poll__networl_2_3_RI_2] & network_1_1_RP_2!=poll__networl_1_1_RP_2] & network_0_3_AskP_2!=poll__networl_0_3_AskP_2]] & network_3_0_RP_1!=poll__networl_3_0_RP_1]] & network_1_0_AskP_3!=poll__networl_1_0_AskP_3]] & network_0_2_AnsP_3!=poll__networl_0_2_AnsP_3]] & network_2_2_AnsP_3!=poll__networl_2_2_AnsP_3] & network_3_1_AskP_1!=poll__networl_3_1_AskP_1] & network_2_3_RI_3!=poll__networl_2_3_RI_3] & network_3_0_AI_3!=poll__networl_3_0_AI_3] & network_1_0_AI_2!=poll__networl_1_0_AI_2]]] & network_0_2_RI_1!=poll__networl_0_2_RI_1] & network_2_0_AnnP_3!=poll__networl_2_0_AnnP_3] & network_0_2_RP_0!=poll__networl_0_2_RP_0] & network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0] & network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & network_0_1_AskP_1!=poll__networl_0_1_AskP_1]] & network_0_3_AI_0!=poll__networl_0_3_AI_0]] & network_0_0_AskP_1!=poll__networl_0_0_AskP_1] & network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2] & network_1_0_RP_3!=poll__networl_1_0_RP_3] & network_3_3_AnnP_1!=poll__networl_3_3_AnnP_1]] & network_0_3_AskP_0!=poll__networl_0_3_AskP_0] & network_3_2_RP_2!=poll__networl_3_2_RP_2]] & network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2]]] & network_2_2_RP_1!=poll__networl_2_2_RP_1] & network_0_1_AskP_0!=poll__networl_0_1_AskP_0]] & network_3_3_AI_2!=poll__networl_3_3_AI_2] & network_0_3_AI_3!=poll__networl_0_3_AI_3]] & network_0_2_AskP_0!=poll__networl_0_2_AskP_0]]]]]]]]] & network_2_1_RI_1!=poll__networl_2_1_RI_1]]]] & network_3_0_AI_2!=poll__networl_3_0_AI_2] & network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1]] & network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1]]]]]]]]]] & network_0_1_RP_3!=poll__networl_0_1_RP_3] & network_1_0_AI_1!=poll__networl_1_0_AI_1]] & network_3_3_RI_3!=poll__networl_3_3_RI_3] & network_0_3_AnnP_1!=poll__networl_0_3_AnnP_1]]]] & network_1_0_AnnP_3!=poll__networl_1_0_AnnP_3]]] & network_2_3_AnnP_2!=poll__networl_2_3_AnnP_2]] & network_3_1_AI_3!=poll__networl_3_1_AI_3]] & network_2_0_RI_2!=poll__networl_2_0_RI_2]] & network_2_3_AnnP_3!=poll__networl_2_3_AnnP_3] & network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1]]] & network_0_0_RI_0!=poll__networl_0_0_RI_0]]]] & network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2]]] & network_1_1_AI_3!=poll__networl_1_1_AI_3] & network_3_3_AskP_1!=poll__networl_3_3_AskP_1] & network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0] & network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0] & network_0_3_AnsP_0!=poll__networl_0_3_AnsP_0] & network_3_2_AI_2!=poll__networl_3_2_AI_2]]]]]]]] & network_0_3_RI_1!=poll__networl_0_3_RI_1]]] & network_1_2_AI_1!=poll__networl_1_2_AI_1] & network_2_3_RP_3!=poll__networl_2_3_RP_3] & network_1_3_AnsP_0!=poll__networl_1_3_AnsP_0] & network_3_1_AnsP_3!=poll__networl_3_1_AnsP_3] & network_3_1_AI_0!=poll__networl_3_1_AI_0] & network_3_2_AskP_1!=poll__networl_3_2_AskP_1] & network_3_1_AnnP_3!=poll__networl_3_1_AnnP_3] & network_1_0_AI_3!=poll__networl_1_0_AI_3]] & network_1_3_AnsP_3!=poll__networl_1_3_AnsP_3]] & network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2]] & network_2_2_AskP_0!=poll__networl_2_2_AskP_0]]]] & network_0_2_RP_2!=poll__networl_0_2_RP_2] & network_2_0_AI_3!=poll__networl_2_0_AI_3] & network_3_1_RI_0!=poll__networl_3_1_RI_0]] & network_3_0_AI_0!=poll__networl_3_0_AI_0]] & network_0_0_RP_2!=poll__networl_0_0_RP_2] & network_3_1_AskP_3!=poll__networl_3_1_AskP_3] & network_1_2_AskP_2!=poll__networl_1_2_AskP_2] & network_2_3_AI_2!=poll__networl_2_3_AI_2] & network_3_0_RI_1!=poll__networl_3_0_RI_1] & network_2_1_RP_3!=poll__networl_2_1_RP_3] & network_2_1_AI_0!=poll__networl_2_1_AI_0] & network_0_1_AI_3!=poll__networl_0_1_AI_3] & network_1_3_AskP_1!=poll__networl_1_3_AskP_1] & network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0] & network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1] & network_0_3_RI_3!=poll__networl_0_3_RI_3] & network_0_1_RP_0!=poll__networl_0_1_RP_0] & network_3_1_RI_2!=poll__networl_3_1_RI_2] & network_0_0_AI_3!=poll__networl_0_0_AI_3] & network_1_3_AnnP_3!=poll__networl_1_3_AnnP_3] & network_3_3_AnsP_0!=poll__networl_3_3_AnsP_0] & network_3_1_AnnP_1!=poll__networl_3_1_AnnP_1] & network_2_1_AI_3!=poll__networl_2_1_AI_3] & network_0_3_AnsP_3!=poll__networl_0_3_AnsP_3] & network_2_1_AI_1!=poll__networl_2_1_AI_1] & network_2_0_RI_1!=poll__networl_2_0_RI_1] & network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2] & network_2_3_AI_1!=poll__networl_2_3_AI_1] & network_0_1_AI_1!=poll__networl_0_1_AI_1] & network_3_2_RI_3!=poll__networl_3_2_RI_3] & network_3_0_AnsP_1!=poll__networl_3_0_AnsP_1] & network_3_3_AnnP_0!=poll__networl_3_3_AnnP_0] & network_0_1_AI_0!=poll__networl_0_1_AI_0] & network_3_2_AnsP_0!=poll__networl_3_2_AnsP_0] & network_0_0_RP_0!=poll__networl_0_0_RP_0] & network_2_1_AskP_3!=poll__networl_2_1_AskP_3] & network_3_0_AI_1!=poll__networl_3_0_AI_1] & network_1_3_RP_3!=poll__networl_1_3_RP_3] & network_2_3_RP_1!=poll__networl_2_3_RP_1] & network_0_1_RI_0!=poll__networl_0_1_RI_0]] & network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1] & network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1] & network_1_3_AnnP_1!=poll__networl_1_3_AnnP_1] & network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1] & network_0_1_RP_2!=poll__networl_0_1_RP_2] & network_2_0_RP_3!=poll__networl_2_0_RP_3] & network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2] & network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2] & network_2_3_AskP_0!=poll__networl_2_3_AskP_0] & network_1_2_AskP_0!=poll__networl_1_2_AskP_0] & network_2_2_RI_2!=poll__networl_2_2_RI_2] & network_0_0_AnnP_3!=poll__networl_0_0_AnnP_3] & network_0_3_RP_0!=poll__networl_0_3_RP_0] & network_1_0_RI_1!=poll__networl_1_0_RI_1] & network_0_3_RP_3!=poll__networl_0_3_RP_3]] & network_3_0_AnnP_2!=poll__networl_3_0_AnnP_2] & network_3_2_AnnP_1!=poll__networl_3_2_AnnP_1] & network_0_3_AskP_3!=poll__networl_0_3_AskP_3] & network_1_2_RI_2!=poll__networl_1_2_RI_2] & network_0_3_AI_1!=poll__networl_0_3_AI_1] & network_1_3_RP_0!=poll__networl_1_3_RP_0] & network_0_0_AnsP_3!=poll__networl_0_0_AnsP_3] & network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0] & network_1_1_AskP_2!=poll__networl_1_1_AskP_2]]]]]]] & network_3_3_AnsP_3!=poll__networl_3_3_AnsP_3]] & network_3_1_AI_2!=poll__networl_3_1_AI_2]]] & network_0_3_AI_2!=poll__networl_0_3_AI_2] & network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1]]] & network_0_2_AskP_1!=poll__networl_0_2_AskP_1] & network_2_2_RP_0!=poll__networl_2_2_RP_0]] & network_0_0_AI_1!=poll__networl_0_0_AI_1] & network_2_3_AnnP_1!=poll__networl_2_3_AnnP_1] & network_3_1_AskP_2!=poll__networl_3_1_AskP_2] & network_2_2_RI_1!=poll__networl_2_2_RI_1]]]]]]] & network_1_1_RP_1!=poll__networl_1_1_RP_1] & network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1] & network_2_3_AnsP_2!=poll__networl_2_3_AnsP_2] & network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0] & network_0_0_AskP_0!=poll__networl_0_0_AskP_0] & network_1_0_AskP_1!=poll__networl_1_0_AskP_1] & network_0_1_RI_1!=poll__networl_0_1_RI_1]] & network_2_3_AnnP_0!=poll__networl_2_3_AnnP_0] & network_1_0_RP_1!=poll__networl_1_0_RP_1] & network_3_3_AnnP_3!=poll__networl_3_3_AnnP_3] & network_0_1_AnnP_3!=poll__networl_0_1_AnnP_3] & network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2]]] & network_0_2_RI_3!=poll__networl_0_2_RI_3] & network_3_3_RP_0!=poll__networl_3_3_RP_0] & network_3_1_AskP_0!=poll__networl_3_1_AskP_0] & network_0_1_RP_1!=poll__networl_0_1_RP_1] & network_0_2_AskP_2!=poll__networl_0_2_AskP_2] & network_1_1_AnnP_3!=poll__networl_1_1_AnnP_3] & network_3_1_AnnP_0!=poll__networl_3_1_AnnP_0]]] & network_3_2_AnnP_2!=poll__networl_3_2_AnnP_2] & network_3_2_RI_0!=poll__networl_3_2_RI_0] & network_0_0_RP_1!=poll__networl_0_0_RP_1] & network_1_1_RI_1!=poll__networl_1_1_RI_1] & network_3_3_AnsP_2!=poll__networl_3_3_AnsP_2] & network_3_1_AnsP_1!=poll__networl_3_1_AnsP_1] & network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2]] & network_2_3_RP_2!=poll__networl_2_3_RP_2] & network_0_2_AI_2!=poll__networl_0_2_AI_2] & network_2_0_AI_1!=poll__networl_2_0_AI_1] & network_2_2_AskP_1!=poll__networl_2_2_AskP_1] & network_1_3_AnnP_0!=poll__networl_1_3_AnnP_0] & network_1_0_AnsP_3!=poll__networl_1_0_AnsP_3] & network_3_0_AskP_2!=poll__networl_3_0_AskP_2] & network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2] & network_2_0_AskP_3!=poll__networl_2_0_AskP_3] & network_3_2_AnnP_0!=poll__networl_3_2_AnnP_0] & network_3_1_RI_3!=poll__networl_3_1_RI_3] & network_3_3_RI_0!=poll__networl_3_3_RI_0] & network_0_2_RI_2!=poll__networl_0_2_RI_2] & network_1_1_AskP_3!=poll__networl_1_1_AskP_3] & network_3_1_AI_1!=poll__networl_3_1_AI_1] & network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0] & network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0] & network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0] & network_3_1_AnsP_0!=poll__networl_3_1_AnsP_0] & network_0_2_AI_0!=poll__networl_0_2_AI_0]] & network_2_3_AnsP_3!=poll__networl_2_3_AnsP_3] & network_2_3_RI_0!=poll__networl_2_3_RI_0] & network_0_1_AI_2!=poll__networl_0_1_AI_2] & network_0_3_AnnP_0!=poll__networl_0_3_AnnP_0] & network_2_0_AI_2!=poll__networl_2_0_AI_2] & network_1_2_RI_0!=poll__networl_1_2_RI_0] & network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2] & network_2_3_RP_0!=poll__networl_2_3_RP_0] & network_1_3_AskP_0!=poll__networl_1_3_AskP_0] & network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2] & network_1_0_RI_0!=poll__networl_1_0_RI_0]] <-> [[[[true & polling_0!=electionFailed_0] & polling_2!=electionFailed_2] & polling_3!=electionFailed_3] & polling_1!=electionFailed_1]]]
normalized: ~ [E [true U ~ [[[~ [[polling_1!=electionFailed_1 & [polling_3!=electionFailed_3 & [polling_2!=electionFailed_2 & [polling_0!=electionFailed_0 & true]]]]] & ~ [[network_2_2_RP_2!=poll__networl_2_2_RP_2 & [network_1_0_RI_0!=poll__networl_1_0_RI_0 & [network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2 & [network_1_3_AskP_0!=poll__networl_1_3_AskP_0 & [network_2_3_RP_0!=poll__networl_2_3_RP_0 & [network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2 & [network_1_2_RI_0!=poll__networl_1_2_RI_0 & [network_2_0_AI_2!=poll__networl_2_0_AI_2 & [network_0_3_AnnP_0!=poll__networl_0_3_AnnP_0 & [network_0_1_AI_2!=poll__networl_0_1_AI_2 & [network_2_3_RI_0!=poll__networl_2_3_RI_0 & [network_2_3_AnsP_3!=poll__networl_2_3_AnsP_3 & [network_2_3_AskP_3!=poll__networl_2_3_AskP_3 & [network_0_2_AI_0!=poll__networl_0_2_AI_0 & [network_3_1_AnsP_0!=poll__networl_3_1_AnsP_0 & [network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0 & [network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0 & [network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0 & [network_3_1_AI_1!=poll__networl_3_1_AI_1 & [network_1_1_AskP_3!=poll__networl_1_1_AskP_3 & [network_0_2_RI_2!=poll__networl_0_2_RI_2 & [network_3_3_RI_0!=poll__networl_3_3_RI_0 & [network_3_1_RI_3!=poll__networl_3_1_RI_3 & [network_3_2_AnnP_0!=poll__networl_3_2_AnnP_0 & [network_2_0_AskP_3!=poll__networl_2_0_AskP_3 & [network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [network_3_0_AskP_2!=poll__networl_3_0_AskP_2 & [network_1_0_AnsP_3!=poll__networl_1_0_AnsP_3 & [network_1_3_AnnP_0!=poll__networl_1_3_AnnP_0 & [network_2_2_AskP_1!=poll__networl_2_2_AskP_1 & [network_2_0_AI_1!=poll__networl_2_0_AI_1 & [network_0_2_AI_2!=poll__networl_0_2_AI_2 & [network_2_3_RP_2!=poll__networl_2_3_RP_2 & [network_0_0_AskP_3!=poll__networl_0_0_AskP_3 & [network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2 & [network_3_1_AnsP_1!=poll__networl_3_1_AnsP_1 & [network_3_3_AnsP_2!=poll__networl_3_3_AnsP_2 & [network_1_1_RI_1!=poll__networl_1_1_RI_1 & [network_0_0_RP_1!=poll__networl_0_0_RP_1 & [network_3_2_RI_0!=poll__networl_3_2_RI_0 & [network_3_2_AnnP_2!=poll__networl_3_2_AnnP_2 & [network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_1_AnsP_3!=poll__networl_0_1_AnsP_3 & [network_3_1_AnnP_0!=poll__networl_3_1_AnnP_0 & [network_1_1_AnnP_3!=poll__networl_1_1_AnnP_3 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [network_0_1_RP_1!=poll__networl_0_1_RP_1 & [network_3_1_AskP_0!=poll__networl_3_1_AskP_0 & [network_3_3_RP_0!=poll__networl_3_3_RP_0 & [network_0_2_RI_3!=poll__networl_0_2_RI_3 & [network_2_1_AnnP_3!=poll__networl_2_1_AnnP_3 & [network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_0_1_AnnP_3!=poll__networl_0_1_AnnP_3 & [network_3_3_AnnP_3!=poll__networl_3_3_AnnP_3 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [network_2_3_AnnP_0!=poll__networl_2_3_AnnP_0 & [network_2_3_AnsP_0!=poll__networl_2_3_AnsP_0 & [network_0_1_RI_1!=poll__networl_0_1_RI_1 & [network_1_0_AskP_1!=poll__networl_1_0_AskP_1 & [network_0_0_AskP_0!=poll__networl_0_0_AskP_0 & [network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0 & [network_2_3_AnsP_2!=poll__networl_2_3_AnsP_2 & [network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1 & [network_1_1_RP_1!=poll__networl_1_1_RP_1 & [network_0_3_RP_2!=poll__networl_0_3_RP_2 & [network_3_2_AskP_3!=poll__networl_3_2_AskP_3 & [network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [network_2_2_RI_1!=poll__networl_2_2_RI_1 & [network_3_1_AskP_2!=poll__networl_3_1_AskP_2 & [network_2_3_AnnP_1!=poll__networl_2_3_AnnP_1 & [network_0_0_AI_1!=poll__networl_0_0_AI_1 & [network_0_2_AnnP_3!=poll__networl_0_2_AnnP_3 & [network_2_2_RP_0!=poll__networl_2_2_RP_0 & [network_0_2_AskP_1!=poll__networl_0_2_AskP_1 & [network_2_0_RI_0!=poll__networl_2_0_RI_0 & [network_3_0_AnsP_0!=poll__networl_3_0_AnsP_0 & [network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1 & [network_0_3_AI_2!=poll__networl_0_3_AI_2 & [network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0 & [network_2_1_RP_0!=poll__networl_2_1_RP_0 & [network_3_1_AI_2!=poll__networl_3_1_AI_2 & [network_3_1_RP_3!=poll__networl_3_1_RP_3 & [network_3_3_AnsP_3!=poll__networl_3_3_AnsP_3 & [network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [network_2_0_AskP_2!=poll__networl_2_0_AskP_2 & [network_0_3_AnsP_2!=poll__networl_0_3_AnsP_2 & [network_1_1_AskP_2!=poll__networl_1_1_AskP_2 & [network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0 & [network_0_0_AnsP_3!=poll__networl_0_0_AnsP_3 & [network_1_3_RP_0!=poll__networl_1_3_RP_0 & [network_0_3_AI_1!=poll__networl_0_3_AI_1 & [network_1_2_RI_2!=poll__networl_1_2_RI_2 & [network_0_3_AskP_3!=poll__networl_0_3_AskP_3 & [network_3_2_AnnP_1!=poll__networl_3_2_AnnP_1 & [network_3_0_AnnP_2!=poll__networl_3_0_AnnP_2 & [network_1_3_AnsP_1!=poll__networl_1_3_AnsP_1 & [network_0_3_RP_3!=poll__networl_0_3_RP_3 & [network_1_0_RI_1!=poll__networl_1_0_RI_1 & [network_0_3_RP_0!=poll__networl_0_3_RP_0 & [network_0_0_AnnP_3!=poll__networl_0_0_AnnP_3 & [network_2_2_RI_2!=poll__networl_2_2_RI_2 & [network_1_2_AskP_0!=poll__networl_1_2_AskP_0 & [network_2_3_AskP_0!=poll__networl_2_3_AskP_0 & [network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2 & [network_2_0_RP_3!=poll__networl_2_0_RP_3 & [network_0_1_RP_2!=poll__networl_0_1_RP_2 & [network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1 & [network_1_3_AnnP_1!=poll__networl_1_3_AnnP_1 & [network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1 & [network_3_0_RP_3!=poll__networl_3_0_RP_3 & [network_0_1_RI_0!=poll__networl_0_1_RI_0 & [network_2_3_RP_1!=poll__networl_2_3_RP_1 & [network_1_3_RP_3!=poll__networl_1_3_RP_3 & [network_3_0_AI_1!=poll__networl_3_0_AI_1 & [network_2_1_AskP_3!=poll__networl_2_1_AskP_3 & [network_0_0_RP_0!=poll__networl_0_0_RP_0 & [network_3_2_AnsP_0!=poll__networl_3_2_AnsP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [network_3_3_AnnP_0!=poll__networl_3_3_AnnP_0 & [network_3_0_AnsP_1!=poll__networl_3_0_AnsP_1 & [network_3_2_RI_3!=poll__networl_3_2_RI_3 & [network_0_1_AI_1!=poll__networl_0_1_AI_1 & [network_2_3_AI_1!=poll__networl_2_3_AI_1 & [network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2 & [network_2_0_RI_1!=poll__networl_2_0_RI_1 & [network_2_1_AI_1!=poll__networl_2_1_AI_1 & [network_0_3_AnsP_3!=poll__networl_0_3_AnsP_3 & [network_2_1_AI_3!=poll__networl_2_1_AI_3 & [network_3_1_AnnP_1!=poll__networl_3_1_AnnP_1 & [network_3_3_AnsP_0!=poll__networl_3_3_AnsP_0 & [network_1_3_AnnP_3!=poll__networl_1_3_AnnP_3 & [network_0_0_AI_3!=poll__networl_0_0_AI_3 & [network_3_1_RI_2!=poll__networl_3_1_RI_2 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [network_0_3_RI_3!=poll__networl_0_3_RI_3 & [network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1 & [network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_1_3_AskP_1!=poll__networl_1_3_AskP_1 & [network_0_1_AI_3!=poll__networl_0_1_AI_3 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [network_2_1_RP_3!=poll__networl_2_1_RP_3 & [network_3_0_RI_1!=poll__networl_3_0_RI_1 & [network_2_3_AI_2!=poll__networl_2_3_AI_2 & [network_1_2_AskP_2!=poll__networl_1_2_AskP_2 & [network_3_1_AskP_3!=poll__networl_3_1_AskP_3 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [network_1_3_RI_1!=poll__networl_1_3_RI_1 & [network_3_0_AI_0!=poll__networl_3_0_AI_0 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [network_3_1_RI_0!=poll__networl_3_1_RI_0 & [network_2_0_AI_3!=poll__networl_2_0_AI_3 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [network_0_2_RP_3!=poll__networl_0_2_RP_3 & [network_2_2_AnnP_3!=poll__networl_2_2_AnnP_3 & [network_3_0_AskP_0!=poll__networl_3_0_AskP_0 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [network_1_1_AI_2!=poll__networl_1_1_AI_2 & [network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2 & [network_3_2_RI_2!=poll__networl_3_2_RI_2 & [network_1_3_AnsP_3!=poll__networl_1_3_AnsP_3 & [network_0_3_RP_1!=poll__networl_0_3_RP_1 & [network_1_0_AI_3!=poll__networl_1_0_AI_3 & [network_3_1_AnnP_3!=poll__networl_3_1_AnnP_3 & [network_3_2_AskP_1!=poll__networl_3_2_AskP_1 & [network_3_1_AI_0!=poll__networl_3_1_AI_0 & [network_3_1_AnsP_3!=poll__networl_3_1_AnsP_3 & [network_1_3_AnsP_0!=poll__networl_1_3_AnsP_0 & [network_2_3_RP_3!=poll__networl_2_3_RP_3 & [network_1_2_AI_1!=poll__networl_1_2_AI_1 & [network_1_1_RP_3!=poll__networl_1_1_RP_3 & [network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0 & [network_0_3_RI_1!=poll__networl_0_3_RI_1 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_3_AnsP_1!=poll__networl_2_3_AnsP_1 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_3_0_AnnP_3!=poll__networl_3_0_AnnP_3 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_2_3_AI_0!=poll__networl_2_3_AI_0 & [network_3_2_AI_2!=poll__networl_3_2_AI_2 & [network_0_3_AnsP_0!=poll__networl_0_3_AnsP_0 & [network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [network_3_3_AskP_1!=poll__networl_3_3_AskP_1 & [network_1_1_AI_3!=poll__networl_1_1_AI_3 & [network_3_3_RI_2!=poll__networl_3_3_RI_2 & [network_2_0_RI_3!=poll__networl_2_0_RI_3 & [network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2 & [network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_1_1_RI_3!=poll__networl_1_1_RI_3 & [network_1_0_RI_3!=poll__networl_1_0_RI_3 & [network_0_0_RI_0!=poll__networl_0_0_RI_0 & [network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_3_2_AnsP_2!=poll__networl_3_2_AnsP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_3_AnnP_3!=poll__networl_2_3_AnnP_3 & [network_2_1_RI_3!=poll__networl_2_1_RI_3 & [network_2_0_RI_2!=poll__networl_2_0_RI_2 & [network_3_1_RP_1!=poll__networl_3_1_RP_1 & [network_3_1_AI_3!=poll__networl_3_1_AI_3 & [network_0_3_RI_2!=poll__networl_0_3_RI_2 & [network_2_3_AnnP_2!=poll__networl_2_3_AnnP_2 & [network_2_2_AI_3!=poll__networl_2_2_AI_3 & [network_3_0_RI_2!=poll__networl_3_0_RI_2 & [network_1_0_AnnP_3!=poll__networl_1_0_AnnP_3 & [network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_3_2_AI_0!=poll__networl_3_2_AI_0 & [network_3_0_AnsP_3!=poll__networl_3_0_AnsP_3 & [network_0_3_AnnP_1!=poll__networl_0_3_AnnP_1 & [network_3_3_RI_3!=poll__networl_3_3_RI_3 & [network_3_3_AI_1!=poll__networl_3_3_AI_1 & [network_1_0_AI_1!=poll__networl_1_0_AI_1 & [network_0_1_RP_3!=poll__networl_0_1_RP_3 & [network_2_2_RP_3!=poll__networl_2_2_RP_3 & [network_0_0_RI_3!=poll__networl_0_0_RI_3 & [network_3_3_RP_3!=poll__networl_3_3_RP_3 & [network_0_0_AI_0!=poll__networl_0_0_AI_0 & [network_3_0_RI_0!=poll__networl_3_0_RI_0 & [network_3_2_RP_3!=poll__networl_3_2_RP_3 & [network_1_1_AI_1!=poll__networl_1_1_AI_1 & [network_1_2_AnnP_3!=poll__networl_1_2_AnnP_3 & [network_3_3_AskP_0!=poll__networl_3_3_AskP_0 & [network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [network_3_0_AI_2!=poll__networl_3_0_AI_2 & [network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_1_2_AnsP_3!=poll__networl_1_2_AnsP_3 & [network_3_0_AskP_3!=poll__networl_3_0_AskP_3 & [network_2_1_RI_1!=poll__networl_2_1_RI_1 & [network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_3_3_AnsP_1!=poll__networl_3_3_AnsP_1 & [network_3_1_RI_1!=poll__networl_3_1_RI_1 & [network_1_2_AI_3!=poll__networl_1_2_AI_3 & [network_0_3_RI_0!=poll__networl_0_3_RI_0 & [network_3_0_AnsP_2!=poll__networl_3_0_AnsP_2 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_3_3_RP_1!=poll__networl_3_3_RP_1 & [network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [network_1_3_AI_1!=poll__networl_1_3_AI_1 & [network_0_3_AI_3!=poll__networl_0_3_AI_3 & [network_3_3_AI_2!=poll__networl_3_3_AI_2 & [network_0_3_AnsP_1!=poll__networl_0_3_AnsP_1 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [network_2_2_RP_1!=poll__networl_2_2_RP_1 & [network_3_1_RP_0!=poll__networl_3_1_RP_0 & [network_2_0_AnsP_3!=poll__networl_2_0_AnsP_3 & [network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_3_2_RP_1!=poll__networl_3_2_RP_1 & [network_3_2_RP_2!=poll__networl_3_2_RP_2 & [network_0_3_AskP_0!=poll__networl_0_3_AskP_0 & [network_3_0_RP_0!=poll__networl_3_0_RP_0 & [network_3_3_AnnP_1!=poll__networl_3_3_AnnP_1 & [network_1_0_RP_3!=poll__networl_1_0_RP_3 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [network_0_0_AskP_1!=poll__networl_0_0_AskP_1 & [network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [network_0_3_AI_0!=poll__networl_0_3_AI_0 & [network_1_3_AskP_3!=poll__networl_1_3_AskP_3 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_3_RI_1!=poll__networl_2_3_RI_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_1_2_RP_3!=poll__networl_1_2_RP_3 & [network_3_2_AI_1!=poll__networl_3_2_AI_1 & [network_1_3_RI_3!=poll__networl_1_3_RI_3 & [network_2_2_AskP_3!=poll__networl_2_2_AskP_3 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_3_AskP_2!=poll__networl_2_3_AskP_2 & [network_3_3_RI_1!=poll__networl_3_3_RI_1 & [network_3_0_RI_3!=poll__networl_3_0_RI_3 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_3_2_AnsP_1!=poll__networl_3_2_AnsP_1 & [network_2_3_AskP_1!=poll__networl_2_3_AskP_1 & [network_3_1_AnnP_2!=poll__networl_3_1_AnnP_2 & [network_3_3_AI_3!=poll__networl_3_3_AI_3 & [network_2_1_AnsP_3!=poll__networl_2_1_AnsP_3 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_0_3_AnnP_3!=poll__networl_0_3_AnnP_3 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_3_2_AskP_0!=poll__networl_3_2_AskP_0 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0 & [network_3_2_AnnP_3!=poll__networl_3_2_AnnP_3 & [network_3_3_AskP_3!=poll__networl_3_3_AskP_3 & [network_3_1_RP_2!=poll__networl_3_1_RP_2 & [network_1_2_RI_1!=poll__networl_1_2_RI_1 & [network_1_0_AI_0!=poll__networl_1_0_AI_0 & [network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [network_1_2_AI_0!=poll__networl_1_2_AI_0 & [network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1 & [network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [network_1_3_AI_0!=poll__networl_1_3_AI_0 & [network_0_2_RP_1!=poll__networl_0_2_RP_1 & [network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2 & [network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [network_1_2_RP_0!=poll__networl_1_2_RP_0 & [network_1_2_RI_3!=poll__networl_1_2_RI_3 & [network_2_0_AskP_0!=poll__networl_2_0_AskP_0 & [network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1 & [network_0_2_AskP_3!=poll__networl_0_2_AskP_3 & [network_1_3_AI_2!=poll__networl_1_3_AI_2 & [network_1_3_AnsP_2!=poll__networl_1_3_AnsP_2 & [network_0_2_AI_3!=poll__networl_0_2_AI_3 & [network_1_2_AI_2!=poll__networl_1_2_AI_2 & [network_2_0_RP_0!=poll__networl_2_0_RP_0 & [network_3_2_RP_0!=poll__networl_3_2_RP_0 & [network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [network_2_0_AI_0!=poll__networl_2_0_AI_0 & [network_3_2_RI_1!=poll__networl_3_2_RI_1 & [network_0_2_AI_1!=poll__networl_0_2_AI_1 & [network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [network_3_0_RP_2!=poll__networl_3_0_RP_2 & [network_2_2_AI_2!=poll__networl_2_2_AI_2 & [network_0_1_AskP_3!=poll__networl_0_1_AskP_3 & [network_1_1_RI_0!=poll__networl_1_1_RI_0 & [network_0_1_RI_3!=poll__networl_0_1_RI_3 & [network_1_2_RP_2!=poll__networl_1_2_RP_2 & [network_0_3_AnnP_2!=poll__networl_0_3_AnnP_2 & [network_3_1_AnsP_2!=poll__networl_3_1_AnsP_2 & [network_1_3_AnnP_2!=poll__networl_1_3_AnnP_2 & [network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [network_1_2_AskP_3!=poll__networl_1_2_AskP_3 & [network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [network_1_3_AskP_2!=poll__networl_1_3_AskP_2 & [network_2_2_RI_0!=poll__networl_2_2_RI_0 & [network_0_0_AI_2!=poll__networl_0_0_AI_2 & [network_2_3_AI_3!=poll__networl_2_3_AI_3 & [network_3_2_AskP_2!=poll__networl_3_2_AskP_2 & [network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0 & [network_3_0_AnnP_0!=poll__networl_3_0_AnnP_0 & [network_1_3_RP_1!=poll__networl_1_3_RP_1 & [network_3_3_AskP_2!=poll__networl_3_3_AskP_2 & [network_3_3_RP_2!=poll__networl_3_3_RP_2 & [network_0_1_AskP_2!=poll__networl_0_1_AskP_2 & [network_1_0_RI_2!=poll__networl_1_0_RI_2 & [network_2_2_RI_3!=poll__networl_2_2_RI_3 & [network_3_0_AskP_1!=poll__networl_3_0_AskP_1 & [network_0_3_AskP_1!=poll__networl_0_3_AskP_1 & [network_0_0_RI_2!=poll__networl_0_0_RI_2 & [network_3_3_AI_0!=poll__networl_3_3_AI_0 & [network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0 & [network_3_0_AnnP_1!=poll__networl_3_0_AnnP_1 & [network_3_2_AnsP_3!=poll__networl_3_2_AnsP_3 & [network_2_0_AskP_1!=poll__networl_2_0_AskP_1 & [network_3_2_AI_3!=poll__networl_3_2_AI_3 & [network_1_3_RP_2!=poll__networl_1_3_RP_2 & [network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [network_1_3_AI_3!=poll__networl_1_3_AI_3 & [network_3_3_AnnP_2!=poll__networl_3_3_AnnP_2 & [network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0 & [network_0_2_RP_0!=poll__networl_0_2_RP_0 & [network_2_0_AnnP_3!=poll__networl_2_0_AnnP_3 & [network_0_2_RI_1!=poll__networl_0_2_RI_1 & [network_1_3_RI_2!=poll__networl_1_3_RI_2 & [network_0_0_RP_3!=poll__networl_0_0_RP_3 & [network_1_0_AI_2!=poll__networl_1_0_AI_2 & [network_3_0_AI_3!=poll__networl_3_0_AI_3 & [network_2_3_RI_3!=poll__networl_2_3_RI_3 & [network_3_1_AskP_1!=poll__networl_3_1_AskP_1 & [network_2_2_AnsP_3!=poll__networl_2_2_AnsP_3 & [network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0 & [network_0_2_AnsP_3!=poll__networl_0_2_AnsP_3 & [network_1_1_RP_0!=poll__networl_1_1_RP_0 & [network_1_0_AskP_3!=poll__networl_1_0_AskP_3 & [network_1_3_RI_0!=poll__networl_1_3_RI_0 & [network_3_0_RP_1!=poll__networl_3_0_RP_1 & [network_1_1_AnsP_3!=poll__networl_1_1_AnsP_3 & [network_0_3_AskP_2!=poll__networl_0_3_AskP_2 & [network_1_1_RP_2!=poll__networl_1_1_RP_2 & [network_2_3_RI_2!=poll__networl_2_3_RI_2 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] | [[network_2_2_RP_2!=poll__networl_2_2_RP_2 & [network_1_0_RI_0!=poll__networl_1_0_RI_0 & [network_0_0_AnnP_2!=poll__networl_0_0_AnnP_2 & [network_1_3_AskP_0!=poll__networl_1_3_AskP_0 & [network_2_3_RP_0!=poll__networl_2_3_RP_0 & [network_2_1_AnsP_2!=poll__networl_2_1_AnsP_2 & [network_1_2_RI_0!=poll__networl_1_2_RI_0 & [network_2_0_AI_2!=poll__networl_2_0_AI_2 & [network_0_3_AnnP_0!=poll__networl_0_3_AnnP_0 & [network_0_1_AI_2!=poll__networl_0_1_AI_2 & [network_2_3_RI_0!=poll__networl_2_3_RI_0 & [network_2_3_AnsP_3!=poll__networl_2_3_AnsP_3 & [network_2_3_AskP_3!=poll__networl_2_3_AskP_3 & [network_0_2_AI_0!=poll__networl_0_2_AI_0 & [network_3_1_AnsP_0!=poll__networl_3_1_AnsP_0 & [network_0_0_AnnP_0!=poll__networl_0_0_AnnP_0 & [network_0_2_AnnP_0!=poll__networl_0_2_AnnP_0 & [network_1_1_AnsP_0!=poll__networl_1_1_AnsP_0 & [network_3_1_AI_1!=poll__networl_3_1_AI_1 & [network_1_1_AskP_3!=poll__networl_1_1_AskP_3 & [network_0_2_RI_2!=poll__networl_0_2_RI_2 & [network_3_3_RI_0!=poll__networl_3_3_RI_0 & [network_3_1_RI_3!=poll__networl_3_1_RI_3 & [network_3_2_AnnP_0!=poll__networl_3_2_AnnP_0 & [network_2_0_AskP_3!=poll__networl_2_0_AskP_3 & [network_1_2_AnsP_2!=poll__networl_1_2_AnsP_2 & [network_3_0_AskP_2!=poll__networl_3_0_AskP_2 & [network_1_0_AnsP_3!=poll__networl_1_0_AnsP_3 & [network_1_3_AnnP_0!=poll__networl_1_3_AnnP_0 & [network_2_2_AskP_1!=poll__networl_2_2_AskP_1 & [network_2_0_AI_1!=poll__networl_2_0_AI_1 & [network_0_2_AI_2!=poll__networl_0_2_AI_2 & [network_2_3_RP_2!=poll__networl_2_3_RP_2 & [network_0_0_AskP_3!=poll__networl_0_0_AskP_3 & [network_2_2_AnnP_2!=poll__networl_2_2_AnnP_2 & [network_3_1_AnsP_1!=poll__networl_3_1_AnsP_1 & [network_3_3_AnsP_2!=poll__networl_3_3_AnsP_2 & [network_1_1_RI_1!=poll__networl_1_1_RI_1 & [network_0_0_RP_1!=poll__networl_0_0_RP_1 & [network_3_2_RI_0!=poll__networl_3_2_RI_0 & [network_3_2_AnnP_2!=poll__networl_3_2_AnnP_2 & [network_1_0_RP_2!=poll__networl_1_0_RP_2 & [network_0_1_AnsP_3!=poll__networl_0_1_AnsP_3 & [network_3_1_AnnP_0!=poll__networl_3_1_AnnP_0 & [network_1_1_AnnP_3!=poll__networl_1_1_AnnP_3 & [network_0_2_AskP_2!=poll__networl_0_2_AskP_2 & [network_0_1_RP_1!=poll__networl_0_1_RP_1 & [network_3_1_AskP_0!=poll__networl_3_1_AskP_0 & [network_3_3_RP_0!=poll__networl_3_3_RP_0 & [network_0_2_RI_3!=poll__networl_0_2_RI_3 & [network_2_1_AnnP_3!=poll__networl_2_1_AnnP_3 & [network_2_2_AnsP_2!=poll__networl_2_2_AnsP_2 & [network_2_0_AnsP_2!=poll__networl_2_0_AnsP_2 & [network_0_1_AnnP_3!=poll__networl_0_1_AnnP_3 & [network_3_3_AnnP_3!=poll__networl_3_3_AnnP_3 & [network_1_0_RP_1!=poll__networl_1_0_RP_1 & [network_2_3_AnnP_0!=poll__networl_2_3_AnnP_0 & [network_2_3_AnsP_0!=poll__networl_2_3_AnsP_0 & [network_0_1_RI_1!=poll__networl_0_1_RI_1 & [network_1_0_AskP_1!=poll__networl_1_0_AskP_1 & [network_0_0_AskP_0!=poll__networl_0_0_AskP_0 & [network_1_0_AnnP_0!=poll__networl_1_0_AnnP_0 & [network_2_3_AnsP_2!=poll__networl_2_3_AnsP_2 & [network_1_0_AnsP_1!=poll__networl_1_0_AnsP_1 & [network_1_1_RP_1!=poll__networl_1_1_RP_1 & [network_0_3_RP_2!=poll__networl_0_3_RP_2 & [network_3_2_AskP_3!=poll__networl_3_2_AskP_3 & [network_1_2_AnnP_2!=poll__networl_1_2_AnnP_2 & [network_0_1_AnnP_1!=poll__networl_0_1_AnnP_1 & [network_1_1_AI_0!=poll__networl_1_1_AI_0 & [network_2_2_AskP_2!=poll__networl_2_2_AskP_2 & [network_2_2_RI_1!=poll__networl_2_2_RI_1 & [network_3_1_AskP_2!=poll__networl_3_1_AskP_2 & [network_2_3_AnnP_1!=poll__networl_2_3_AnnP_1 & [network_0_0_AI_1!=poll__networl_0_0_AI_1 & [network_0_2_AnnP_3!=poll__networl_0_2_AnnP_3 & [network_2_2_RP_0!=poll__networl_2_2_RP_0 & [network_0_2_AskP_1!=poll__networl_0_2_AskP_1 & [network_2_0_RI_0!=poll__networl_2_0_RI_0 & [network_3_0_AnsP_0!=poll__networl_3_0_AnsP_0 & [network_2_0_AnsP_1!=poll__networl_2_0_AnsP_1 & [network_0_3_AI_2!=poll__networl_0_3_AI_2 & [network_1_0_AnsP_0!=poll__networl_1_0_AnsP_0 & [network_2_1_RP_0!=poll__networl_2_1_RP_0 & [network_3_1_AI_2!=poll__networl_3_1_AI_2 & [network_3_1_RP_3!=poll__networl_3_1_RP_3 & [network_3_3_AnsP_3!=poll__networl_3_3_AnsP_3 & [network_2_1_AI_2!=poll__networl_2_1_AI_2 & [network_2_2_AI_0!=poll__networl_2_2_AI_0 & [network_1_2_AskP_1!=poll__networl_1_2_AskP_1 & [network_2_1_AskP_0!=poll__networl_2_1_AskP_0 & [network_2_0_AskP_2!=poll__networl_2_0_AskP_2 & [network_0_3_AnsP_2!=poll__networl_0_3_AnsP_2 & [network_1_1_AskP_2!=poll__networl_1_1_AskP_2 & [network_2_1_AnnP_0!=poll__networl_2_1_AnnP_0 & [network_0_0_AnsP_3!=poll__networl_0_0_AnsP_3 & [network_1_3_RP_0!=poll__networl_1_3_RP_0 & [network_0_3_AI_1!=poll__networl_0_3_AI_1 & [network_1_2_RI_2!=poll__networl_1_2_RI_2 & [network_0_3_AskP_3!=poll__networl_0_3_AskP_3 & [network_3_2_AnnP_1!=poll__networl_3_2_AnnP_1 & [network_3_0_AnnP_2!=poll__networl_3_0_AnnP_2 & [network_1_3_AnsP_1!=poll__networl_1_3_AnsP_1 & [network_0_3_RP_3!=poll__networl_0_3_RP_3 & [network_1_0_RI_1!=poll__networl_1_0_RI_1 & [network_0_3_RP_0!=poll__networl_0_3_RP_0 & [network_0_0_AnnP_3!=poll__networl_0_0_AnnP_3 & [network_2_2_RI_2!=poll__networl_2_2_RI_2 & [network_1_2_AskP_0!=poll__networl_1_2_AskP_0 & [network_2_3_AskP_0!=poll__networl_2_3_AskP_0 & [network_2_0_AnnP_2!=poll__networl_2_0_AnnP_2 & [network_1_1_AnnP_2!=poll__networl_1_1_AnnP_2 & [network_2_0_RP_3!=poll__networl_2_0_RP_3 & [network_0_1_RP_2!=poll__networl_0_1_RP_2 & [network_2_0_AnnP_1!=poll__networl_2_0_AnnP_1 & [network_1_3_AnnP_1!=poll__networl_1_3_AnnP_1 & [network_1_2_AnsP_1!=poll__networl_1_2_AnsP_1 & [network_0_2_AnsP_1!=poll__networl_0_2_AnsP_1 & [network_3_0_RP_3!=poll__networl_3_0_RP_3 & [network_0_1_RI_0!=poll__networl_0_1_RI_0 & [network_2_3_RP_1!=poll__networl_2_3_RP_1 & [network_1_3_RP_3!=poll__networl_1_3_RP_3 & [network_3_0_AI_1!=poll__networl_3_0_AI_1 & [network_2_1_AskP_3!=poll__networl_2_1_AskP_3 & [network_0_0_RP_0!=poll__networl_0_0_RP_0 & [network_3_2_AnsP_0!=poll__networl_3_2_AnsP_0 & [network_0_1_AI_0!=poll__networl_0_1_AI_0 & [network_3_3_AnnP_0!=poll__networl_3_3_AnnP_0 & [network_3_0_AnsP_1!=poll__networl_3_0_AnsP_1 & [network_3_2_RI_3!=poll__networl_3_2_RI_3 & [network_0_1_AI_1!=poll__networl_0_1_AI_1 & [network_2_3_AI_1!=poll__networl_2_3_AI_1 & [network_2_1_AnnP_2!=poll__networl_2_1_AnnP_2 & [network_2_0_RI_1!=poll__networl_2_0_RI_1 & [network_2_1_AI_1!=poll__networl_2_1_AI_1 & [network_0_3_AnsP_3!=poll__networl_0_3_AnsP_3 & [network_2_1_AI_3!=poll__networl_2_1_AI_3 & [network_3_1_AnnP_1!=poll__networl_3_1_AnnP_1 & [network_3_3_AnsP_0!=poll__networl_3_3_AnsP_0 & [network_1_3_AnnP_3!=poll__networl_1_3_AnnP_3 & [network_0_0_AI_3!=poll__networl_0_0_AI_3 & [network_3_1_RI_2!=poll__networl_3_1_RI_2 & [network_0_1_RP_0!=poll__networl_0_1_RP_0 & [network_0_3_RI_3!=poll__networl_0_3_RI_3 & [network_1_2_AnnP_1!=poll__networl_1_2_AnnP_1 & [network_2_0_AnsP_0!=poll__networl_2_0_AnsP_0 & [network_1_3_AskP_1!=poll__networl_1_3_AskP_1 & [network_0_1_AI_3!=poll__networl_0_1_AI_3 & [network_2_1_AI_0!=poll__networl_2_1_AI_0 & [network_2_1_RP_3!=poll__networl_2_1_RP_3 & [network_3_0_RI_1!=poll__networl_3_0_RI_1 & [network_2_3_AI_2!=poll__networl_2_3_AI_2 & [network_1_2_AskP_2!=poll__networl_1_2_AskP_2 & [network_3_1_AskP_3!=poll__networl_3_1_AskP_3 & [network_0_0_RP_2!=poll__networl_0_0_RP_2 & [network_1_3_RI_1!=poll__networl_1_3_RI_1 & [network_3_0_AI_0!=poll__networl_3_0_AI_0 & [network_2_0_RP_1!=poll__networl_2_0_RP_1 & [network_3_1_RI_0!=poll__networl_3_1_RI_0 & [network_2_0_AI_3!=poll__networl_2_0_AI_3 & [network_0_2_RP_2!=poll__networl_0_2_RP_2 & [network_0_2_RP_3!=poll__networl_0_2_RP_3 & [network_2_2_AnnP_3!=poll__networl_2_2_AnnP_3 & [network_3_0_AskP_0!=poll__networl_3_0_AskP_0 & [network_2_2_AskP_0!=poll__networl_2_2_AskP_0 & [network_1_1_AI_2!=poll__networl_1_1_AI_2 & [network_0_1_AnnP_2!=poll__networl_0_1_AnnP_2 & [network_3_2_RI_2!=poll__networl_3_2_RI_2 & [network_1_3_AnsP_3!=poll__networl_1_3_AnsP_3 & [network_0_3_RP_1!=poll__networl_0_3_RP_1 & [network_1_0_AI_3!=poll__networl_1_0_AI_3 & [network_3_1_AnnP_3!=poll__networl_3_1_AnnP_3 & [network_3_2_AskP_1!=poll__networl_3_2_AskP_1 & [network_3_1_AI_0!=poll__networl_3_1_AI_0 & [network_3_1_AnsP_3!=poll__networl_3_1_AnsP_3 & [network_1_3_AnsP_0!=poll__networl_1_3_AnsP_0 & [network_2_3_RP_3!=poll__networl_2_3_RP_3 & [network_1_2_AI_1!=poll__networl_1_2_AI_1 & [network_1_1_RP_3!=poll__networl_1_1_RP_3 & [network_2_2_AnsP_0!=poll__networl_2_2_AnsP_0 & [network_0_3_RI_1!=poll__networl_0_3_RI_1 & [network_2_1_RI_2!=poll__networl_2_1_RI_2 & [network_2_3_AnsP_1!=poll__networl_2_3_AnsP_1 & [network_2_1_RI_0!=poll__networl_2_1_RI_0 & [network_3_0_AnnP_3!=poll__networl_3_0_AnnP_3 & [network_0_0_RI_1!=poll__networl_0_0_RI_1 & [network_2_0_RP_2!=poll__networl_2_0_RP_2 & [network_2_3_AI_0!=poll__networl_2_3_AI_0 & [network_3_2_AI_2!=poll__networl_3_2_AI_2 & [network_0_3_AnsP_0!=poll__networl_0_3_AnsP_0 & [network_0_1_AnnP_0!=poll__networl_0_1_AnnP_0 & [network_2_2_AnnP_0!=poll__networl_2_2_AnnP_0 & [network_3_3_AskP_1!=poll__networl_3_3_AskP_1 & [network_1_1_AI_3!=poll__networl_1_1_AI_3 & [network_3_3_RI_2!=poll__networl_3_3_RI_2 & [network_2_0_RI_3!=poll__networl_2_0_RI_3 & [network_0_1_AnsP_2!=poll__networl_0_1_AnsP_2 & [network_0_0_AnsP_0!=poll__networl_0_0_AnsP_0 & [network_1_1_RI_3!=poll__networl_1_1_RI_3 & [network_1_0_RI_3!=poll__networl_1_0_RI_3 & [network_0_0_RI_0!=poll__networl_0_0_RI_0 & [network_0_0_AskP_2!=poll__networl_0_0_AskP_2 & [network_3_2_AnsP_2!=poll__networl_3_2_AnsP_2 & [network_1_0_AnnP_1!=poll__networl_1_0_AnnP_1 & [network_2_3_AnnP_3!=poll__networl_2_3_AnnP_3 & [network_2_1_RI_3!=poll__networl_2_1_RI_3 & [network_2_0_RI_2!=poll__networl_2_0_RI_2 & [network_3_1_RP_1!=poll__networl_3_1_RP_1 & [network_3_1_AI_3!=poll__networl_3_1_AI_3 & [network_0_3_RI_2!=poll__networl_0_3_RI_2 & [network_2_3_AnnP_2!=poll__networl_2_3_AnnP_2 & [network_2_2_AI_3!=poll__networl_2_2_AI_3 & [network_3_0_RI_2!=poll__networl_3_0_RI_2 & [network_1_0_AnnP_3!=poll__networl_1_0_AnnP_3 & [network_1_1_RI_2!=poll__networl_1_1_RI_2 & [network_3_2_AI_0!=poll__networl_3_2_AI_0 & [network_3_0_AnsP_3!=poll__networl_3_0_AnsP_3 & [network_0_3_AnnP_1!=poll__networl_0_3_AnnP_1 & [network_3_3_RI_3!=poll__networl_3_3_RI_3 & [network_3_3_AI_1!=poll__networl_3_3_AI_1 & [network_1_0_AI_1!=poll__networl_1_0_AI_1 & [network_0_1_RP_3!=poll__networl_0_1_RP_3 & [network_2_2_RP_3!=poll__networl_2_2_RP_3 & [network_0_0_RI_3!=poll__networl_0_0_RI_3 & [network_3_3_RP_3!=poll__networl_3_3_RP_3 & [network_0_0_AI_0!=poll__networl_0_0_AI_0 & [network_3_0_RI_0!=poll__networl_3_0_RI_0 & [network_3_2_RP_3!=poll__networl_3_2_RP_3 & [network_1_1_AI_1!=poll__networl_1_1_AI_1 & [network_1_2_AnnP_3!=poll__networl_1_2_AnnP_3 & [network_3_3_AskP_0!=poll__networl_3_3_AskP_0 & [network_2_2_AnsP_1!=poll__networl_2_2_AnsP_1 & [network_0_2_RI_0!=poll__networl_0_2_RI_0 & [network_0_1_AnsP_1!=poll__networl_0_1_AnsP_1 & [network_3_0_AI_2!=poll__networl_3_0_AI_2 & [network_1_2_RP_1!=poll__networl_1_2_RP_1 & [network_1_2_AnsP_3!=poll__networl_1_2_AnsP_3 & [network_3_0_AskP_3!=poll__networl_3_0_AskP_3 & [network_2_1_RI_1!=poll__networl_2_1_RI_1 & [network_0_0_AnsP_1!=poll__networl_0_0_AnsP_1 & [network_3_3_AnsP_1!=poll__networl_3_3_AnsP_1 & [network_3_1_RI_1!=poll__networl_3_1_RI_1 & [network_1_2_AI_3!=poll__networl_1_2_AI_3 & [network_0_3_RI_0!=poll__networl_0_3_RI_0 & [network_3_0_AnsP_2!=poll__networl_3_0_AnsP_2 & [network_2_1_AnsP_1!=poll__networl_2_1_AnsP_1 & [network_3_3_RP_1!=poll__networl_3_3_RP_1 & [network_0_2_AskP_0!=poll__networl_0_2_AskP_0 & [network_1_3_AI_1!=poll__networl_1_3_AI_1 & [network_0_3_AI_3!=poll__networl_0_3_AI_3 & [network_3_3_AI_2!=poll__networl_3_3_AI_2 & [network_0_3_AnsP_1!=poll__networl_0_3_AnsP_1 & [network_0_1_AskP_0!=poll__networl_0_1_AskP_0 & [network_2_2_RP_1!=poll__networl_2_2_RP_1 & [network_3_1_RP_0!=poll__networl_3_1_RP_0 & [network_2_0_AnsP_3!=poll__networl_2_0_AnsP_3 & [network_1_0_AnnP_2!=poll__networl_1_0_AnnP_2 & [network_3_2_RP_1!=poll__networl_3_2_RP_1 & [network_3_2_RP_2!=poll__networl_3_2_RP_2 & [network_0_3_AskP_0!=poll__networl_0_3_AskP_0 & [network_3_0_RP_0!=poll__networl_3_0_RP_0 & [network_3_3_AnnP_1!=poll__networl_3_3_AnnP_1 & [network_1_0_RP_3!=poll__networl_1_0_RP_3 & [network_0_2_AnnP_2!=poll__networl_0_2_AnnP_2 & [network_0_0_AskP_1!=poll__networl_0_0_AskP_1 & [network_1_2_AnnP_0!=poll__networl_1_2_AnnP_0 & [network_0_3_AI_0!=poll__networl_0_3_AI_0 & [network_1_3_AskP_3!=poll__networl_1_3_AskP_3 & [network_0_1_AskP_1!=poll__networl_0_1_AskP_1 & [network_2_3_RI_1!=poll__networl_2_3_RI_1 & [network_2_2_AI_1!=poll__networl_2_2_AI_1 & [network_1_2_RP_3!=poll__networl_1_2_RP_3 & [network_3_2_AI_1!=poll__networl_3_2_AI_1 & [network_1_3_RI_3!=poll__networl_1_3_RI_3 & [network_2_2_AskP_3!=poll__networl_2_2_AskP_3 & [network_2_1_RP_1!=poll__networl_2_1_RP_1 & [network_0_1_RI_2!=poll__networl_0_1_RI_2 & [network_2_3_AskP_2!=poll__networl_2_3_AskP_2 & [network_3_3_RI_1!=poll__networl_3_3_RI_1 & [network_3_0_RI_3!=poll__networl_3_0_RI_3 & [network_2_1_RP_2!=poll__networl_2_1_RP_2 & [network_3_2_AnsP_1!=poll__networl_3_2_AnsP_1 & [network_2_3_AskP_1!=poll__networl_2_3_AskP_1 & [network_3_1_AnnP_2!=poll__networl_3_1_AnnP_2 & [network_3_3_AI_3!=poll__networl_3_3_AI_3 & [network_2_1_AnsP_3!=poll__networl_2_1_AnsP_3 & [network_0_2_AnsP_0!=poll__networl_0_2_AnsP_0 & [network_0_3_AnnP_3!=poll__networl_0_3_AnnP_3 & [network_1_1_AskP_1!=poll__networl_1_1_AskP_1 & [network_3_2_AskP_0!=poll__networl_3_2_AskP_0 & [network_2_2_AnnP_1!=poll__networl_2_2_AnnP_1 & [network_1_1_AnnP_0!=poll__networl_1_1_AnnP_0 & [network_3_2_AnnP_3!=poll__networl_3_2_AnnP_3 & [network_3_3_AskP_3!=poll__networl_3_3_AskP_3 & [network_3_1_RP_2!=poll__networl_3_1_RP_2 & [network_1_2_RI_1!=poll__networl_1_2_RI_1 & [network_1_0_AI_0!=poll__networl_1_0_AI_0 & [network_0_2_AnnP_1!=poll__networl_0_2_AnnP_1 & [network_1_2_AI_0!=poll__networl_1_2_AI_0 & [network_2_1_AnnP_1!=poll__networl_2_1_AnnP_1 & [network_1_1_AnnP_1!=poll__networl_1_1_AnnP_1 & [network_1_3_AI_0!=poll__networl_1_3_AI_0 & [network_0_2_RP_1!=poll__networl_0_2_RP_1 & [network_0_0_AnsP_2!=poll__networl_0_0_AnsP_2 & [network_2_1_AskP_2!=poll__networl_2_1_AskP_2 & [network_1_2_RP_0!=poll__networl_1_2_RP_0 & [network_1_2_RI_3!=poll__networl_1_2_RI_3 & [network_2_0_AskP_0!=poll__networl_2_0_AskP_0 & [network_1_1_AnsP_1!=poll__networl_1_1_AnsP_1 & [network_0_2_AskP_3!=poll__networl_0_2_AskP_3 & [network_1_3_AI_2!=poll__networl_1_3_AI_2 & [network_1_3_AnsP_2!=poll__networl_1_3_AnsP_2 & [network_0_2_AI_3!=poll__networl_0_2_AI_3 & [network_1_2_AI_2!=poll__networl_1_2_AI_2 & [network_2_0_RP_0!=poll__networl_2_0_RP_0 & [network_3_2_RP_0!=poll__networl_3_2_RP_0 & [network_2_1_AskP_1!=poll__networl_2_1_AskP_1 & [network_1_0_RP_0!=poll__networl_1_0_RP_0 & [network_0_2_AnsP_2!=poll__networl_0_2_AnsP_2 & [network_2_0_AI_0!=poll__networl_2_0_AI_0 & [network_3_2_RI_1!=poll__networl_3_2_RI_1 & [network_0_2_AI_1!=poll__networl_0_2_AI_1 & [network_1_1_AnsP_2!=poll__networl_1_1_AnsP_2 & [network_3_0_RP_2!=poll__networl_3_0_RP_2 & [network_2_2_AI_2!=poll__networl_2_2_AI_2 & [network_0_1_AskP_3!=poll__networl_0_1_AskP_3 & [network_1_1_RI_0!=poll__networl_1_1_RI_0 & [network_0_1_RI_3!=poll__networl_0_1_RI_3 & [network_1_2_RP_2!=poll__networl_1_2_RP_2 & [network_0_3_AnnP_2!=poll__networl_0_3_AnnP_2 & [network_3_1_AnsP_2!=poll__networl_3_1_AnsP_2 & [network_1_3_AnnP_2!=poll__networl_1_3_AnnP_2 & [network_1_1_AskP_0!=poll__networl_1_1_AskP_0 & [network_0_0_AnnP_1!=poll__networl_0_0_AnnP_1 & [network_1_2_AskP_3!=poll__networl_1_2_AskP_3 & [network_1_0_AskP_0!=poll__networl_1_0_AskP_0 & [network_1_3_AskP_2!=poll__networl_1_3_AskP_2 & [network_2_2_RI_0!=poll__networl_2_2_RI_0 & [network_0_0_AI_2!=poll__networl_0_0_AI_2 & [network_2_3_AI_3!=poll__networl_2_3_AI_3 & [network_3_2_AskP_2!=poll__networl_3_2_AskP_2 & [network_2_1_AnsP_0!=poll__networl_2_1_AnsP_0 & [network_3_0_AnnP_0!=poll__networl_3_0_AnnP_0 & [network_1_3_RP_1!=poll__networl_1_3_RP_1 & [network_3_3_AskP_2!=poll__networl_3_3_AskP_2 & [network_3_3_RP_2!=poll__networl_3_3_RP_2 & [network_0_1_AskP_2!=poll__networl_0_1_AskP_2 & [network_1_0_RI_2!=poll__networl_1_0_RI_2 & [network_2_2_RI_3!=poll__networl_2_2_RI_3 & [network_3_0_AskP_1!=poll__networl_3_0_AskP_1 & [network_0_3_AskP_1!=poll__networl_0_3_AskP_1 & [network_0_0_RI_2!=poll__networl_0_0_RI_2 & [network_3_3_AI_0!=poll__networl_3_3_AI_0 & [network_1_2_AnsP_0!=poll__networl_1_2_AnsP_0 & [network_3_0_AnnP_1!=poll__networl_3_0_AnnP_1 & [network_3_2_AnsP_3!=poll__networl_3_2_AnsP_3 & [network_2_0_AskP_1!=poll__networl_2_0_AskP_1 & [network_3_2_AI_3!=poll__networl_3_2_AI_3 & [network_1_3_RP_2!=poll__networl_1_3_RP_2 & [network_1_0_AskP_2!=poll__networl_1_0_AskP_2 & [network_1_3_AI_3!=poll__networl_1_3_AI_3 & [network_3_3_AnnP_2!=poll__networl_3_3_AnnP_2 & [network_1_0_AnsP_2!=poll__networl_1_0_AnsP_2 & [network_0_1_AnsP_0!=poll__networl_0_1_AnsP_0 & [network_0_2_RP_0!=poll__networl_0_2_RP_0 & [network_2_0_AnnP_3!=poll__networl_2_0_AnnP_3 & [network_0_2_RI_1!=poll__networl_0_2_RI_1 & [network_1_3_RI_2!=poll__networl_1_3_RI_2 & [network_0_0_RP_3!=poll__networl_0_0_RP_3 & [network_1_0_AI_2!=poll__networl_1_0_AI_2 & [network_3_0_AI_3!=poll__networl_3_0_AI_3 & [network_2_3_RI_3!=poll__networl_2_3_RI_3 & [network_3_1_AskP_1!=poll__networl_3_1_AskP_1 & [network_2_2_AnsP_3!=poll__networl_2_2_AnsP_3 & [network_2_0_AnnP_0!=poll__networl_2_0_AnnP_0 & [network_0_2_AnsP_3!=poll__networl_0_2_AnsP_3 & [network_1_1_RP_0!=poll__networl_1_1_RP_0 & [network_1_0_AskP_3!=poll__networl_1_0_AskP_3 & [network_1_3_RI_0!=poll__networl_1_3_RI_0 & [network_3_0_RP_1!=poll__networl_3_0_RP_1 & [network_1_1_AnsP_3!=poll__networl_1_1_AnsP_3 & [network_0_3_AskP_2!=poll__networl_0_3_AskP_2 & [network_1_1_RP_2!=poll__networl_1_1_RP_2 & [network_2_3_RI_2!=poll__networl_2_3_RI_2 & true]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] & [polling_1!=electionFailed_1 & [polling_3!=electionFailed_3 & [polling_2!=electionFailed_2 & [polling_0!=electionFailed_0 & true]]]]]]]]]

-> the formula is TRUE

FORMULA p_11_placecomparison_eq_x TRUE TECHNIQUES DECISION_DIAGRAMS

mc time: 0m0sec

checking: AG [[[[true & [crashed_0<=electedSecondary_0 & [[[true & crashed_3<=electedSecondary_3] & crashed_2<=electedSecondary_2] & crashed_1<=electedSecondary_1]]] & [[[[crashed_2poll__handlingMessage_0 & [[true & electionInit_1>poll__handlingMessage_1] & electionInit_2>poll__handlingMessage_2]] & electionInit_3>poll__handlingMessage_3]]]]
normalized: ~ [E [true U ~ [[[[electionInit_3>poll__handlingMessage_3 & [electionInit_0>poll__handlingMessage_0 & [electionInit_2>poll__handlingMessage_2 & [electionInit_1>poll__handlingMessage_1 & true]]]] & true] & [[false | [crashed_0
-> the formula is FALSE

FORMULA p_12_placecomparison_full_and FALSE TECHNIQUES DECISION_DIAGRAMS

mc time: 0m0sec

checking: AG [[[[[crashed_0poll__handlingMessage_3 & [electionInit_0>poll__handlingMessage_0 & [electionInit_2>poll__handlingMessage_2 & [electionInit_1>poll__handlingMessage_1 & true]]]] & true]]]
normalized: ~ [E [true U ~ [[[true & [electionInit_3>poll__handlingMessage_3 & [electionInit_0>poll__handlingMessage_0 & [electionInit_2>poll__handlingMessage_2 & [electionInit_1>poll__handlingMessage_1 & true]]]]] | [[true & [crashed_0<=electedSecondary_0 & [crashed_1<=electedSecondary_1 & [crashed_2<=electedSecondary_2 & [crashed_3<=electedSecondary_3 & true]]]]] & [false | [crashed_0
-> the formula is FALSE

FORMULA p_13_placecomparison_full_or FALSE TECHNIQUES DECISION_DIAGRAMS

mc time: 0m0sec

checking: AG [[~ [[true & [[electionInit_0>poll__handlingMessage_0 & [[electionInit_1>poll__handlingMessage_1 & true] & electionInit_2>poll__handlingMessage_2]] & electionInit_3>poll__handlingMessage_3]]] & [[false | [crashed_0 normalized: ~ [E [true U ~ [[[[[crashed_0<=electedSecondary_0 & [crashed_1<=electedSecondary_1 & [crashed_2<=electedSecondary_2 & [crashed_3<=electedSecondary_3 & true]]]] & true] & [[crashed_0poll__handlingMessage_3 & [electionInit_0>poll__handlingMessage_0 & [electionInit_2>poll__handlingMessage_2 & [electionInit_1>poll__handlingMessage_1 & true]]]] & true]]]]]]

-> the formula is FALSE

FORMULA p_14_placecomparison_full_and_notx FALSE TECHNIQUES DECISION_DIAGRAMS

mc time: 0m0sec


total processing time: 0m23sec

STOP 1369628901

--------------------
content from stderr:

check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m0sec

2413 2983 4406 5170 8021 8230 9312 9485 12146 12633 13261 15641 17360 19352
iterations count:14854 (14), effective:108 (0)

initing FirstDep: 0m0sec

19347
iterations count:1016 (1), effective:0 (0)
19347
iterations count:1016 (1), effective:0 (0)
19347
iterations count:1016 (1), effective:0 (0)
19347
iterations count:1016 (1), effective:0 (0)
19347
iterations count:1016 (1), effective:0 (0)
19347
iterations count:1016 (1), effective:0 (0)

--------------------
content from /tmp/BenchKit_head_log_file.1662: