This form is a summary description of the model entitled "TwoPhaseLocking" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

 $\stackrel{\mathrm{since}}{\mathrm{MCC}}$ 2021

Description

The model simulates a problematic condition where a badly-designed process violates the *two phase locking* (2PL) protocol rules. A process performing 2PL follows two phases: an *acquisition phase*, where resource can be obtained, and a *release phase*, where all resources must be released. Re-acquiring resources during the release phase is a 2PL protocol violation. 2PL, together with fixed-order resource acquisition, ensures deadlock avoidance.

In the Petri net model, a client process first acquires a resource of type A and one of type B. It then releases A, thus starting the release phase. However, after this first step, the process reacquires a new resource of type A, violating the 2PL rules. The process that releases both B and A. If the number of concurrently running *Clients* nC is equal or less than the sum of the resources nA + nB, a deadlock condition may form. The model is parametric in nC, the number of clients. For each value of nC, two model versions are proposed: Version N has $nC = 2 \cdot nA = 2 \cdot (nB - 1)$, resulting in no deadlocks; Version D has $nC = 2 \cdot nA = 2 \cdot (nB - 1)$, resulting in no deadlocks; Version D has $nC = 2 \cdot nA = 2 \cdot nB$, generating deadlock states.

Graphical representation for nC = 10 (version D). Version N would have nB = 6.

References

Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman (1987): Concurrency Control and Recovery in Database Systems, Addison Wesley Publishing Company, ISBN 0-201-10715-5.

Scaling parameter

Parameter name	Parameter description	Chosen parameter values		
N	Number of client processes.	4, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000		

 $\stackrel{\mathrm{since}}{\mathrm{MCC}}$ 2021

Size of the model

Although the model is parameterized, its size does not depend on parameter values.

number of places:	8
number of transitions:	6
number of arcs:	18

Structural properties

ordinary — all arcs have multiplicity one	🗸
simple free choice — all transitions sharing a common input place have no other input place \ldots	X (a)
extended free choice — all transitions sharing a common input place have the same input places \ldots	🗙 (b)
state machine — every transition has exactly one input place and exactly one output place	X (c)
marked graph — every place has exactly one input transition and exactly one output transition \dots	X (d)
connected — there is an undirected path between every two nodes (places or transitions)	/ (e)
strongly connected — there is a directed path between every two nodes (places or transitions)	<mark>/ (</mark> f)
source place(s) — one or more places have no input transitions \ldots	X (g)
$\operatorname{sink} \operatorname{place}(s)$ — one or more places have no output transitions \ldots	X (h)
source transition(s) — one or more transitions have no input places \dots	X (i)
sink transitions(s) — one or more transitions have no output places	X (j)
loop-free — no transition has an input place that is also an output place	/ (k)
conservative — for each transition, the number of input arcs equals the number of output arcs	X (1)
subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs	(m)
nested units — places are structured into hierarchically nested sequential units $^{(n)}$	🗡

Behavioural properties

safe — in every reachable marking, there is no more than one token on a place	X (o)
dead place(s) — one or more places have no token in any reachable marking	X (p)
dead transition(s) — one or more transitions cannot fire from any reachable marking	X (q)
deadlock — there exists a reachable marking from which no transition can be fired	.? ^(r)
reversible — from every reachable marking, there is a transition path going back to the initial marking	? (s)
live — for every transition t, from every reachable marking, one can reach a marking in which t can fire	? (t)

 $^{^{(}a)}$ 2 arcs are not simple free choice, e.g., the arc from place "resA" (which has 2 outgoing transitions) to transition "lockA" (which has 2 input places).

^(q) stated by CÆSAR.BDD version 3.5 on all 22 instances ($nC \in \{4, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000\}$, version D or N).

^(b) transitions "lockA2" and "lockA" share a common input place "resA", but only the former transition has input place "haveB".

 $^{^{\}rm (c)}$ 6 transitions are not of a state machine, e.g., transition "relB".

 $^{^{\}rm (d)}$ place "res A" is not of a marked graph.

⁽e) stated by CÆSAR.BDD version 3.5 on all 22 instances ($nC \in \{4, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000\}$, version D or N).

⁽f) stated by CÆSAR.BDD version 3.5 on all 22 instances ($nC \in \{4, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000\}$, version D or N).

⁽g) stated by CÆSAR.BDD version 3.5 on all 22 instances ($nC \in \{4, 10, 20, 50, 100, 200, 500, 10000\}$, version D or N).

^(h) stated by CÆSAR.BDD version 3.5 on all 22 instances ($nC \in \{4, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000\}$, version D or N). ⁽ⁱ⁾ stated by CÆSAR.BDD version 3.5 on all 22 instances ($nC \in \{4, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000\}$, version D or N).

⁽i) stated by CÆSAR.BDD version 3.5 on all 22 instances ($nC \in \{4, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000\}$, version D or N).

^(k) stated by CÆSAR.BDD version 3.5 on all 22 instances ($nC \in \{4, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000\}$, version D or N).

⁽¹⁾ 6 transitions are not conservative, e.g., transition "relB".

^(m) 3 transitions are not subconservative, e.g., transition "relB".

⁽ⁿ⁾the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

^(o) stated by CÆSAR.BDD version 3.5 on all 22 instances ($nC \in \{4, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000\}$, version D or N).

⁽p) stated by CÆSAR.BDD version 3.5 on all 22 instances $(nC \in \{4, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000\}$, version D or N).

 $^{^{(}r)}$ \checkmark for the *D* version, \checkmark for the *N* version.

⁽s) \checkmark for the *D* version, \checkmark for the *N* version.

⁽t) \checkmark for the *D* version, \checkmark for the *N* version.

Size of the marking graphs

Parameter	Number of reach-	Number of tran-	Max. number of	Max. number of
	able markings	sition firings	tokens per place	tokens per marking
nC = 4 version D	32	57	4	8
nC = 4 version N	45	84	4	9
nC = 10 version D	?	?	?	$\geq 20^{(u)}$
nC = 10 version N	?	?	?	$\geq 21^{(\mathbf{v})}$
nC = 20 version D	?	?	?	$\geq 40^{(w)}$
nC = 20 version N	?	?	?	$\geq 41^{(\mathbf{x})}$
nC = 50 version D	?	?	?	$\geq 100^{(y)}$
nC = 50 version N	?	?	?	$\geq 101^{(z)}$
nC = 100 version D	?	?	?	$\geq 200^{(aa)}$
nC = 100 version N	?	?	?	$\geq 201^{(ab)}$
nC = 200 version D	?	?	?	$\geq 400^{(\mathrm{ac})}$
nC = 200 version N	?	?	?	$\geq 401^{({\rm ad})}$
nC = 500 version D	?	?	?	$\geq 1000^{(ae)}$
nC = 500 version N	?	?	?	$\geq 1001^{(af)}$
nC = 1000 version	?	?	?	$\geq 2000^{(ag)}$
D				
nC = 1000 version	?	?	?	$\geq 2001^{\text{(ah)}}$
Ν				
nC = 2000 version	?	?	?	$\geq 4000^{\text{(ai)}}$
D				
nC = 2000 version	?	?	?	$\geq 4001^{(aj)}$
Ν				
nC = 5000 version	?	?	?	$\geq 10000^{(ak)}$
D				
nC = 5000 version	?	?	?	$\geq 10001^{(al)}$
Ν				
nC = 10000 version	?	?	?	$\geq 20000^{\text{(am)}}$
D				
nC = 10000 version	2	?	?	$\geq 20001^{(an)}$
N				

^(u) lower bound given by the number of initial tokens. (v) lower bound given by the number of initial tokens. ^(w) lower bound given by the number of initial tokens. ^(x) lower bound given by the number of initial tokens. ^(y) lower bound given by the number of initial tokens. $^{(\mathbf{z})}$ lower bound given by the number of initial tokens. ^(aa) lower bound given by the number of initial tokens. ^(ab) lower bound given by the number of initial tokens. $^{(ac)}$ lower bound given by the number of initial tokens. ^(ad) lower bound given by the number of initial tokens. ^(ae) lower bound given by the number of initial tokens. ^(af) lower bound given by the number of initial tokens. $^{\rm (ag)}$ lower bound given by the number of initial tokens. ^(ah) lower bound given by the number of initial tokens. ^(ai) lower bound given by the number of initial tokens. ^(aj) lower bound given by the number of initial tokens. ^(ak) lower bound given by the number of initial tokens. ^(al) lower bound given by the number of initial tokens. ^(am) lower bound given by the number of initial tokens. ^(an) lower bound given by the number of initial tokens.